media/libvpx/vp9/encoder/vp9_bitstream.c

changeset 0
6474c204b198
equal deleted inserted replaced
-1:000000000000 0:79e17fe1f23c
1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <stdio.h>
13 #include <limits.h>
14
15 #include "vpx/vpx_encoder.h"
16 #include "vpx_mem/vpx_mem.h"
17
18 #include "vp9/common/vp9_entropymode.h"
19 #include "vp9/common/vp9_entropymv.h"
20 #include "vp9/common/vp9_findnearmv.h"
21 #include "vp9/common/vp9_tile_common.h"
22 #include "vp9/common/vp9_seg_common.h"
23 #include "vp9/common/vp9_pred_common.h"
24 #include "vp9/common/vp9_entropy.h"
25 #include "vp9/common/vp9_mvref_common.h"
26 #include "vp9/common/vp9_treecoder.h"
27 #include "vp9/common/vp9_systemdependent.h"
28 #include "vp9/common/vp9_pragmas.h"
29
30 #include "vp9/encoder/vp9_mcomp.h"
31 #include "vp9/encoder/vp9_encodemv.h"
32 #include "vp9/encoder/vp9_bitstream.h"
33 #include "vp9/encoder/vp9_segmentation.h"
34 #include "vp9/encoder/vp9_subexp.h"
35 #include "vp9/encoder/vp9_write_bit_buffer.h"
36
37
38 #if defined(SECTIONBITS_OUTPUT)
39 unsigned __int64 Sectionbits[500];
40 #endif
41
42 #ifdef ENTROPY_STATS
43 int intra_mode_stats[INTRA_MODES]
44 [INTRA_MODES]
45 [INTRA_MODES];
46 vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];
47
48 extern unsigned int active_section;
49 #endif
50
51
52 #ifdef MODE_STATS
53 int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES];
54 int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1];
55 int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2];
56 int64_t switchable_interp_stats[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
57
58 void init_tx_count_stats() {
59 vp9_zero(tx_count_32x32p_stats);
60 vp9_zero(tx_count_16x16p_stats);
61 vp9_zero(tx_count_8x8p_stats);
62 }
63
64 void init_switchable_interp_stats() {
65 vp9_zero(switchable_interp_stats);
66 }
67
68 static void update_tx_count_stats(VP9_COMMON *cm) {
69 int i, j;
70 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
71 for (j = 0; j < TX_SIZES; j++) {
72 tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j];
73 }
74 }
75 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
76 for (j = 0; j < TX_SIZES - 1; j++) {
77 tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j];
78 }
79 }
80 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
81 for (j = 0; j < TX_SIZES - 2; j++) {
82 tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j];
83 }
84 }
85 }
86
87 static void update_switchable_interp_stats(VP9_COMMON *cm) {
88 int i, j;
89 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
90 for (j = 0; j < SWITCHABLE_FILTERS; ++j)
91 switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j];
92 }
93
94 void write_tx_count_stats() {
95 int i, j;
96 FILE *fp = fopen("tx_count.bin", "wb");
97 fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp);
98 fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp);
99 fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp);
100 fclose(fp);
101
102 printf(
103 "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n");
104 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
105 printf(" { ");
106 for (j = 0; j < TX_SIZES; j++) {
107 printf("%"PRId64", ", tx_count_32x32p_stats[i][j]);
108 }
109 printf("},\n");
110 }
111 printf("};\n");
112 printf(
113 "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n");
114 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
115 printf(" { ");
116 for (j = 0; j < TX_SIZES - 1; j++) {
117 printf("%"PRId64", ", tx_count_16x16p_stats[i][j]);
118 }
119 printf("},\n");
120 }
121 printf("};\n");
122 printf(
123 "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n");
124 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
125 printf(" { ");
126 for (j = 0; j < TX_SIZES - 2; j++) {
127 printf("%"PRId64", ", tx_count_8x8p_stats[i][j]);
128 }
129 printf("},\n");
130 }
131 printf("};\n");
132 }
133
134 void write_switchable_interp_stats() {
135 int i, j;
136 FILE *fp = fopen("switchable_interp.bin", "wb");
137 fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp);
138 fclose(fp);
139
140 printf(
141 "vp9_default_switchable_filter_count[SWITCHABLE_FILTER_CONTEXTS]"
142 "[SWITCHABLE_FILTERS] = {\n");
143 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
144 printf(" { ");
145 for (j = 0; j < SWITCHABLE_FILTERS; j++) {
146 printf("%"PRId64", ", switchable_interp_stats[i][j]);
147 }
148 printf("},\n");
149 }
150 printf("};\n");
151 }
152 #endif
153
154 static INLINE void write_be32(uint8_t *p, int value) {
155 p[0] = value >> 24;
156 p[1] = value >> 16;
157 p[2] = value >> 8;
158 p[3] = value;
159 }
160
161 void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb,
162 int data, int max) {
163 vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
164 }
165
166 static void update_mode(vp9_writer *w, int n, vp9_tree tree,
167 vp9_prob Pcur[/* n-1 */],
168 unsigned int bct[/* n-1 */][2],
169 const unsigned int num_events[/* n */]) {
170 int i = 0;
171
172 vp9_tree_probs_from_distribution(tree, bct, num_events);
173 for (i = 0; i < n - 1; ++i)
174 vp9_cond_prob_diff_update(w, &Pcur[i], bct[i]);
175 }
176
