ipc/chromium/src/base/stl_util-inl.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
michael@0 2 // Use of this source code is governed by a BSD-style license that can be
michael@0 3 // found in the LICENSE file.
michael@0 4
michael@0 5 // STL utility functions. Usually, these replace built-in, but slow(!),
michael@0 6 // STL functions with more efficient versions.
michael@0 7
michael@0 8 #ifndef BASE_STL_UTIL_INL_H_
michael@0 9 #define BASE_STL_UTIL_INL_H_
michael@0 10
michael@0 11 #include <string.h> // for memcpy
michael@0 12 #include <functional>
michael@0 13 #include <set>
michael@0 14 #include <string>
michael@0 15 #include <vector>
michael@0 16 #include <cassert>
michael@0 17
michael@0 18 // Clear internal memory of an STL object.
michael@0 19 // STL clear()/reserve(0) does not always free internal memory allocated
michael@0 20 // This function uses swap/destructor to ensure the internal memory is freed.
michael@0 21 template<class T> void STLClearObject(T* obj) {
michael@0 22 T tmp;
michael@0 23 tmp.swap(*obj);
michael@0 24 obj->reserve(0); // this is because sometimes "T tmp" allocates objects with
michael@0 25 // memory (arena implementation?). use reserve()
michael@0 26 // to clear() even if it doesn't always work
michael@0 27 }
michael@0 28
michael@0 29 // Reduce memory usage on behalf of object if it is using more than
michael@0 30 // "bytes" bytes of space. By default, we clear objects over 1MB.
michael@0 31 template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) {
michael@0 32 if (obj->capacity() >= limit) {
michael@0 33 STLClearObject(obj);
michael@0 34 } else {
michael@0 35 obj->clear();
michael@0 36 }
michael@0 37 }
michael@0 38
michael@0 39 // Reserve space for STL object.
michael@0 40 // STL's reserve() will always copy.
michael@0 41 // This function avoid the copy if we already have capacity
michael@0 42 template<class T> void STLReserveIfNeeded(T* obj, int new_size) {
michael@0 43 if (obj->capacity() < new_size) // increase capacity
michael@0 44 obj->reserve(new_size);
michael@0 45 else if (obj->size() > new_size) // reduce size
michael@0 46 obj->resize(new_size);
michael@0 47 }
michael@0 48
michael@0 49 // STLDeleteContainerPointers()
michael@0 50 // For a range within a container of pointers, calls delete
michael@0 51 // (non-array version) on these pointers.
michael@0 52 // NOTE: for these three functions, we could just implement a DeleteObject
michael@0 53 // functor and then call for_each() on the range and functor, but this
michael@0 54 // requires us to pull in all of algorithm.h, which seems expensive.
michael@0 55 // For hash_[multi]set, it is important that this deletes behind the iterator
michael@0 56 // because the hash_set may call the hash function on the iterator when it is
michael@0 57 // advanced, which could result in the hash function trying to deference a
michael@0 58 // stale pointer.
michael@0 59 template <class ForwardIterator>
michael@0 60 void STLDeleteContainerPointers(ForwardIterator begin,
michael@0 61 ForwardIterator end) {
michael@0 62 while (begin != end) {
michael@0 63 ForwardIterator temp = begin;
michael@0 64 ++begin;
michael@0 65 delete *temp;
michael@0 66 }
michael@0 67 }
michael@0 68
michael@0 69 // STLDeleteContainerPairPointers()
michael@0 70 // For a range within a container of pairs, calls delete
michael@0 71 // (non-array version) on BOTH items in the pairs.
michael@0 72 // NOTE: Like STLDeleteContainerPointers, it is important that this deletes
michael@0 73 // behind the iterator because if both the key and value are deleted, the
michael@0 74 // container may call the hash function on the iterator when it is advanced,
michael@0 75 // which could result in the hash function trying to dereference a stale
michael@0 76 // pointer.
