media/libopus/silk/A2NLSF.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/media/libopus/silk/A2NLSF.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,252 @@
     1.4 +/***********************************************************************
     1.5 +Copyright (c) 2006-2011, Skype Limited. All rights reserved.
     1.6 +Redistribution and use in source and binary forms, with or without
     1.7 +modification, are permitted provided that the following conditions
     1.8 +are met:
     1.9 +- Redistributions of source code must retain the above copyright notice,
    1.10 +this list of conditions and the following disclaimer.
    1.11 +- Redistributions in binary form must reproduce the above copyright
    1.12 +notice, this list of conditions and the following disclaimer in the
    1.13 +documentation and/or other materials provided with the distribution.
    1.14 +- Neither the name of Internet Society, IETF or IETF Trust, nor the
    1.15 +names of specific contributors, may be used to endorse or promote
    1.16 +products derived from this software without specific prior written
    1.17 +permission.
    1.18 +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    1.19 +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    1.20 +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    1.21 +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    1.22 +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    1.23 +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    1.24 +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    1.25 +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    1.26 +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    1.27 +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    1.28 +POSSIBILITY OF SUCH DAMAGE.
    1.29 +***********************************************************************/
    1.30 +
    1.31 +/* Conversion between prediction filter coefficients and NLSFs  */
    1.32 +/* Requires the order to be an even number                      */
    1.33 +/* A piecewise linear approximation maps LSF <-> cos(LSF)       */
    1.34 +/* Therefore the result is not accurate NLSFs, but the two      */
    1.35 +/* functions are accurate inverses of each other                */
    1.36 +
    1.37 +#ifdef HAVE_CONFIG_H
    1.38 +#include "config.h"
    1.39 +#endif
    1.40 +
    1.41 +#include "SigProc_FIX.h"
    1.42 +#include "tables.h"
    1.43 +
    1.44 +/* Number of binary divisions, when not in low complexity mode */
    1.45 +#define BIN_DIV_STEPS_A2NLSF_FIX      3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
    1.46 +#define MAX_ITERATIONS_A2NLSF_FIX    30
    1.47 +
    1.48 +/* Helper function for A2NLSF(..)                    */
    1.49 +/* Transforms polynomials from cos(n*f) to cos(f)^n  */
    1.50 +static OPUS_INLINE void silk_A2NLSF_trans_poly(
    1.51 +    opus_int32          *p,                     /* I/O    Polynomial                                */
    1.52 +    const opus_int      dd                      /* I      Polynomial order (= filter order / 2 )    */
    1.53 +)
    1.54 +{
    1.55 +    opus_int k, n;
    1.56 +
    1.57 +    for( k = 2; k <= dd; k++ ) {
    1.58 +        for( n = dd; n > k; n-- ) {
    1.59 +            p[ n - 2 ] -= p[ n ];
    1.60 +        }
    1.61 +        p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 );
    1.62 +    }
    1.63 +}
    1.64 +/* Helper function for A2NLSF(..) */
    1.65 +/* Polynomial evaluation          */
    1.66 +static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16     */
    1.67 +    opus_int32          *p,                     /* I    Polynomial, Q16                         */
    1.68 +    const opus_int32    x,                      /* I    Evaluation point, Q12                   */
    1.69 +    const opus_int      dd                      /* I    Order                                   */
    1.70 +)
    1.71 +{
    1.72 +    opus_int   n;
    1.73 +    opus_int32 x_Q16, y32;
    1.74 +
    1.75 +    y32 = p[ dd ];                                  /* Q16 */
    1.76 +    x_Q16 = silk_LSHIFT( x, 4 );
    1.77 +    for( n = dd - 1; n >= 0; n-- ) {
    1.78 +        y32 = silk_SMLAWW( p[ n ], y32, x_Q16 );    /* Q16 */
