|
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 // STL utility functions. Usually, these replace built-in, but slow(!), |
|
6 // STL functions with more efficient versions. |
|
7 |
|
8 #ifndef BASE_STL_UTIL_INL_H_ |
|
9 #define BASE_STL_UTIL_INL_H_ |
|
10 |
|
11 #include <string.h> // for memcpy |
|
12 #include <functional> |
|
13 #include <set> |
|
14 #include <string> |
|
15 #include <vector> |
|
16 #include <cassert> |
|
17 |
|
18 // Clear internal memory of an STL object. |
|
19 // STL clear()/reserve(0) does not always free internal memory allocated |
|
20 // This function uses swap/destructor to ensure the internal memory is freed. |
|
21 template<class T> void STLClearObject(T* obj) { |
|
22 T tmp; |
|
23 tmp.swap(*obj); |
|
24 obj->reserve(0); // this is because sometimes "T tmp" allocates objects with |
|
25 // memory (arena implementation?). use reserve() |
|
26 // to clear() even if it doesn't always work |
|
27 } |
|
28 |
|
29 // Reduce memory usage on behalf of object if it is using more than |
|
30 // "bytes" bytes of space. By default, we clear objects over 1MB. |
|
31 template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) { |
|
32 if (obj->capacity() >= limit) { |
|
33 STLClearObject(obj); |
|
34 } else { |
|
35 obj->clear(); |
|
36 } |
|
37 } |
|
38 |
|
39 // Reserve space for STL object. |
|
40 // STL's reserve() will always copy. |
|
41 // This function avoid the copy if we already have capacity |
|
42 template<class T> void STLReserveIfNeeded(T* obj, int new_size) { |
|
43 if (obj->capacity() < new_size) // increase capacity |
|
44 obj->reserve(new_size); |
|
45 else if (obj->size() > new_size) // reduce size |
|
46 obj->resize(new_size); |
|
47 } |
|
48 |
|
49 // STLDeleteContainerPointers() |
|
50 // For a range within a container of pointers, calls delete |
|
51 // (non-array version) on these pointers. |
|
52 // NOTE: for these three functions, we could just implement a DeleteObject |
|
53 // functor and then call for_each() on the range and functor, but this |
|
54 // requires us to pull in all of algorithm.h, which seems expensive. |
|
55 // For hash_[multi]set, it is important that this deletes behind the iterator |
|
56 // because the hash_set may call the hash function on the iterator when it is |
|
57 // advanced, which could result in the hash function trying to deference a |
|
58 // stale pointer. |
|
59 template <class ForwardIterator> |
|
60 void STLDeleteContainerPointers(ForwardIterator begin, |
|
61 ForwardIterator end) { |
|
62 while (begin != end) { |
|
63 ForwardIterator temp = begin; |
|
64 ++begin; |
|
65 delete *temp; |
|
66 } |
|
67 } |
|
68 |
|
69 // STLDeleteContainerPairPointers() |
|
70 // For a range within a container of pairs, calls delete |
|
71 // (non-array version) on BOTH items in the pairs. |
|
72 // NOTE: Like STLDeleteContainerPointers, it is important that this deletes |
|
73 // behind the iterator because if both the key and value are deleted, the |
|
74 // container may call the hash function on the iterator when it is advanced, |
|
75 // which could result in the hash function trying to dereference a stale |
|
76 // pointer. |
|
77 template <class ForwardIterator> |
|
78 void STLDeleteContainerPairPointers(ForwardIterator begin, |
|
79 ForwardIterator end) { |
|
80 while (begin != end) { |
|
81 ForwardIterator temp = begin; |
|
82 ++begin; |
|
83 delete temp->first; |
|
84 delete temp->second; |
|
85 } |
|
86 } |
|
87 |
|
88 // STLDeleteContainerPairFirstPointers() |
|
89 // For a range within a container of pairs, calls delete (non-array version) |
|
90 // on the FIRST item in the pairs. |
|
91 // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator. |
|
92 template <class ForwardIterator> |
|
93 void STLDeleteContainerPairFirstPointers(ForwardIterator begin, |
|
94 ForwardIterator end) { |
|
95 while (begin != end) { |
|
96 ForwardIterator temp = begin; |
|
97 ++begin; |
|
98 delete temp->first; |
|
99 } |
|
100 } |
|
101 |
|
102 // STLDeleteContainerPairSecondPointers() |
|
103 // For a range within a container of pairs, calls delete |
|
104 // (non-array version) on the SECOND item in the pairs. |
|
105 template <class ForwardIterator> |
|
106 void STLDeleteContainerPairSecondPointers(ForwardIterator begin, |