michael@0 77 template <class ForwardIterator>
michael@0 78 void STLDeleteContainerPairPointers(ForwardIterator begin,
michael@0 79 ForwardIterator end) {
michael@0 80 while (begin != end) {
michael@0 81 ForwardIterator temp = begin;
michael@0 82 ++begin;
michael@0 83 delete temp->first;
michael@0 84 delete temp->second;
michael@0 85 }
michael@0 86 }
michael@0 87
michael@0 88 // STLDeleteContainerPairFirstPointers()
michael@0 89 // For a range within a container of pairs, calls delete (non-array version)
michael@0 90 // on the FIRST item in the pairs.
michael@0 91 // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator.
michael@0 92 template <class ForwardIterator>
michael@0 93 void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
michael@0 94 ForwardIterator end) {
michael@0 95 while (begin != end) {
michael@0 96 ForwardIterator temp = begin;
michael@0 97 ++begin;
michael@0 98 delete temp->first;
michael@0 99 }
michael@0 100 }
michael@0 101
michael@0 102 // STLDeleteContainerPairSecondPointers()
michael@0 103 // For a range within a container of pairs, calls delete
michael@0 104 // (non-array version) on the SECOND item in the pairs.
michael@0 105 template <class ForwardIterator>
michael@0 106 void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
michael@0 107 ForwardIterator end) {
michael@0 108 while (begin != end) {
michael@0 109 delete begin->second;
michael@0 110 ++begin;
michael@0 111 }
michael@0 112 }
michael@0 113
michael@0 114 template<typename T>
michael@0 115 inline void STLAssignToVector(std::vector<T>* vec,
michael@0 116 const T* ptr,
michael@0 117 size_t n) {
michael@0 118 vec->resize(n);
michael@0 119 memcpy(&vec->front(), ptr, n*sizeof(T));
michael@0 120 }
michael@0 121
michael@0 122 /***** Hack to allow faster assignment to a vector *****/
michael@0 123
michael@0 124 // This routine speeds up an assignment of 32 bytes to a vector from
michael@0 125 // about 250 cycles per assignment to about 140 cycles.
michael@0 126 //
michael@0 127 // Usage:
michael@0 128 // STLAssignToVectorChar(&vec, ptr, size);
michael@0 129 // STLAssignToString(&str, ptr, size);
michael@0 130
michael@0 131 inline void STLAssignToVectorChar(std::vector<char>* vec,
michael@0 132 const char* ptr,
michael@0 133 size_t n) {
michael@0 134 STLAssignToVector(vec, ptr, n);
michael@0 135 }
michael@0 136
michael@0 137 inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
michael@0 138 str->resize(n);
michael@0 139 memcpy(&*str->begin(), ptr, n);
michael@0 140 }
michael@0 141
michael@0 142 // To treat a possibly-empty vector as an array, use these functions.
michael@0 143 // If you know the array will never be empty, you can use &*v.begin()
michael@0 144 // directly, but that is allowed to dump core if v is empty. This
michael@0 145 // function is the most efficient code that will work, taking into
michael@0 146 // account how our STL is actually implemented. THIS IS NON-PORTABLE
michael@0 147 // CODE, so call us instead of repeating the nonportable code
michael@0 148 // everywhere. If our STL implementation changes, we will need to
michael@0 149 // change this as well.
michael@0 150
michael@0 151 template<typename T>
michael@0 152 inline T* vector_as_array(std::vector<T>* v) {
michael@0 153 # ifdef NDEBUG
michael@0 154 return &*v->begin();
michael@0 155 # else
michael@0 156 return v->empty() ? NULL : &*v->begin();
michael@0 157 # endif
michael@0 158 }
michael@0 159
michael@0 160 template<typename T>
michael@0 161 inline const T* vector_as_array(const std::vector<T>* v) {
michael@0 162 # ifdef NDEBUG
michael@0 163 return &*v->begin();
michael@0 164 # else
michael@0 165 return v->empty() ? NULL : &*v->begin();
michael@0 166 # endif
michael@0 167 }
michael@0 168
michael@0 169 // Return a mutable char* pointing to a string's internal buffer,
michael@0 170 // which may not be null-terminated. Writing through this pointer will
michael@0 171 // modify the string.
michael@0 172 //
michael@0 173 // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
michael@0 174 // next call to a string method that invalidates iterators.