177 static void update_mbintra_mode_probs(VP9_COMP* const cpi,
178 vp9_writer* const bc) {
179 VP9_COMMON *const cm = &cpi->common;
180 int j;
181 unsigned int bct[INTRA_MODES - 1][2];
182
183 for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
184 update_mode(bc, INTRA_MODES, vp9_intra_mode_tree,
185 cm->fc.y_mode_prob[j], bct,
186 (unsigned int *)cpi->y_mode_count[j]);
187 }
188
189 static void write_selected_tx_size(const VP9_COMP *cpi, MODE_INFO *m,
190 TX_SIZE tx_size, BLOCK_SIZE bsize,
191 vp9_writer *w) {
192 const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
193 const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
194 const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
195 &cpi->common.fc.tx_probs);
196 vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
197 if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
198 vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
199 if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
200 vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
201 }
202 }
203
204 static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m,
205 vp9_writer *w) {
206 const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
207 if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
208 return 1;
209 } else {
210 const int skip_coeff = m->mbmi.skip_coeff;
211 vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd));
212 return skip_coeff;
213 }
214 }
215
216 void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) {
217 VP9_COMMON *cm = &cpi->common;
218 int k;
219
220 for (k = 0; k < MBSKIP_CONTEXTS; ++k)
221 vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], cm->counts.mbskip[k]);
222 }
223
224 static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) {
225 write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m);
226 }
227
228 static void update_switchable_interp_probs(VP9_COMP *cpi, vp9_writer *w) {
229 VP9_COMMON *const cm = &cpi->common;
230 unsigned int branch_ct[SWITCHABLE_FILTERS - 1][2];
231 int i, j;
232 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
233 vp9_tree_probs_from_distribution(vp9_switchable_interp_tree, branch_ct,
234 cm->counts.switchable_interp[j]);
235
236 for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
237 vp9_cond_prob_diff_update(w, &cm->fc.switchable_interp_prob[j][i],
238 branch_ct[i]);
239 }
240
241 #ifdef MODE_STATS
242 if (!cpi->dummy_packing)
243 update_switchable_interp_stats(cm);
244 #endif
245 }
246
247 static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer *w) {
248 int i, j;
249
250 for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
251 unsigned int branch_ct[INTER_MODES - 1][2];
252 vp9_tree_probs_from_distribution(vp9_inter_mode_tree, branch_ct,
253 cm->counts.inter_mode[i]);
254
255 for (j = 0; j < INTER_MODES - 1; ++j)
256 vp9_cond_prob_diff_update(w, &cm->fc.inter_mode_probs[i][j],
257 branch_ct[j]);
258 }
259 }
260
261 static void pack_mb_tokens(vp9_writer* const w,
262 TOKENEXTRA **tp,
263 const TOKENEXTRA *const stop) {
264 TOKENEXTRA *p = *tp;
265
266 while (p < stop && p->token != EOSB_TOKEN) {
267 const int t = p->token;
268 const struct vp9_token *const a = &vp9_coef_encodings[t];
269 const vp9_extra_bit *const b = &vp9_extra_bits[t];
270 int i = 0;
271 const vp9_prob *pp;
272 int v = a->value;
273 int n = a->len;
274 vp9_prob probs[ENTROPY_NODES];
275
276 if (t >= TWO_TOKEN) {
277 vp9_model_to_full_probs(p->context_tree, probs);
278 pp = probs;
279 } else {
280 pp = p->context_tree;
281 }
282 assert(pp != 0);
283
284 /* skip one or two nodes */
285 if (p->skip_eob_node) {
286 n -= p->skip_eob_node;
287 i = 2 * p->skip_eob_node;
288 }
289
290 do {
291 const int bb = (v >> --n) & 1;
292 vp9_write(w, bb, pp[i >> 1]);
293 i = vp9_coef_tree[i + bb];
294 } while (n);
295
296 if (b->base_val) {
297 const int e = p->extra, l = b->len;
298
299 if (l) {
300 const unsigned char *pb = b->prob;
301 int v = e >> 1;
302 int n = l; /* number of bits in v, assumed nonzero */
303 int i = 0;
304
305 do {
306 const int bb = (v >> --n) & 1;
307 vp9_write(w, bb, pb[i >> 1]);
308 i = b->tree[i + bb];
309 } while (n);
310 }
311
312 vp9_write_bit(w, e & 1);
313 }
314 ++p;
315 }
316
317 *tp = p + (p->token == EOSB_TOKEN);
318 }
319
320 static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode,
321 const vp9_prob *p) {
322 assert(is_inter_mode(mode));
323 write_token(w, vp9_inter_mode_tree, p,
324 &vp9_inter_mode_encodings[INTER_OFFSET(mode)]);
325 }
326
327
328 static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
329 int segment_id) {
330 if (seg->enabled && seg->update_map)
331 treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3);
332 }
333
334 // This function encodes the reference frame
335 static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) {
336 VP9_COMMON *const cm = &cpi->common;
337 MACROBLOCK *const x = &cpi->mb;
338 MACROBLOCKD *const xd = &x->e_mbd;
339 MB_MODE_INFO *mi = &xd->mi_8x8[0]->mbmi;
340 const int segment_id = mi->segment_id;
341 int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id,
342 SEG_LVL_REF_FRAME);
343 // If segment level coding of this signal is disabled...
