gfx/skia/trunk/src/pathops/SkQuarticRoot.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/pathops/SkQuarticRoot.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,165 @@
     1.4 +// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
     1.5 +/*
     1.6 + *  Roots3And4.c
     1.7 + *
     1.8 + *  Utility functions to find cubic and quartic roots,
     1.9 + *  coefficients are passed like this:
    1.10 + *
    1.11 + *      c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
    1.12 + *
    1.13 + *  The functions return the number of non-complex roots and
    1.14 + *  put the values into the s array.
    1.15 + *
    1.16 + *  Author:         Jochen Schwarze (schwarze@isa.de)
    1.17 + *
    1.18 + *  Jan 26, 1990    Version for Graphics Gems
    1.19 + *  Oct 11, 1990    Fixed sign problem for negative q's in SolveQuartic
    1.20 + *                  (reported by Mark Podlipec),
    1.21 + *                  Old-style function definitions,
    1.22 + *                  IsZero() as a macro
    1.23 + *  Nov 23, 1990    Some systems do not declare acos() and cbrt() in
    1.24 + *                  <math.h>, though the functions exist in the library.
    1.25 + *                  If large coefficients are used, EQN_EPS should be
    1.26 + *                  reduced considerably (e.g. to 1E-30), results will be
    1.27 + *                  correct but multiple roots might be reported more
    1.28 + *                  than once.
    1.29 + */
    1.30 +
    1.31 +#include "SkPathOpsCubic.h"
    1.32 +#include "SkPathOpsQuad.h"
    1.33 +#include "SkQuarticRoot.h"
    1.34 +
    1.35 +int SkReducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
    1.36 +        const double t0, const bool oneHint, double roots[4]) {
    1.37 +#ifdef SK_DEBUG
    1.38 +    // create a string mathematica understands
    1.39 +    // GDB set print repe 15 # if repeated digits is a bother
    1.40 +    //     set print elements 400 # if line doesn't fit
    1.41 +    char str[1024];
    1.42 +    sk_bzero(str, sizeof(str));
    1.43 +    SK_SNPRINTF(str, sizeof(str),
    1.44 +            "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
    1.45 +            t4, t3, t2, t1, t0);
    1.46 +    SkPathOpsDebug::MathematicaIze(str, sizeof(str));
    1.47 +#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
    1.48 +    SkDebugf("%s\n", str);
    1.49 +#endif
    1.50 +#endif
    1.51 +    if (approximately_zero_when_compared_to(t4, t0)  // 0 is one root
    1.52 +            && approximately_zero_when_compared_to(t4, t1)
    1.53 +            && approximately_zero_when_compared_to(t4, t2)) {
    1.54 +        if (approximately_zero_when_compared_to(t3, t0)
    1.55 +            && approximately_zero_when_compared_to(t3, t1)
    1.56 +            && approximately_zero_when_compared_to(t3, t2)) {
    1.57 +            return SkDQuad::RootsReal(t2, t1, t0, roots);
    1.58 +        }
    1.59 +        if (approximately_zero_when_compared_to(t4, t3)) {
    1.60 +            return SkDCubic::RootsReal(t3, t2, t1, t0, roots);
    1.61 +        }
    1.62 +    }
    1.63 +    if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))  // 0 is one root
    1.64 +      //      && approximately_zero_when_compared_to(t0, t2)
    1.65 +            && approximately_zero_when_compared_to(t0, t3)
    1.66 +            && approximately_zero_when_compared_to(t0, t4)) {
    1.67 +        int num = SkDCubic::RootsReal(t4, t3, t2, t1, roots);
    1.68 +        for (int i = 0; i < num; ++i) {
    1.69 +            if (approximately_zero(roots[i])) {
    1.70 +                return num;
    1.71 +            }
    1.72 +        }
    1.73 +        roots[num++] = 0;
    1.74 +        return num;
    1.75 +    }
    1.76 +    if (oneHint) {