michael@0 175 //
michael@0 176 // As of 2006-04, there is no standard-blessed way of getting a
michael@0 177 // mutable reference to a string's internal buffer. However, issue 530
michael@0 178 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
michael@0 179 // proposes this as the method. According to Matt Austern, this should
michael@0 180 // already work on all current implementations.
michael@0 181 inline char* string_as_array(std::string* str) {
michael@0 182 // DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
michael@0 183 return str->empty() ? NULL : &*str->begin();
michael@0 184 }
michael@0 185
michael@0 186 // These are methods that test two hash maps/sets for equality. These exist
michael@0 187 // because the == operator in the STL can return false when the maps/sets
michael@0 188 // contain identical elements. This is because it compares the internal hash
michael@0 189 // tables which may be different if the order of insertions and deletions
michael@0 190 // differed.
michael@0 191
michael@0 192 template <class HashSet>
michael@0 193 inline bool
michael@0 194 HashSetEquality(const HashSet& set_a,
michael@0 195 const HashSet& set_b) {
michael@0 196 if (set_a.size() != set_b.size()) return false;
michael@0 197 for (typename HashSet::const_iterator i = set_a.begin();
michael@0 198 i != set_a.end();
michael@0 199 ++i) {
michael@0 200 if (set_b.find(*i) == set_b.end())
michael@0 201 return false;
michael@0 202 }
michael@0 203 return true;
michael@0 204 }
michael@0 205
michael@0 206 template <class HashMap>
michael@0 207 inline bool
michael@0 208 HashMapEquality(const HashMap& map_a,
michael@0 209 const HashMap& map_b) {
michael@0 210 if (map_a.size() != map_b.size()) return false;
michael@0 211 for (typename HashMap::const_iterator i = map_a.begin();
michael@0 212 i != map_a.end(); ++i) {
michael@0 213 typename HashMap::const_iterator j = map_b.find(i->first);
michael@0 214 if (j == map_b.end()) return false;
michael@0 215 if (i->second != j->second) return false;
michael@0 216 }
michael@0 217 return true;
michael@0 218 }
michael@0 219
michael@0 220 // The following functions are useful for cleaning up STL containers
michael@0 221 // whose elements point to allocated memory.
michael@0 222
michael@0 223 // STLDeleteElements() deletes all the elements in an STL container and clears
michael@0 224 // the container. This function is suitable for use with a vector, set,
michael@0 225 // hash_set, or any other STL container which defines sensible begin(), end(),
michael@0 226 // and clear() methods.
michael@0 227 //
michael@0 228 // If container is NULL, this function is a no-op.
michael@0 229 //
michael@0 230 // As an alternative to calling STLDeleteElements() directly, consider
michael@0 231 // STLElementDeleter (defined below), which ensures that your container's
michael@0 232 // elements are deleted when the STLElementDeleter goes out of scope.
michael@0 233 template <class T>
michael@0 234 void STLDeleteElements(T *container) {
michael@0 235 if (!container) return;
michael@0 236 STLDeleteContainerPointers(container->begin(), container->end());
michael@0 237 container->clear();
michael@0 238 }
michael@0 239
michael@0 240 // Given an STL container consisting of (key, value) pairs, STLDeleteValues
michael@0 241 // deletes all the "value" components and clears the container. Does nothing
michael@0 242 // in the case it's given a NULL pointer.
michael@0 243
michael@0 244 template <class T>
michael@0 245 void STLDeleteValues(T *v) {
michael@0 246 if (!v) return;
michael@0 247 for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
michael@0 248 delete i->second;
michael@0 249 }
michael@0 250 v->clear();
michael@0 251 }
michael@0 252
michael@0 253
michael@0 254 // The following classes provide a convenient way to delete all elements or
michael@0 255 // values from STL containers when they goes out of scope. This greatly
michael@0 256 // simplifies code that creates temporary objects and has multiple return
michael@0 257 // statements. Example:
michael@0 258 //
michael@0 259 // vector<MyProto *> tmp_proto;
michael@0 260 // STLElementDeleter<vector<MyProto *> > d(&tmp_proto);
michael@0 261 // if (...) return false;
michael@0 262 // ...