344 // or the segment allows multiple reference frame options
345 if (!seg_ref_active) {
346 // does the feature use compound prediction or not
347 // (if not specified at the frame/segment level)
348 if (cm->comp_pred_mode == HYBRID_PREDICTION) {
349 vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME,
350 vp9_get_pred_prob_comp_inter_inter(cm, xd));
351 } else {
352 assert((mi->ref_frame[1] <= INTRA_FRAME) ==
353 (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY));
354 }
355
356 if (mi->ref_frame[1] > INTRA_FRAME) {
357 vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME,
358 vp9_get_pred_prob_comp_ref_p(cm, xd));
359 } else {
360 vp9_write(bc, mi->ref_frame[0] != LAST_FRAME,
361 vp9_get_pred_prob_single_ref_p1(cm, xd));
362 if (mi->ref_frame[0] != LAST_FRAME)
363 vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME,
364 vp9_get_pred_prob_single_ref_p2(cm, xd));
365 }
366 } else {
367 assert(mi->ref_frame[1] <= INTRA_FRAME);
368 assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ==
369 mi->ref_frame[0]);
370 }
371
372 // If using the prediction model we have nothing further to do because
373 // the reference frame is fully coded by the segment.
374 }
375
376 static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) {
377 VP9_COMMON *const cm = &cpi->common;
378 const nmv_context *nmvc = &cm->fc.nmvc;
379 MACROBLOCK *const x = &cpi->mb;
380 MACROBLOCKD *const xd = &x->e_mbd;
381 struct segmentation *seg = &cm->seg;
382 MB_MODE_INFO *const mi = &m->mbmi;
383 const MV_REFERENCE_FRAME rf = mi->ref_frame[0];
384 const MB_PREDICTION_MODE mode = mi->mode;
385 const int segment_id = mi->segment_id;
386 int skip_coeff;
387 const BLOCK_SIZE bsize = mi->sb_type;
388 const int allow_hp = cm->allow_high_precision_mv;
389
390 #ifdef ENTROPY_STATS
391 active_section = 9;
392 #endif
393
394 if (seg->update_map) {
395 if (seg->temporal_update) {
396 const int pred_flag = mi->seg_id_predicted;
397 vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
398 vp9_write(bc, pred_flag, pred_prob);
399 if (!pred_flag)
400 write_segment_id(bc, seg, segment_id);
401 } else {
402 write_segment_id(bc, seg, segment_id);
403 }
404 }
405
406 skip_coeff = write_skip_coeff(cpi, segment_id, m, bc);
407
408 if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
409 vp9_write(bc, rf != INTRA_FRAME,
410 vp9_get_pred_prob_intra_inter(cm, xd));
411
412 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
413 !(rf != INTRA_FRAME &&
414 (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
415 write_selected_tx_size(cpi, m, mi->tx_size, bsize, bc);
416 }
417
418 if (rf == INTRA_FRAME) {
419 #ifdef ENTROPY_STATS
420 active_section = 6;
421 #endif
422
423 if (bsize >= BLOCK_8X8) {
424 write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
425 } else {
426 int idx, idy;
427 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
428 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
429 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
430 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
431 const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode;
432 write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]);
433 }
434 }
435 }
436 write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]);
437 } else {
438 vp9_prob *mv_ref_p;
439 encode_ref_frame(cpi, bc);
440 mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]];
441
442 #ifdef ENTROPY_STATS
443 active_section = 3;
444 #endif
445
446 // If segment skip is not enabled code the mode.
447 if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
448 if (bsize >= BLOCK_8X8) {
449 write_sb_mv_ref(bc, mode, mv_ref_p);
450 ++cm->counts.inter_mode[mi->mode_context[rf]]
451 [INTER_OFFSET(mode)];
452 }
453 }
454
455 if (cm->mcomp_filter_type == SWITCHABLE) {
456 const int ctx = vp9_get_pred_context_switchable_interp(xd);
457 write_token(bc, vp9_switchable_interp_tree,
458 cm->fc.switchable_interp_prob[ctx],
459 &vp9_switchable_interp_encodings[mi->interp_filter]);
460 } else {
461 assert(mi->interp_filter == cm->mcomp_filter_type);
462 }
463
464 if (bsize < BLOCK_8X8) {
465 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
466 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
467 int idx, idy;
468 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
469 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
470 const int j = idy * 2 + idx;
471 const MB_PREDICTION_MODE blockmode = m->bmi[j].as_mode;
472 write_sb_mv_ref(bc, blockmode, mv_ref_p);
473 ++cm->counts.inter_mode[mi->mode_context[rf]]
474 [INTER_OFFSET(blockmode)];
475
476 if (blockmode == NEWMV) {
477 #ifdef ENTROPY_STATS
478 active_section = 11;
479 #endif
480 vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[0].as_mv,
481 &mi->best_mv[0].as_mv, nmvc, allow_hp);
482
483 if (has_second_ref(mi))
484 vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[1].as_mv,
485 &mi->best_mv[1].as_mv, nmvc, allow_hp);
486 }
487 }
488 }
489 } else if (mode == NEWMV) {
490 #ifdef ENTROPY_STATS
491 active_section = 5;
492 #endif
493 vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv,
494 &mi->best_mv[0].as_mv, nmvc, allow_hp);
495
496 if (has_second_ref(mi))
497 vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv,