|
107 ForwardIterator end) { |
|
108 while (begin != end) { |
|
109 delete begin->second; |
|
110 ++begin; |
|
111 } |
|
112 } |
|
113 |
|
114 template<typename T> |
|
115 inline void STLAssignToVector(std::vector<T>* vec, |
|
116 const T* ptr, |
|
117 size_t n) { |
|
118 vec->resize(n); |
|
119 memcpy(&vec->front(), ptr, n*sizeof(T)); |
|
120 } |
|
121 |
|
122 /***** Hack to allow faster assignment to a vector *****/ |
|
123 |
|
124 // This routine speeds up an assignment of 32 bytes to a vector from |
|
125 // about 250 cycles per assignment to about 140 cycles. |
|
126 // |
|
127 // Usage: |
|
128 // STLAssignToVectorChar(&vec, ptr, size); |
|
129 // STLAssignToString(&str, ptr, size); |
|
130 |
|
131 inline void STLAssignToVectorChar(std::vector<char>* vec, |
|
132 const char* ptr, |
|
133 size_t n) { |
|
134 STLAssignToVector(vec, ptr, n); |
|
135 } |
|
136 |
|
137 inline void STLAssignToString(std::string* str, const char* ptr, size_t n) { |
|
138 str->resize(n); |
|
139 memcpy(&*str->begin(), ptr, n); |
|
140 } |
|
141 |
|
142 // To treat a possibly-empty vector as an array, use these functions. |
|
143 // If you know the array will never be empty, you can use &*v.begin() |
|
144 // directly, but that is allowed to dump core if v is empty. This |
|
145 // function is the most efficient code that will work, taking into |
|
146 // account how our STL is actually implemented. THIS IS NON-PORTABLE |
|
147 // CODE, so call us instead of repeating the nonportable code |
|
148 // everywhere. If our STL implementation changes, we will need to |
|
149 // change this as well. |
|
150 |
|
151 template<typename T> |
|
152 inline T* vector_as_array(std::vector<T>* v) { |
|
153 # ifdef NDEBUG |
|
154 return &*v->begin(); |
|
155 # else |
|
156 return v->empty() ? NULL : &*v->begin(); |
|
157 # endif |
|
158 } |
|
159 |
|
160 template<typename T> |
|
161 inline const T* vector_as_array(const std::vector<T>* v) { |
|
162 # ifdef NDEBUG |
|
163 return &*v->begin(); |
|
164 # else |
|
165 return v->empty() ? NULL : &*v->begin(); |
|
166 # endif |
|
167 } |
|
168 |
|
169 // Return a mutable char* pointing to a string's internal buffer, |
|
170 // which may not be null-terminated. Writing through this pointer will |
|
171 // modify the string. |
|
172 // |
|
173 // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the |
|
174 // next call to a string method that invalidates iterators. |
|
175 // |
|
176 // As of 2006-04, there is no standard-blessed way of getting a |
|
177 // mutable reference to a string's internal buffer. However, issue 530 |
|
178 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530) |
|
179 // proposes this as the method. According to Matt Austern, this should |
|
180 // already work on all current implementations. |
|
181 inline char* string_as_array(std::string* str) { |
|
182 // DO NOT USE const_cast<char*>(str->data())! See the unittest for why. |
|
183 return str->empty() ? NULL : &*str->begin(); |
|
184 } |
|
185 |
|
186 // These are methods that test two hash maps/sets for equality. These exist |
|
187 // because the == operator in the STL can return false when the maps/sets |
|
188 // contain identical elements. This is because it compares the internal hash |
|
189 // tables which may be different if the order of insertions and deletions |
|
190 // differed. |
|
191 |
|
192 template <class HashSet> |
|
193 inline bool |
|
194 HashSetEquality(const HashSet& set_a, |
|
195 const HashSet& set_b) { |
|
196 if (set_a.size() != set_b.size()) return false; |
|
197 for (typename HashSet::const_iterator i = set_a.begin(); |
|
198 i != set_a.end(); |
|
199 ++i) { |
|
200 if (set_b.find(*i) == set_b.end()) |
|
201 return false; |
|
202 } |
|
203 return true; |
|
204 } |
|
205 |
|
206 template <class HashMap> |
|
207 inline bool |
|
208 HashMapEquality(const HashMap& map_a, |
|
209 const HashMap& map_b) { |
|
210 if (map_a.size() != map_b.size()) return false; |
|
211 for (typename HashMap::const_iterator i = map_a.begin(); |
|
212 i != map_a.end(); ++i) { |
|
213 typename HashMap::const_iterator j = map_b.find(i->first); |
|
214 if (j == map_b.end()) return false; |
|
215 if (i->second != j->second) return false; |
|