    1.79 +    }
    1.80 +    return y32;
    1.81 +}
    1.82 +
    1.83 +static OPUS_INLINE void silk_A2NLSF_init(
    1.84 +     const opus_int32    *a_Q16,
    1.85 +     opus_int32          *P,
    1.86 +     opus_int32          *Q,
    1.87 +     const opus_int      dd
    1.88 +)
    1.89 +{
    1.90 +    opus_int k;
    1.91 +
    1.92 +    /* Convert filter coefs to even and odd polynomials */
    1.93 +    P[dd] = silk_LSHIFT( 1, 16 );
    1.94 +    Q[dd] = silk_LSHIFT( 1, 16 );
    1.95 +    for( k = 0; k < dd; k++ ) {
    1.96 +        P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ];    /* Q16 */
    1.97 +        Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ];    /* Q16 */
    1.98 +    }
    1.99 +
   1.100 +    /* Divide out zeros as we have that for even filter orders, */
   1.101 +    /* z =  1 is always a root in Q, and                        */
   1.102 +    /* z = -1 is always a root in P                             */
   1.103 +    for( k = dd; k > 0; k-- ) {
   1.104 +        P[ k - 1 ] -= P[ k ];
   1.105 +        Q[ k - 1 ] += Q[ k ];
   1.106 +    }
   1.107 +
   1.108 +    /* Transform polynomials from cos(n*f) to cos(f)^n */
   1.109 +    silk_A2NLSF_trans_poly( P, dd );
   1.110 +    silk_A2NLSF_trans_poly( Q, dd );
   1.111 +}
   1.112 +
   1.113 +/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients      */
   1.114 +/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
   1.115 +void silk_A2NLSF(
   1.116 +    opus_int16                  *NLSF,              /* O    Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
   1.117 +    opus_int32                  *a_Q16,             /* I/O  Monic whitening filter coefficients in Q16 [d]              */
   1.118 +    const opus_int              d                   /* I    Filter order (must be even)                                 */
   1.119 +)
   1.120 +{
   1.121 +    opus_int      i, k, m, dd, root_ix, ffrac;
   1.122 +    opus_int32 xlo, xhi, xmid;
   1.123 +    opus_int32 ylo, yhi, ymid, thr;
   1.124 +    opus_int32 nom, den;
   1.125 +    opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ];
   1.126 +    opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
   1.127 +    opus_int32 *PQ[ 2 ];
   1.128 +    opus_int32 *p;
   1.129 +
   1.130 +    /* Store pointers to array */
   1.131 +    PQ[ 0 ] = P;
   1.132 +    PQ[ 1 ] = Q;
   1.133 +
   1.134 +    dd = silk_RSHIFT( d, 1 );
   1.135 +
   1.136 +    silk_A2NLSF_init( a_Q16, P, Q, dd );
   1.137 +
   1.138 +    /* Find roots, alternating between P and Q */
   1.139 +    p = P;                          /* Pointer to polynomial */
   1.140 +
   1.141 +    xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
   1.142 +    ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
   1.143 +
   1.144 +    if( ylo < 0 ) {
   1.145 +        /* Set the first NLSF to zero and move on to the next */
   1.146 +        NLSF[ 0 ] = 0;
   1.147 +        p = Q;                      /* Pointer to polynomial */
   1.148 +        ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
   1.149 +        root_ix = 1;                /* Index of current root */
   1.150 +    } else {
   1.151 +        root_ix = 0;                /* Index of current root */
   1.152 +    }
   1.153 +    k = 1;                          /* Loop counter */
   1.154 +    i = 0;                          /* Counter for bandwidth expansions applied */
   1.155 +    thr = 0;
   1.156 +    while( 1 ) {
   1.157 +        /* Evaluate polynomial */
   1.158 +        xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */
   1.159 +        yhi = silk_A2NLSF_eval_poly( p, xhi, dd );
   1.160 +
   1.161 +        /* Detect zero crossing */
   1.162 +        if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) {
   1.163 +            if( yhi == 0 ) {
   1.164 +                /* If the root lies exactly at the end of the current       */
   1.165 +                /* interval, look for the next root in the next interval    */
   1.166 +                thr = 1;
   1.167 +            } else {
   1.168 +                thr = 0;
   1.169 +            }
   1.170 +            /* Binary division */
   1.171 +            ffrac = -256;