498 &mi->best_mv[1].as_mv, nmvc, allow_hp);
499 }
500 }
501 }
502
503 static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
504 vp9_writer *bc) {
505 const VP9_COMMON *const cm = &cpi->common;
506 const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
507 const struct segmentation *const seg = &cm->seg;
508 MODE_INFO *m = mi_8x8[0];
509 const int ym = m->mbmi.mode;
510 const int segment_id = m->mbmi.segment_id;
511 MODE_INFO *above_mi = mi_8x8[-xd->mode_info_stride];
512 MODE_INFO *left_mi = xd->left_available ? mi_8x8[-1] : NULL;
513
514 if (seg->update_map)
515 write_segment_id(bc, seg, m->mbmi.segment_id);
516
517 write_skip_coeff(cpi, segment_id, m, bc);
518
519 if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
520 write_selected_tx_size(cpi, m, m->mbmi.tx_size, m->mbmi.sb_type, bc);
521
522 if (m->mbmi.sb_type >= BLOCK_8X8) {
523 const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0);
524 const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, 0);
525 write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]);
526 } else {
527 int idx, idy;
528 const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type];
529 const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type];
530 for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
531 for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
532 int i = idy * 2 + idx;
533 const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, i);
534 const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, i);
535 const int bm = m->bmi[i].as_mode;
536 #ifdef ENTROPY_STATS
537 ++intra_mode_stats[A][L][bm];
538 #endif
539 write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]);
540 }
541 }
542 }
543
544 write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]);
545 }
546
547 static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
548 vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
549 int mi_row, int mi_col) {
550 VP9_COMMON *const cm = &cpi->common;
551 MACROBLOCKD *const xd = &cpi->mb.e_mbd;
552 MODE_INFO *m;
553
554 xd->mi_8x8 = cm->mi_grid_visible + (mi_row * cm->mode_info_stride + mi_col);
555 m = xd->mi_8x8[0];
556
557 set_mi_row_col(xd, tile,
558 mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
559 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
560 cm->mi_rows, cm->mi_cols);
561 if (frame_is_intra_only(cm)) {
562 write_mb_modes_kf(cpi, xd->mi_8x8, w);
563 #ifdef ENTROPY_STATS
564 active_section = 8;
565 #endif
566 } else {
567 pack_inter_mode_mvs(cpi, m, w);
568 #ifdef ENTROPY_STATS
569 active_section = 1;
570 #endif
571 }
572
573 assert(*tok < tok_end);
574 pack_mb_tokens(w, tok, tok_end);
575 }
576
577 static void write_partition(VP9_COMP *cpi, int hbs, int mi_row, int mi_col,
578 PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
579 VP9_COMMON *const cm = &cpi->common;
580 const int ctx = partition_plane_context(cpi->above_seg_context,
581 cpi->left_seg_context,
582 mi_row, mi_col, bsize);
583 const vp9_prob *const probs = get_partition_probs(cm, ctx);
584 const int has_rows = (mi_row + hbs) < cm->mi_rows;
585 const int has_cols = (mi_col + hbs) < cm->mi_cols;
586
587 if (has_rows && has_cols) {
588 write_token(w, vp9_partition_tree, probs, &vp9_partition_encodings[p]);
589 } else if (!has_rows && has_cols) {
590 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
591 vp9_write(w, p == PARTITION_SPLIT, probs[1]);
592 } else if (has_rows && !has_cols) {
593 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
594 vp9_write(w, p == PARTITION_SPLIT, probs[2]);
595 } else {
596 assert(p == PARTITION_SPLIT);
597 }
598 }
599
600 static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile,
601 vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
602 int mi_row, int mi_col, BLOCK_SIZE bsize) {
603 VP9_COMMON *const cm = &cpi->common;
604 const int bsl = b_width_log2(bsize);
605 const int bs = (1 << bsl) / 4;
606 PARTITION_TYPE partition;
607 BLOCK_SIZE subsize;
608 MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mode_info_stride + mi_col];
609
610 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
611 return;
612
613 partition = partition_lookup[bsl][m->mbmi.sb_type];
614 write_partition(cpi, bs, mi_row, mi_col, partition, bsize, w);
615 subsize = get_subsize(bsize, partition);
616 if (subsize < BLOCK_8X8) {
617 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
618 } else {
619 switch (partition) {
620 case PARTITION_NONE:
621 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
622 break;
623 case PARTITION_HORZ:
624 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
625 if (mi_row + bs < cm->mi_rows)
626 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
627 break;
628 case PARTITION_VERT:
629 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
630 if (mi_col + bs < cm->mi_cols)
631 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
632 break;
633 case PARTITION_SPLIT:
634 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
635 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
636 subsize);
637 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
638 subsize);
639 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
640 subsize);
641 break;
642 default:
643 assert(0);
644 }
645 }
646
647 // update partition context