michael@0 263 // return success;
michael@0 264
michael@0 265 // Given a pointer to an STL container this class will delete all the element
michael@0 266 // pointers when it goes out of scope.
michael@0 267
michael@0 268 template<class STLContainer> class STLElementDeleter {
michael@0 269 public:
michael@0 270 STLElementDeleter(STLContainer *ptr) : container_ptr_(ptr) {}
michael@0 271 ~STLElementDeleter() { STLDeleteElements(container_ptr_); }
michael@0 272 private:
michael@0 273 STLContainer *container_ptr_;
michael@0 274 };
michael@0 275
michael@0 276 // Given a pointer to an STL container this class will delete all the value
michael@0 277 // pointers when it goes out of scope.
michael@0 278
michael@0 279 template<class STLContainer> class STLValueDeleter {
michael@0 280 public:
michael@0 281 STLValueDeleter(STLContainer *ptr) : container_ptr_(ptr) {}
michael@0 282 ~STLValueDeleter() { STLDeleteValues(container_ptr_); }
michael@0 283 private:
michael@0 284 STLContainer *container_ptr_;
michael@0 285 };
michael@0 286
michael@0 287
michael@0 288 // Forward declare some callback classes in callback.h for STLBinaryFunction
michael@0 289 template <class R, class T1, class T2>
michael@0 290 class ResultCallback2;
michael@0 291
michael@0 292 // STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h
michael@0 293 // It provides an operator () method instead of a Run method, so it may be
michael@0 294 // passed to STL functions in <algorithm>.
michael@0 295 //
michael@0 296 // The client should create callback with NewPermanentCallback, and should
michael@0 297 // delete callback after it is done using the STLBinaryFunction.
michael@0 298
michael@0 299 template <class Result, class Arg1, class Arg2>
michael@0 300 class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> {
michael@0 301 public:
michael@0 302 typedef ResultCallback2<Result, Arg1, Arg2> Callback;
michael@0 303
michael@0 304 STLBinaryFunction(Callback* callback)
michael@0 305 : callback_(callback) {
michael@0 306 assert(callback_);
michael@0 307 }
michael@0 308
michael@0 309 Result operator() (Arg1 arg1, Arg2 arg2) {
michael@0 310 return callback_->Run(arg1, arg2);
michael@0 311 }
michael@0 312
michael@0 313 private:
michael@0 314 Callback* callback_;
michael@0 315 };
michael@0 316
michael@0 317 // STLBinaryPredicate is a specialized version of STLBinaryFunction, where the
michael@0 318 // return type is bool and both arguments have type Arg. It can be used
michael@0 319 // wherever STL requires a StrictWeakOrdering, such as in sort() or
michael@0 320 // lower_bound().
michael@0 321 //
michael@0 322 // templated typedefs are not supported, so instead we use inheritance.
michael@0 323
michael@0 324 template <class Arg>
michael@0 325 class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> {
michael@0 326 public:
michael@0 327 typedef typename STLBinaryPredicate<Arg>::Callback Callback;
michael@0 328 STLBinaryPredicate(Callback* callback)
michael@0 329 : STLBinaryFunction<bool, Arg, Arg>(callback) {
michael@0 330 }
michael@0 331 };
michael@0 332
michael@0 333 // Functors that compose arbitrary unary and binary functions with a
michael@0 334 // function that "projects" one of the members of a pair.
michael@0 335 // Specifically, if p1 and p2, respectively, are the functions that
michael@0 336 // map a pair to its first and second, respectively, members, the
michael@0 337 // table below summarizes the functions that can be constructed:
michael@0 338 //
michael@0 339 // * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x))
michael@0 340 // * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x))
michael@0 341 // * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y))
michael@0 342 // * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y))
michael@0 343 //
michael@0 344 // A typical usage for these functions would be when iterating over
michael@0 345 // the contents of an STL map. For other sample usage, see the unittest.