   1.172 +            for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) {
   1.173 +                /* Evaluate polynomial */
   1.174 +                xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 );
   1.175 +                ymid = silk_A2NLSF_eval_poly( p, xmid, dd );
   1.176 +
   1.177 +                /* Detect zero crossing */
   1.178 +                if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) {
   1.179 +                    /* Reduce frequency */
   1.180 +                    xhi = xmid;
   1.181 +                    yhi = ymid;
   1.182 +                } else {
   1.183 +                    /* Increase frequency */
   1.184 +                    xlo = xmid;
   1.185 +                    ylo = ymid;
   1.186 +                    ffrac = silk_ADD_RSHIFT( ffrac, 128, m );
   1.187 +                }
   1.188 +            }
   1.189 +
   1.190 +            /* Interpolate */
   1.191 +            if( silk_abs( ylo ) < 65536 ) {
   1.192 +                /* Avoid dividing by zero */
   1.193 +                den = ylo - yhi;
   1.194 +                nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 );
   1.195 +                if( den != 0 ) {
   1.196 +                    ffrac += silk_DIV32( nom, den );
   1.197 +                }
   1.198 +            } else {
   1.199 +                /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */
   1.200 +                ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) );
   1.201 +            }
   1.202 +            NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX );
   1.203 +
   1.204 +            silk_assert( NLSF[ root_ix ] >= 0 );
   1.205 +
   1.206 +            root_ix++;        /* Next root */
   1.207 +            if( root_ix >= d ) {
   1.208 +                /* Found all roots */
   1.209 +                break;
   1.210 +            }
   1.211 +            /* Alternate pointer to polynomial */
   1.212 +            p = PQ[ root_ix & 1 ];
   1.213 +
   1.214 +            /* Evaluate polynomial */
   1.215 +            xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/
   1.216 +            ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 );
   1.217 +        } else {
   1.218 +            /* Increment loop counter */
   1.219 +            k++;
   1.220 +            xlo = xhi;
   1.221 +            ylo = yhi;
   1.222 +            thr = 0;
   1.223 +
   1.224 +            if( k > LSF_COS_TAB_SZ_FIX ) {
   1.225 +                i++;
   1.226 +                if( i > MAX_ITERATIONS_A2NLSF_FIX ) {
   1.227 +                    /* Set NLSFs to white spectrum and exit */
   1.228 +                    NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
   1.229 +                    for( k = 1; k < d; k++ ) {
   1.230 +                        NLSF[ k ] = (opus_int16)silk_SMULBB( k + 1, NLSF[ 0 ] );
   1.231 +                    }
   1.232 +                    return;
   1.233 +                }
   1.234 +
   1.235 +                /* Error: Apply progressively more bandwidth expansion and run again */
   1.236 +                silk_bwexpander_32( a_Q16, d, 65536 - silk_SMULBB( 10 + i, i ) ); /* 10_Q16 = 0.00015*/
   1.237 +
   1.238 +                silk_A2NLSF_init( a_Q16, P, Q, dd );
   1.239 +                p = P;                            /* Pointer to polynomial */
   1.240 +                xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
   1.241 +                ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
   1.242 +                if( ylo < 0 ) {
   1.243 +                    /* Set the first NLSF to zero and move on to the next */
   1.244 +                    NLSF[ 0 ] = 0;
   1.245 +                    p = Q;                        /* Pointer to polynomial */
   1.246 +                    ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
   1.247 +                    root_ix = 1;                  /* Index of current root */
   1.248 +                } else {
   1.249 +                    root_ix = 0;                  /* Index of current root */
   1.250 +                }
   1.251 +                k = 1;                            /* Reset loop counter */
   1.252 +            }
   1.253 +        }
   1.254 +    }
   1.255 +}

mercurial