648 if (bsize >= BLOCK_8X8 &&
649 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
650 update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
651 mi_row, mi_col, subsize, bsize);
652 }
653
654 static void write_modes(VP9_COMP *cpi, const TileInfo *const tile,
655 vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
656 int mi_row, mi_col;
657
658 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
659 mi_row += MI_BLOCK_SIZE) {
660 vp9_zero(cpi->left_seg_context);
661 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
662 mi_col += MI_BLOCK_SIZE)
663 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, BLOCK_64X64);
664 }
665 }
666
667 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) {
668 vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
669 vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
670 unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
671 cpi->common.counts.eob_branch[tx_size];
672 vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size];
673 int i, j, k, l, m;
674
675 for (i = 0; i < BLOCK_TYPES; ++i) {
676 for (j = 0; j < REF_TYPES; ++j) {
677 for (k = 0; k < COEF_BANDS; ++k) {
678 for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
679 if (l >= 3 && k == 0)
680 continue;
681 vp9_tree_probs_from_distribution(vp9_coef_tree,
682 coef_branch_ct[i][j][k][l],
683 coef_counts[i][j][k][l]);
684 coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
685 coef_branch_ct[i][j][k][l][0][0];
686 for (m = 0; m < UNCONSTRAINED_NODES; ++m)
687 coef_probs[i][j][k][l][m] = get_binary_prob(
688 coef_branch_ct[i][j][k][l][m][0],
689 coef_branch_ct[i][j][k][l][m][1]);
690 #ifdef ENTROPY_STATS
691 if (!cpi->dummy_packing) {
692 int t;
693 for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
694 context_counters[tx_size][i][j][k][l][t] +=
695 coef_counts[i][j][k][l][t];
696 context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] +=
697 eob_branch_ct[i][j][k][l];
698 }
699 #endif
700 }
701 }
702 }
703 }
704 }
705
706 static void build_coeff_contexts(VP9_COMP *cpi) {
707 TX_SIZE t;
708 for (t = TX_4X4; t <= TX_32X32; t++)
709 build_tree_distribution(cpi, t);
710 }
711
712 static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
713 TX_SIZE tx_size) {
714 vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
715 vp9_coeff_probs_model *old_frame_coef_probs =
716 cpi->common.fc.coef_probs[tx_size];
717 vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
718 const vp9_prob upd = DIFF_UPDATE_PROB;
719 const int entropy_nodes_update = UNCONSTRAINED_NODES;
720 int i, j, k, l, t;
721 switch (cpi->sf.use_fast_coef_updates) {
722 case 0: {
723 /* dry run to see if there is any udpate at all needed */
724 int savings = 0;
725 int update[2] = {0, 0};
726 for (i = 0; i < BLOCK_TYPES; ++i) {
727 for (j = 0; j < REF_TYPES; ++j) {
728 for (k = 0; k < COEF_BANDS; ++k) {
729 for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
730 for (t = 0; t < entropy_nodes_update; ++t) {
731 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
732 const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
733 int s;
734 int u = 0;
735
736 if (l >= 3 && k == 0)
737 continue;
738 if (t == PIVOT_NODE)
739 s = vp9_prob_diff_update_savings_search_model(
740 frame_branch_ct[i][j][k][l][0],
741 old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
742 else
743 s = vp9_prob_diff_update_savings_search(
744 frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
745 if (s > 0 && newp != oldp)
746 u = 1;
747 if (u)
748 savings += s - (int)(vp9_cost_zero(upd));
749 else
750 savings -= (int)(vp9_cost_zero(upd));
751 update[u]++;
752 }
753 }
754 }
755 }
756 }
757
758 // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
759 /* Is coef updated at all */
760 if (update[1] == 0 || savings < 0) {
761 vp9_write_bit(bc, 0);
762 return;
763 }
764 vp9_write_bit(bc, 1);
765 for (i = 0; i < BLOCK_TYPES; ++i) {
766 for (j = 0; j < REF_TYPES; ++j) {
767 for (k = 0; k < COEF_BANDS; ++k) {
768 for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
769 // calc probs and branch cts for this frame only
770 for (t = 0; t < entropy_nodes_update; ++t) {
771 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
772 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
773 const vp9_prob upd = DIFF_UPDATE_PROB;
774 int s;
775 int u = 0;
776 if (l >= 3 && k == 0)
777 continue;
778 if (t == PIVOT_NODE)
779 s = vp9_prob_diff_update_savings_search_model(
780 frame_branch_ct[i][j][k][l][0],
781 old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
782 else
783 s = vp9_prob_diff_update_savings_search(
784 frame_branch_ct[i][j][k][l][t],
785 *oldp, &newp, upd);
786 if (s > 0 && newp != *oldp)
787 u = 1;
788 vp9_write(bc, u, upd);
789 #ifdef ENTROPY_STATS
790 if (!cpi->dummy_packing)
791 ++tree_update_hist[tx_size][i][j][k][l][t][u];
792 #endif
793 if (u) {
794 /* send/use new probability */
795 vp9_write_prob_diff_update(bc, newp, *oldp);
796 *oldp = newp;
797 }
798 }
799 }
800 }
801 }
802 }
803 return;
804 }
805
806 case 1:
807 case 2: {
808 const int prev_coef_contexts_to_update =
809 (cpi->sf.use_fast_coef_updates == 2 ?
810 PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS);
811 const int coef_band_to_update =
812 (cpi->sf.use_fast_coef_updates == 2 ?