michael@0 346
michael@0 347 template<typename Pair, typename UnaryOp>
michael@0 348 class UnaryOperateOnFirst
michael@0 349 : public std::unary_function<Pair, typename UnaryOp::result_type> {
michael@0 350 public:
michael@0 351 UnaryOperateOnFirst() {
michael@0 352 }
michael@0 353
michael@0 354 UnaryOperateOnFirst(const UnaryOp& f) : f_(f) {
michael@0 355 }
michael@0 356
michael@0 357 typename UnaryOp::result_type operator()(const Pair& p) const {
michael@0 358 return f_(p.first);
michael@0 359 }
michael@0 360
michael@0 361 private:
michael@0 362 UnaryOp f_;
michael@0 363 };
michael@0 364
michael@0 365 template<typename Pair, typename UnaryOp>
michael@0 366 UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) {
michael@0 367 return UnaryOperateOnFirst<Pair, UnaryOp>(f);
michael@0 368 }
michael@0 369
michael@0 370 template<typename Pair, typename UnaryOp>
michael@0 371 class UnaryOperateOnSecond
michael@0 372 : public std::unary_function<Pair, typename UnaryOp::result_type> {
michael@0 373 public:
michael@0 374 UnaryOperateOnSecond() {
michael@0 375 }
michael@0 376
michael@0 377 UnaryOperateOnSecond(const UnaryOp& f) : f_(f) {
michael@0 378 }
michael@0 379
michael@0 380 typename UnaryOp::result_type operator()(const Pair& p) const {
michael@0 381 return f_(p.second);
michael@0 382 }
michael@0 383
michael@0 384 private:
michael@0 385 UnaryOp f_;
michael@0 386 };
michael@0 387
michael@0 388 template<typename Pair, typename UnaryOp>
michael@0 389 UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) {
michael@0 390 return UnaryOperateOnSecond<Pair, UnaryOp>(f);
michael@0 391 }
michael@0 392
michael@0 393 template<typename Pair, typename BinaryOp>
michael@0 394 class BinaryOperateOnFirst
michael@0 395 : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
michael@0 396 public:
michael@0 397 BinaryOperateOnFirst() {
michael@0 398 }
michael@0 399
michael@0 400 BinaryOperateOnFirst(const BinaryOp& f) : f_(f) {
michael@0 401 }
michael@0 402
michael@0 403 typename BinaryOp::result_type operator()(const Pair& p1,
michael@0 404 const Pair& p2) const {
michael@0 405 return f_(p1.first, p2.first);
michael@0 406 }
michael@0 407
michael@0 408 private:
michael@0 409 BinaryOp f_;
michael@0 410 };
michael@0 411
michael@0 412 template<typename Pair, typename BinaryOp>
michael@0 413 BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) {
michael@0 414 return BinaryOperateOnFirst<Pair, BinaryOp>(f);
michael@0 415 }
michael@0 416
michael@0 417 template<typename Pair, typename BinaryOp>
michael@0 418 class BinaryOperateOnSecond
michael@0 419 : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
michael@0 420 public:
michael@0 421 BinaryOperateOnSecond() {
michael@0 422 }
michael@0 423
michael@0 424 BinaryOperateOnSecond(const BinaryOp& f) : f_(f) {
michael@0 425 }
michael@0 426
michael@0 427 typename BinaryOp::result_type operator()(const Pair& p1,
michael@0 428 const Pair& p2) const {
michael@0 429 return f_(p1.second, p2.second);
michael@0 430 }
michael@0 431
michael@0 432 private:
michael@0 433 BinaryOp f_;
michael@0 434 };
michael@0 435
michael@0 436 template<typename Pair, typename BinaryOp>
michael@0 437 BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) {
michael@0 438 return BinaryOperateOnSecond<Pair, BinaryOp>(f);
michael@0 439 }
michael@0 440
michael@0 441 // Translates a set into a vector.
michael@0 442 template<typename T>
michael@0 443 std::vector<T> SetToVector(const std::set<T>& values) {
michael@0 444 std::vector<T> result;
michael@0 445 result.reserve(values.size());
michael@0 446 result.insert(result.begin(), values.begin(), values.end());
michael@0 447 return result;
michael@0 448 }
michael@0 449
michael@0 450 #endif // BASE_STL_UTIL_INL_H_

mercurial