216 } |
|
217 return true; |
|
218 } |
|
219 |
|
220 // The following functions are useful for cleaning up STL containers |
|
221 // whose elements point to allocated memory. |
|
222 |
|
223 // STLDeleteElements() deletes all the elements in an STL container and clears |
|
224 // the container. This function is suitable for use with a vector, set, |
|
225 // hash_set, or any other STL container which defines sensible begin(), end(), |
|
226 // and clear() methods. |
|
227 // |
|
228 // If container is NULL, this function is a no-op. |
|
229 // |
|
230 // As an alternative to calling STLDeleteElements() directly, consider |
|
231 // STLElementDeleter (defined below), which ensures that your container's |
|
232 // elements are deleted when the STLElementDeleter goes out of scope. |
|
233 template <class T> |
|
234 void STLDeleteElements(T *container) { |
|
235 if (!container) return; |
|
236 STLDeleteContainerPointers(container->begin(), container->end()); |
|
237 container->clear(); |
|
238 } |
|
239 |
|
240 // Given an STL container consisting of (key, value) pairs, STLDeleteValues |
|
241 // deletes all the "value" components and clears the container. Does nothing |
|
242 // in the case it's given a NULL pointer. |
|
243 |
|
244 template <class T> |
|
245 void STLDeleteValues(T *v) { |
|
246 if (!v) return; |
|
247 for (typename T::iterator i = v->begin(); i != v->end(); ++i) { |
|
248 delete i->second; |
|
249 } |
|
250 v->clear(); |
|
251 } |
|
252 |
|
253 |
|
254 // The following classes provide a convenient way to delete all elements or |
|
255 // values from STL containers when they goes out of scope. This greatly |
|
256 // simplifies code that creates temporary objects and has multiple return |
|
257 // statements. Example: |
|
258 // |
|
259 // vector<MyProto *> tmp_proto; |
|
260 // STLElementDeleter<vector<MyProto *> > d(&tmp_proto); |
|
261 // if (...) return false; |
|
262 // ... |
|
263 // return success; |
|
264 |
|
265 // Given a pointer to an STL container this class will delete all the element |
|
266 // pointers when it goes out of scope. |
|
267 |
|
268 template<class STLContainer> class STLElementDeleter { |
|
269 public: |
|
270 STLElementDeleter(STLContainer *ptr) : container_ptr_(ptr) {} |
|
271 ~STLElementDeleter() { STLDeleteElements(container_ptr_); } |
|
272 private: |
|
273 STLContainer *container_ptr_; |
|
274 }; |
|
275 |
|
276 // Given a pointer to an STL container this class will delete all the value |
|
277 // pointers when it goes out of scope. |
|
278 |
|
279 template<class STLContainer> class STLValueDeleter { |
|
280 public: |
|
281 STLValueDeleter(STLContainer *ptr) : container_ptr_(ptr) {} |
|
282 ~STLValueDeleter() { STLDeleteValues(container_ptr_); } |
|
283 private: |
|
284 STLContainer *container_ptr_; |
|
285 }; |
|
286 |
|
287 |
|
288 // Forward declare some callback classes in callback.h for STLBinaryFunction |
|
289 template <class R, class T1, class T2> |
|
290 class ResultCallback2; |
|
291 |
|
292 // STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h |
|
293 // It provides an operator () method instead of a Run method, so it may be |
|
294 // passed to STL functions in <algorithm>. |
|
295 // |
|
296 // The client should create callback with NewPermanentCallback, and should |
|
297 // delete callback after it is done using the STLBinaryFunction. |
|
298 |
|
299 template <class Result, class Arg1, class Arg2> |
|
300 class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> { |
|
301 public: |
|
302 typedef ResultCallback2<Result, Arg1, Arg2> Callback; |
|
303 |
|
304 STLBinaryFunction(Callback* callback) |
|
305 : callback_(callback) { |
|
306 assert(callback_); |
|
307 } |
|
308 |
|
309 Result operator() (Arg1 arg1, Arg2 arg2) { |
|
310 return callback_->Run(arg1, arg2); |
|
311 } |
|
312 |
|
313 private: |
|
314 Callback* callback_; |
|
315 }; |
|
316 |
|
317 // STLBinaryPredicate is a specialized version of STLBinaryFunction, where the |
|
318 // return type is bool and both arguments have type Arg. It can be used |
|
319 // wherever STL requires a StrictWeakOrdering, such as in sort() or |
|
320 // lower_bound(). |
|
321 // |
|
322 // templated typedefs are not supported, so instead we use inheritance. |