813 COEF_BANDS >> 1 : COEF_BANDS);
814 int updates = 0;
815 int noupdates_before_first = 0;
816 for (i = 0; i < BLOCK_TYPES; ++i) {
817 for (j = 0; j < REF_TYPES; ++j) {
818 for (k = 0; k < COEF_BANDS; ++k) {
819 for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
820 // calc probs and branch cts for this frame only
821 for (t = 0; t < entropy_nodes_update; ++t) {
822 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
823 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
824 int s;
825 int u = 0;
826 if (l >= 3 && k == 0)
827 continue;
828 if (l >= prev_coef_contexts_to_update ||
829 k >= coef_band_to_update) {
830 u = 0;
831 } else {
832 if (t == PIVOT_NODE)
833 s = vp9_prob_diff_update_savings_search_model(
834 frame_branch_ct[i][j][k][l][0],
835 old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
836 else
837 s = vp9_prob_diff_update_savings_search(
838 frame_branch_ct[i][j][k][l][t],
839 *oldp, &newp, upd);
840 if (s > 0 && newp != *oldp)
841 u = 1;
842 }
843 updates += u;
844 if (u == 0 && updates == 0) {
845 noupdates_before_first++;
846 #ifdef ENTROPY_STATS
847 if (!cpi->dummy_packing)
848 ++tree_update_hist[tx_size][i][j][k][l][t][u];
849 #endif
850 continue;
851 }
852 if (u == 1 && updates == 1) {
853 int v;
854 // first update
855 vp9_write_bit(bc, 1);
856 for (v = 0; v < noupdates_before_first; ++v)
857 vp9_write(bc, 0, upd);
858 }
859 vp9_write(bc, u, upd);
860 #ifdef ENTROPY_STATS
861 if (!cpi->dummy_packing)
862 ++tree_update_hist[tx_size][i][j][k][l][t][u];
863 #endif
864 if (u) {
865 /* send/use new probability */
866 vp9_write_prob_diff_update(bc, newp, *oldp);
867 *oldp = newp;
868 }
869 }
870 }
871 }
872 }
873 }
874 if (updates == 0) {
875 vp9_write_bit(bc, 0); // no updates
876 }
877 return;
878 }
879
880 default:
881 assert(0);
882 }
883 }
884
885 static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
886 const TX_MODE tx_mode = cpi->common.tx_mode;
887
888 vp9_clear_system_state();
889
890 // Build the cofficient contexts based on counts collected in encode loop
891 build_coeff_contexts(cpi);
892
893 update_coef_probs_common(bc, cpi, TX_4X4);
894
895 // do not do this if not even allowed
896 if (tx_mode > ONLY_4X4)
897 update_coef_probs_common(bc, cpi, TX_8X8);
898
899 if (tx_mode > ALLOW_8X8)
900 update_coef_probs_common(bc, cpi, TX_16X16);
901
902 if (tx_mode > ALLOW_16X16)
903 update_coef_probs_common(bc, cpi, TX_32X32);
904 }
905
906 static void encode_loopfilter(struct loopfilter *lf,
907 struct vp9_write_bit_buffer *wb) {
908 int i;
909
910 // Encode the loop filter level and type
911 vp9_wb_write_literal(wb, lf->filter_level, 6);
912 vp9_wb_write_literal(wb, lf->sharpness_level, 3);
913
914 // Write out loop filter deltas applied at the MB level based on mode or
915 // ref frame (if they are enabled).
916 vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
917
918 if (lf->mode_ref_delta_enabled) {
919 // Do the deltas need to be updated
920 vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
921 if (lf->mode_ref_delta_update) {
922 // Send update
923 for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
924 const int delta = lf->ref_deltas[i];
925
926 // Frame level data
927 if (delta != lf->last_ref_deltas[i]) {
928 lf->last_ref_deltas[i] = delta;
929 vp9_wb_write_bit(wb, 1);
930
931 assert(delta != 0);
932 vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
933 vp9_wb_write_bit(wb, delta < 0);
934 } else {
935 vp9_wb_write_bit(wb, 0);
936 }
937 }
938
939 // Send update
940 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
941 const int delta = lf->mode_deltas[i];
942 if (delta != lf->last_mode_deltas[i]) {
943 lf->last_mode_deltas[i] = delta;
944 vp9_wb_write_bit(wb, 1);
945
946 assert(delta != 0);
947 vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
948 vp9_wb_write_bit(wb, delta < 0);
949 } else {
950 vp9_wb_write_bit(wb, 0);
951 }
952 }
953 }
954 }
955 }
956
957 static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
958 if (delta_q != 0) {
959 vp9_wb_write_bit(wb, 1);
960 vp9_wb_write_literal(wb, abs(delta_q), 4);
961 vp9_wb_write_bit(wb, delta_q < 0);
962 } else {
963 vp9_wb_write_bit(wb, 0);
964 }
965 }
966
967 static void encode_quantization(VP9_COMMON *cm,
968 struct vp9_write_bit_buffer *wb) {
969 vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
970 write_delta_q(wb, cm->y_dc_delta_q);
971 write_delta_q(wb, cm->uv_dc_delta_q);
972 write_delta_q(wb, cm->uv_ac_delta_q);
973 }
974
975
976 static void encode_segmentation(VP9_COMP *cpi,
977 struct vp9_write_bit_buffer *wb) {
978 int i, j;
979
980 struct segmentation *seg = &cpi->common.seg;
981
982 vp9_wb_write_bit(wb, seg->enabled);
983 if (!seg->enabled)
984 return;
985
986 // Segmentation map
987 vp9_wb_write_bit(wb, seg->update_map);
988 if (seg->update_map) {
989 // Select the coding strategy (temporal or spatial)
990 vp9_choose_segmap_coding_method(cpi);
991 // Write out probabilities used to decode unpredicted macro-block segments
992 for (i = 0; i < SEG_TREE_PROBS; i++) {
993 const int prob = seg->tree_probs[i];
994 const int update = prob != MAX_PROB;
995 vp9_wb_write_bit(wb, update);
996 if (update)
997 vp9_wb_write_literal(wb, prob, 8);
998 }
999
1000 // Write out the chosen coding method.
