|
1 /*********************************************************************** |
|
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
|
3 Redistribution and use in source and binary forms, with or without |
|
4 modification, are permitted provided that the following conditions |
|
5 are met: |
|
6 - Redistributions of source code must retain the above copyright notice, |
|
7 this list of conditions and the following disclaimer. |
|
8 - Redistributions in binary form must reproduce the above copyright |
|
9 notice, this list of conditions and the following disclaimer in the |
|
10 documentation and/or other materials provided with the distribution. |
|
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
|
12 names of specific contributors, may be used to endorse or promote |
|
13 products derived from this software without specific prior written |
|
14 permission. |
|
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
25 POSSIBILITY OF SUCH DAMAGE. |
|
26 ***********************************************************************/ |
|
27 |
|
28 /* Conversion between prediction filter coefficients and NLSFs */ |
|
29 /* Requires the order to be an even number */ |
|
30 /* A piecewise linear approximation maps LSF <-> cos(LSF) */ |
|
31 /* Therefore the result is not accurate NLSFs, but the two */ |
|
32 /* functions are accurate inverses of each other */ |
|
33 |
|
34 #ifdef HAVE_CONFIG_H |
|
35 #include "config.h" |
|
36 #endif |
|
37 |
|
38 #include "SigProc_FIX.h" |
|
39 #include "tables.h" |
|
40 |
|
41 /* Number of binary divisions, when not in low complexity mode */ |
|
42 #define BIN_DIV_STEPS_A2NLSF_FIX 3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */ |
|
43 #define MAX_ITERATIONS_A2NLSF_FIX 30 |
|
44 |
|
45 /* Helper function for A2NLSF(..) */ |
|
46 /* Transforms polynomials from cos(n*f) to cos(f)^n */ |
|
47 static OPUS_INLINE void silk_A2NLSF_trans_poly( |
|
48 opus_int32 *p, /* I/O Polynomial */ |
|
49 const opus_int dd /* I Polynomial order (= filter order / 2 ) */ |
|
50 ) |
|
51 { |
|
52 opus_int k, n; |
|
53 |
|
54 for( k = 2; k <= dd; k++ ) { |
|
55 for( n = dd; n > k; n-- ) { |
|
56 p[ n - 2 ] -= p[ n ]; |
|
57 } |
|
58 p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 ); |
|
59 } |
|
60 } |
|
61 /* Helper function for A2NLSF(..) */ |
|
62 /* Polynomial evaluation */ |
|
63 static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16 */ |
|
64 opus_int32 *p, /* I Polynomial, Q16 */ |
|
65 const opus_int32 x, /* I Evaluation point, Q12 */ |
|
66 const opus_int dd /* I Order */ |
|
67 ) |
|
68 { |
|
69 opus_int n; |
|
70 opus_int32 x_Q16, y32; |
|
71 |
|
72 y32 = p[ dd ]; /* Q16 */ |
|
73 x_Q16 = silk_LSHIFT( x, 4 ); |
|
74 for( n = dd - 1; n >= 0; n-- ) { |
|
75 y32 = silk_SMLAWW( p[ n ], y32, x_Q16 ); /* Q16 */ |
|
76 } |
|
77 return y32; |
|
78 } |
|
79 |
|
80 static OPUS_INLINE void silk_A2NLSF_init( |
|
81 const opus_int32 *a_Q16, |
|
82 opus_int32 *P, |
|
83 opus_int32 *Q, |
|
84 const opus_int dd |
|
85 ) |
|
86 { |
|
87 opus_int k; |
|
88 |
|
89 /* Convert filter coefs to even and odd polynomials */ |
|
90 P[dd] = silk_LSHIFT( 1, 16 ); |
|
91 Q[dd] = silk_LSHIFT( 1, 16 ); |
|
92 for( k = 0; k < dd; k++ ) { |
|
93 P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ]; /* Q16 */ |
|
94 Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ]; /* Q16 */ |
|
95 } |
|
96 |
|
97 /* Divide out zeros as we have that for even filter orders, */ |
|
98 /* z = 1 is always a root in Q, and */ |
|
99 /* z = -1 is always a root in P */ |
|
100 for( k = dd; k > 0; k-- ) { |
|
101 P[ k - 1 ] -= P[ k ]; |
|
102 Q[ k - 1 ] += Q[ k ]; |
|
103 } |
|
104 |
|
105 /* Transform polynomials from cos(n*f) to cos(f)^n */ |
|
106 silk_A2NLSF_trans_poly( P, dd ); |
|
107 silk_A2NLSF_trans_poly( Q, dd ); |
|
108 } |
|
109 |
|
110 /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */ |
|
111 /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */ |
|
112 void silk_A2NLSF( |
|
113 opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */ |
|
114 opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */ |
|
115 const opus_int d /* I Filter order (must be even) */ |
|
116 ) |
|
117 { |
|
118 opus_int i, k, m, dd, root_ix, ffrac; |
|
119 opus_int32 xlo, xhi, xmid; |
|
120 opus_int32 ylo, yhi, ymid, thr; |
|
121 opus_int32 nom, den; |
|