|
323 |
|
324 template <class Arg> |
|
325 class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> { |
|
326 public: |
|
327 typedef typename STLBinaryPredicate<Arg>::Callback Callback; |
|
328 STLBinaryPredicate(Callback* callback) |
|
329 : STLBinaryFunction<bool, Arg, Arg>(callback) { |
|
330 } |
|
331 }; |
|
332 |
|
333 // Functors that compose arbitrary unary and binary functions with a |
|
334 // function that "projects" one of the members of a pair. |
|
335 // Specifically, if p1 and p2, respectively, are the functions that |
|
336 // map a pair to its first and second, respectively, members, the |
|
337 // table below summarizes the functions that can be constructed: |
|
338 // |
|
339 // * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x)) |
|
340 // * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x)) |
|
341 // * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y)) |
|
342 // * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y)) |
|
343 // |
|
344 // A typical usage for these functions would be when iterating over |
|
345 // the contents of an STL map. For other sample usage, see the unittest. |
|
346 |
|
347 template<typename Pair, typename UnaryOp> |
|
348 class UnaryOperateOnFirst |
|
349 : public std::unary_function<Pair, typename UnaryOp::result_type> { |
|
350 public: |
|
351 UnaryOperateOnFirst() { |
|
352 } |
|
353 |
|
354 UnaryOperateOnFirst(const UnaryOp& f) : f_(f) { |
|
355 } |
|
356 |
|
357 typename UnaryOp::result_type operator()(const Pair& p) const { |
|
358 return f_(p.first); |
|
359 } |
|
360 |
|
361 private: |
|
362 UnaryOp f_; |
|
363 }; |
|
364 |
|
365 template<typename Pair, typename UnaryOp> |
|
366 UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) { |
|
367 return UnaryOperateOnFirst<Pair, UnaryOp>(f); |
|
368 } |
|
369 |
|
370 template<typename Pair, typename UnaryOp> |
|
371 class UnaryOperateOnSecond |
|
372 : public std::unary_function<Pair, typename UnaryOp::result_type> { |
|
373 public: |
|
374 UnaryOperateOnSecond() { |
|
375 } |
|
376 |
|
377 UnaryOperateOnSecond(const UnaryOp& f) : f_(f) { |
|
378 } |
|
379 |
|
380 typename UnaryOp::result_type operator()(const Pair& p) const { |
|
381 return f_(p.second); |
|
382 } |
|
383 |
|
384 private: |
|
385 UnaryOp f_; |
|
386 }; |
|
387 |
|
388 template<typename Pair, typename UnaryOp> |
|
389 UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) { |
|
390 return UnaryOperateOnSecond<Pair, UnaryOp>(f); |
|
391 } |
|
392 |
|
393 template<typename Pair, typename BinaryOp> |
|
394 class BinaryOperateOnFirst |
|
395 : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> { |
|
396 public: |
|
397 BinaryOperateOnFirst() { |
|
398 } |
|
399 |
|
400 BinaryOperateOnFirst(const BinaryOp& f) : f_(f) { |
|
401 } |
|
402 |
|
403 typename BinaryOp::result_type operator()(const Pair& p1, |
|
404 const Pair& p2) const { |
|
405 return f_(p1.first, p2.first); |
|
406 } |
|
407 |
|
408 private: |
|
409 BinaryOp f_; |
|
410 }; |
|
411 |
|
412 template<typename Pair, typename BinaryOp> |
|
413 BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) { |
|
414 return BinaryOperateOnFirst<Pair, BinaryOp>(f); |
|
415 } |
|
416 |
|
417 template<typename Pair, typename BinaryOp> |
|
418 class BinaryOperateOnSecond |
|
419 : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> { |
|
420 public: |
|
421 BinaryOperateOnSecond() { |
|
422 } |
|
423 |
|
424 BinaryOperateOnSecond(const BinaryOp& f) : f_(f) { |
|
425 } |
|
426 |
|
427 typename BinaryOp::result_type operator()(const Pair& p1, |
|
428 const Pair& p2) const { |
|
429 return f_(p1.second, p2.second); |
|
430 } |
|
431 |
|
432 private: |
|
433 BinaryOp f_; |
|
434 }; |
|
435 |
|
436 template<typename Pair, typename BinaryOp> |
|
437 BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) { |
|
438 return BinaryOperateOnSecond<Pair, BinaryOp>(f); |
|
439 } |
|
440 |
|
441 // Translates a set into a vector. |
|
442 template<typename T> |
|
443 std::vector<T> SetToVector(const std::set<T>& values) { |
|
444 std::vector<T> result; |
|
445 result.reserve(values.size()); |
|
446 result.insert(result.begin(), values.begin(), values.end()); |
|
447 return result; |
|
448 } |
|
449 |
|
450 #endif // BASE_STL_UTIL_INL_H_ |