1001 vp9_wb_write_bit(wb, seg->temporal_update);
1002 if (seg->temporal_update) {
1003 for (i = 0; i < PREDICTION_PROBS; i++) {
1004 const int prob = seg->pred_probs[i];
1005 const int update = prob != MAX_PROB;
1006 vp9_wb_write_bit(wb, update);
1007 if (update)
1008 vp9_wb_write_literal(wb, prob, 8);
1009 }
1010 }
1011 }
1012
1013 // Segmentation data
1014 vp9_wb_write_bit(wb, seg->update_data);
1015 if (seg->update_data) {
1016 vp9_wb_write_bit(wb, seg->abs_delta);
1017
1018 for (i = 0; i < MAX_SEGMENTS; i++) {
1019 for (j = 0; j < SEG_LVL_MAX; j++) {
1020 const int active = vp9_segfeature_active(seg, i, j);
1021 vp9_wb_write_bit(wb, active);
1022 if (active) {
1023 const int data = vp9_get_segdata(seg, i, j);
1024 const int data_max = vp9_seg_feature_data_max(j);
1025
1026 if (vp9_is_segfeature_signed(j)) {
1027 vp9_encode_unsigned_max(wb, abs(data), data_max);
1028 vp9_wb_write_bit(wb, data < 0);
1029 } else {
1030 vp9_encode_unsigned_max(wb, data, data_max);
1031 }
1032 }
1033 }
1034 }
1035 }
1036 }
1037
1038
1039 static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
1040 VP9_COMMON *const cm = &cpi->common;
1041
1042 // Mode
1043 vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
1044 if (cm->tx_mode >= ALLOW_32X32)
1045 vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
1046
1047 // Probabilities
1048 if (cm->tx_mode == TX_MODE_SELECT) {
1049 int i, j;
1050 unsigned int ct_8x8p[TX_SIZES - 3][2];
1051 unsigned int ct_16x16p[TX_SIZES - 2][2];
1052 unsigned int ct_32x32p[TX_SIZES - 1][2];
1053
1054
1055 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
1056 tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
1057 for (j = 0; j < TX_SIZES - 3; j++)
1058 vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
1059 }
1060
1061 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
1062 tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
1063 for (j = 0; j < TX_SIZES - 2; j++)
1064 vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
1065 ct_16x16p[j]);
1066 }
1067
1068 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
1069 tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
1070 for (j = 0; j < TX_SIZES - 1; j++)
1071 vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
1072 ct_32x32p[j]);
1073 }
1074 #ifdef MODE_STATS
1075 if (!cpi->dummy_packing)
1076 update_tx_count_stats(cm);
1077 #endif
1078 }
1079 }
1080
1081 static void write_interp_filter_type(INTERPOLATION_TYPE type,
1082 struct vp9_write_bit_buffer *wb) {
1083 const int type_to_literal[] = { 1, 0, 2, 3 };
1084
1085 vp9_wb_write_bit(wb, type == SWITCHABLE);
1086 if (type != SWITCHABLE)
1087 vp9_wb_write_literal(wb, type_to_literal[type], 2);
1088 }
1089
1090 static void fix_mcomp_filter_type(VP9_COMP *cpi) {
1091 VP9_COMMON *const cm = &cpi->common;
1092
1093 if (cm->mcomp_filter_type == SWITCHABLE) {
1094 // Check to see if only one of the filters is actually used
1095 int count[SWITCHABLE_FILTERS];
1096 int i, j, c = 0;
1097 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
1098 count[i] = 0;
1099 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
1100 count[i] += cm->counts.switchable_interp[j][i];
1101 c += (count[i] > 0);
1102 }
1103 if (c == 1) {
1104 // Only one filter is used. So set the filter at frame level
1105 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
1106 if (count[i]) {
1107 cm->mcomp_filter_type = i;
1108 break;
1109 }
1110 }
1111 }
1112 }
1113 }
1114
1115 static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
1116 int min_log2_tile_cols, max_log2_tile_cols, ones;
1117 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
1118
1119 // columns
1120 ones = cm->log2_tile_cols - min_log2_tile_cols;
1121 while (ones--)
1122 vp9_wb_write_bit(wb, 1);
1123
1124 if (cm->log2_tile_cols < max_log2_tile_cols)
1125 vp9_wb_write_bit(wb, 0);
1126
1127 // rows
1128 vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
1129 if (cm->log2_tile_rows != 0)
1130 vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
1131 }
1132
1133 static int get_refresh_mask(VP9_COMP *cpi) {
1134 // Should the GF or ARF be updated using the transmitted frame or buffer
1135 #if CONFIG_MULTIPLE_ARF
1136 if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
1137 !cpi->refresh_alt_ref_frame) {
1138 #else
1139 if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
1140 !cpi->use_svc) {
1141 #endif
1142 // Preserve the previously existing golden frame and update the frame in
1143 // the alt ref slot instead. This is highly specific to the use of
1144 // alt-ref as a forward reference, and this needs to be generalized as
1145 // other uses are implemented (like RTC/temporal scaling)
1146 //
1147 // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
1148 // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
1149 // be done outside of the recode loop.
1150 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
1151 (cpi->refresh_golden_frame << cpi->alt_fb_idx);
1152 } else {
1153 int arf_idx = cpi->alt_fb_idx;
1154 #if CONFIG_MULTIPLE_ARF
1155 // Determine which ARF buffer to use to encode this ARF frame.
1156 if (cpi->multi_arf_enabled) {
1157 int sn = cpi->sequence_number;
1158 arf_idx = (cpi->frame_coding_order[sn] < 0) ?