    1.77 +        SkASSERT(approximately_zero_double(t4 + t3 + t2 + t1 + t0));  // 1 is one root
    1.78 +        // note that -C == A + B + D + E
    1.79 +        int num = SkDCubic::RootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots);
    1.80 +        for (int i = 0; i < num; ++i) {
    1.81 +            if (approximately_equal(roots[i], 1)) {
    1.82 +                return num;
    1.83 +            }
    1.84 +        }
    1.85 +        roots[num++] = 1;
    1.86 +        return num;
    1.87 +    }
    1.88 +    return -1;
    1.89 +}
    1.90 +
    1.91 +int SkQuarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
    1.92 +        const double D, const double E, double s[4]) {
    1.93 +    double  u, v;
    1.94 +    /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
    1.95 +    const double invA = 1 / A;
    1.96 +    const double a = B * invA;
    1.97 +    const double b = C * invA;
    1.98 +    const double c = D * invA;
    1.99 +    const double d = E * invA;
   1.100 +    /*  substitute x = y - a/4 to eliminate cubic term:
   1.101 +    x^4 + px^2 + qx + r = 0 */
   1.102 +    const double a2 = a * a;
   1.103 +    const double p = -3 * a2 / 8 + b;
   1.104 +    const double q = a2 * a / 8 - a * b / 2 + c;
   1.105 +    const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
   1.106 +    int num;
   1.107 +    if (approximately_zero(r)) {
   1.108 +    /* no absolute term: y(y^3 + py + q) = 0 */
   1.109 +        num = SkDCubic::RootsReal(1, 0, p, q, s);
   1.110 +        s[num++] = 0;
   1.111 +    } else {
   1.112 +        /* solve the resolvent cubic ... */
   1.113 +        double cubicRoots[3];
   1.114 +        int roots = SkDCubic::RootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
   1.115 +        int index;
   1.116 +        /* ... and take one real solution ... */
   1.117 +        double z;
   1.118 +        num = 0;
   1.119 +        int num2 = 0;
   1.120 +        for (index = firstCubicRoot; index < roots; ++index) {
   1.121 +            z = cubicRoots[index];
   1.122 +            /* ... to build two quadric equations */
   1.123 +            u = z * z - r;
   1.124 +            v = 2 * z - p;
   1.125 +            if (approximately_zero_squared(u)) {
   1.126 +                u = 0;
   1.127 +            } else if (u > 0) {
   1.128 +                u = sqrt(u);
   1.129 +            } else {
   1.130 +                continue;
   1.131 +            }
   1.132 +            if (approximately_zero_squared(v)) {
   1.133 +                v = 0;
   1.134 +            } else if (v > 0) {
   1.135 +                v = sqrt(v);
   1.136 +            } else {
   1.137 +                continue;
   1.138 +            }
   1.139 +            num = SkDQuad::RootsReal(1, q < 0 ? -v : v, z - u, s);
   1.140 +            num2 = SkDQuad::RootsReal(1, q < 0 ? v : -v, z + u, s + num);
   1.141 +            if (!((num | num2) & 1)) {
   1.142 +                break;  // prefer solutions without single quad roots
   1.143 +            }
   1.144 +        }
   1.145 +        num += num2;
   1.146 +        if (!num) {
   1.147 +            return 0;  // no valid cubic root
   1.148 +        }
   1.149 +    }
   1.150 +    /* resubstitute */
   1.151 +    const double sub = a / 4;
   1.152 +    for (int i = 0; i < num; ++i) {
   1.153 +        s[i] -= sub;
   1.154 +    }
   1.155 +    // eliminate duplicates
   1.156 +    for (int i = 0; i < num - 1; ++i) {
   1.157 +        for (int j = i + 1; j < num; ) {
   1.158 +            if (AlmostDequalUlps(s[i], s[j])) {
   1.159 +                if (j < --num) {
   1.160 +                    s[j] = s[num];
   1.161 +                }
   1.162 +            } else {
   1.163 +                ++j;
   1.164 +            }
   1.165 +        }
   1.166 +    }
   1.167 +    return num;
   1.168 +}

mercurial