122 opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ]; |
|
123 opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; |
|
124 opus_int32 *PQ[ 2 ]; |
|
125 opus_int32 *p; |
|
126 |
|
127 /* Store pointers to array */ |
|
128 PQ[ 0 ] = P; |
|
129 PQ[ 1 ] = Q; |
|
130 |
|
131 dd = silk_RSHIFT( d, 1 ); |
|
132 |
|
133 silk_A2NLSF_init( a_Q16, P, Q, dd ); |
|
134 |
|
135 /* Find roots, alternating between P and Q */ |
|
136 p = P; /* Pointer to polynomial */ |
|
137 |
|
138 xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/ |
|
139 ylo = silk_A2NLSF_eval_poly( p, xlo, dd ); |
|
140 |
|
141 if( ylo < 0 ) { |
|
142 /* Set the first NLSF to zero and move on to the next */ |
|
143 NLSF[ 0 ] = 0; |
|
144 p = Q; /* Pointer to polynomial */ |
|
145 ylo = silk_A2NLSF_eval_poly( p, xlo, dd ); |
|
146 root_ix = 1; /* Index of current root */ |
|
147 } else { |
|
148 root_ix = 0; /* Index of current root */ |
|
149 } |
|
150 k = 1; /* Loop counter */ |
|
151 i = 0; /* Counter for bandwidth expansions applied */ |
|
152 thr = 0; |
|
153 while( 1 ) { |
|
154 /* Evaluate polynomial */ |
|
155 xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */ |
|
156 yhi = silk_A2NLSF_eval_poly( p, xhi, dd ); |
|
157 |
|
158 /* Detect zero crossing */ |
|
159 if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) { |
|
160 if( yhi == 0 ) { |
|
161 /* If the root lies exactly at the end of the current */ |
|
162 /* interval, look for the next root in the next interval */ |
|
163 thr = 1; |
|
164 } else { |
|
165 thr = 0; |
|
166 } |
|
167 /* Binary division */ |
|
168 ffrac = -256; |
|
169 for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) { |
|
170 /* Evaluate polynomial */ |
|
171 xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 ); |
|
172 ymid = silk_A2NLSF_eval_poly( p, xmid, dd ); |
|
173 |
|
174 /* Detect zero crossing */ |
|
175 if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) { |
|
176 /* Reduce frequency */ |
|
177 xhi = xmid; |
|
178 yhi = ymid; |
|
179 } else { |
|
180 /* Increase frequency */ |
|
181 xlo = xmid; |
|
182 ylo = ymid; |
|
183 ffrac = silk_ADD_RSHIFT( ffrac, 128, m ); |
|
184 } |
|
185 } |
|
186 |
|
187 /* Interpolate */ |
|
188 if( silk_abs( ylo ) < 65536 ) { |
|
189 /* Avoid dividing by zero */ |
|
190 den = ylo - yhi; |
|
191 nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 ); |
|
192 if( den != 0 ) { |
|
193 ffrac += silk_DIV32( nom, den ); |
|
194 } |
|
195 } else { |
|
196 /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */ |
|
197 ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) ); |
|
198 } |
|
199 NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX ); |
|
200 |
|
201 silk_assert( NLSF[ root_ix ] >= 0 ); |
|
202 |
|
203 root_ix++; /* Next root */ |
|
204 if( root_ix >= d ) { |
|
205 /* Found all roots */ |
|
206 break; |
|
207 } |
|
208 /* Alternate pointer to polynomial */ |
|
209 p = PQ[ root_ix & 1 ]; |
|
210 |
|
211 /* Evaluate polynomial */ |
|
212 xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/ |
|
213 ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 ); |
|
214 } else { |
|
215 /* Increment loop counter */ |
|
216 k++; |
|
217 xlo = xhi; |
|
218 ylo = yhi; |
|
219 thr = 0; |
|
220 |
|
221 if( k > LSF_COS_TAB_SZ_FIX ) { |
|
222 i++; |
|
223 if( i > MAX_ITERATIONS_A2NLSF_FIX ) { |
|
224 /* Set NLSFs to white spectrum and exit */ |
|
225 NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 ); |
|
226 for( k = 1; k < d; k++ ) { |
|
227 NLSF[ k ] = (opus_int16)silk_SMULBB( k + 1, NLSF[ 0 ] ); |
|
228 } |
|
229 return; |
|
230 } |
|
231 |
|
232 /* Error: Apply progressively more bandwidth expansion and run again */ |
|
233 silk_bwexpander_32( a_Q16, d, 65536 - silk_SMULBB( 10 + i, i ) ); /* 10_Q16 = 0.00015*/ |
|
234 |
|
235 silk_A2NLSF_init( a_Q16, P, Q, dd ); |
|
236 p = P; /* Pointer to polynomial */ |
|
237 xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/ |
|
238 ylo = silk_A2NLSF_eval_poly( p, xlo, dd ); |
|
239 if( ylo < 0 ) { |
|
240 /* Set the first NLSF to zero and move on to the next */ |
|
241 NLSF[ 0 ] = 0; |
|
242 p = Q; /* Pointer to polynomial */ |
|
243 ylo = silk_A2NLSF_eval_poly( p, xlo, dd ); |
|
244 root_ix = 1; /* Index of current root */ |
|
245 } else { |
|
246 root_ix = 0; /* Index of current root */ |
|
247 } |
|
248 k = 1; /* Reset loop counter */ |
|
249 } |
|
250 } |
|
251 } |
|
252 } |