1159 cpi->arf_buffer_idx[sn + 1] :
1160 cpi->arf_buffer_idx[sn];
1161 }
1162 #endif
1163 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
1164 (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
1165 (cpi->refresh_alt_ref_frame << arf_idx);
1166 }
1167 }
1168
1169 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
1170 VP9_COMMON *const cm = &cpi->common;
1171 vp9_writer residual_bc;
1172
1173 int tile_row, tile_col;
1174 TOKENEXTRA *tok[4][1 << 6], *tok_end;
1175 size_t total_size = 0;
1176 const int tile_cols = 1 << cm->log2_tile_cols;
1177 const int tile_rows = 1 << cm->log2_tile_rows;
1178
1179 vpx_memset(cpi->above_seg_context, 0, sizeof(*cpi->above_seg_context) *
1180 mi_cols_aligned_to_sb(cm->mi_cols));
1181
1182 tok[0][0] = cpi->tok;
1183 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
1184 if (tile_row)
1185 tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
1186 cpi->tok_count[tile_row - 1][tile_cols - 1];
1187
1188 for (tile_col = 1; tile_col < tile_cols; tile_col++)
1189 tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
1190 cpi->tok_count[tile_row][tile_col - 1];
1191 }
1192
1193 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
1194 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
1195 TileInfo tile;
1196
1197 vp9_tile_init(&tile, cm, tile_row, tile_col);
1198 tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
1199
1200 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
1201 vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
1202 else
1203 vp9_start_encode(&residual_bc, data_ptr + total_size);
1204
1205 write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
1206 assert(tok[tile_row][tile_col] == tok_end);
1207 vp9_stop_encode(&residual_bc);
1208 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
1209 // size of this tile
1210 write_be32(data_ptr + total_size, residual_bc.pos);
1211 total_size += 4;
1212 }
1213
1214 total_size += residual_bc.pos;
1215 }
1216 }
1217
1218 return total_size;
1219 }
1220
1221 static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) {
1222 VP9_COMMON *const cm = &cpi->common;
1223
1224 const int scaling_active = cm->width != cm->display_width ||
1225 cm->height != cm->display_height;
1226 vp9_wb_write_bit(wb, scaling_active);
1227 if (scaling_active) {
1228 vp9_wb_write_literal(wb, cm->display_width - 1, 16);
1229 vp9_wb_write_literal(wb, cm->display_height - 1, 16);
1230 }
1231 }
1232
1233 static void write_frame_size(VP9_COMP *cpi,
1234 struct vp9_write_bit_buffer *wb) {
1235 VP9_COMMON *const cm = &cpi->common;
1236 vp9_wb_write_literal(wb, cm->width - 1, 16);
1237 vp9_wb_write_literal(wb, cm->height - 1, 16);
1238
1239 write_display_size(cpi, wb);
1240 }
1241
1242 static void write_frame_size_with_refs(VP9_COMP *cpi,
1243 struct vp9_write_bit_buffer *wb) {
1244 VP9_COMMON *const cm = &cpi->common;
1245 int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
1246 cpi->alt_fb_idx};
1247 int i, found = 0;
1248
1249 for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
1250 YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
1251 found = cm->width == cfg->y_crop_width &&
1252 cm->height == cfg->y_crop_height;
1253
1254 // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
1255 // in a better way.
1256 if (cpi->use_svc) {
1257 found = 0;
1258 }
1259 vp9_wb_write_bit(wb, found);
1260 if (found) {
1261 break;
1262 }
1263 }
1264
1265 if (!found) {
1266 vp9_wb_write_literal(wb, cm->width - 1, 16);
1267 vp9_wb_write_literal(wb, cm->height - 1, 16);
1268 }
1269
1270 write_display_size(cpi, wb);
1271 }
1272
1273 static void write_sync_code(struct vp9_write_bit_buffer *wb) {
1274 vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1275 vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1276 vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1277 }
1278
1279 static void write_uncompressed_header(VP9_COMP *cpi,
1280 struct vp9_write_bit_buffer *wb) {
1281 VP9_COMMON *const cm = &cpi->common;
1282
1283 vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1284
1285 // bitstream version.
1286 // 00 - profile 0. 4:2:0 only
1287 // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
1288 vp9_wb_write_bit(wb, cm->version);
1289 vp9_wb_write_bit(wb, 0);
1290
1291 vp9_wb_write_bit(wb, 0);
1292 vp9_wb_write_bit(wb, cm->frame_type);
1293 vp9_wb_write_bit(wb, cm->show_frame);
1294 vp9_wb_write_bit(wb, cm->error_resilient_mode);
1295
1296 if (cm->frame_type == KEY_FRAME) {
1297 const COLOR_SPACE cs = UNKNOWN;
1298 write_sync_code(wb);
1299 vp9_wb_write_literal(wb, cs, 3);
1300 if (cs != SRGB) {
1301 vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1302 if (cm->version == 1) {
1303 vp9_wb_write_bit(wb, cm->subsampling_x);
1304 vp9_wb_write_bit(wb, cm->subsampling_y);
1305 vp9_wb_write_bit(wb, 0); // has extra plane
1306 }
1307 } else {
1308 assert(cm->version == 1);
1309 vp9_wb_write_bit(wb, 0); // has extra plane
1310 }
1311
1312 write_frame_size(cpi, wb);
1313 } else {
1314 const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
1315 cpi->alt_fb_idx};
1316 if (!cm->show_frame)
1317 vp9_wb_write_bit(wb, cm->intra_only);
1318
1319 if (!cm->error_resilient_mode)
1320 vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
1321
1322 if (cm->intra_only) {
1323 write_sync_code(wb);
1324
1325 vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
1326 write_frame_size(cpi, wb);
1327 } else {
1328 int i;
1329 vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
1330 for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
1331 vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2);
1332 vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]);
1333 }
1334
1335 write_frame_size_with_refs(cpi, wb);
1336
1337 vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
1338
1339 fix_mcomp_filter_type(cpi);
1340 write_interp_filter_type(cm->mcomp_filter_type, wb);
1341 }
1342 }
1343
1344 if (!cm->error_resilient_mode) {
1345 vp9_wb_write_bit(wb, cm->refresh_frame_context);
1346 vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1347 }
1348
1349 vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2);
1350
1351 encode_loopfilter(&cm->lf, wb);
1352 encode_quantization(cm, wb);
1353 encode_segmentation(cpi, wb);
1354
1355 write_tile_info(cm, wb);
1356 }
1357
1358 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1359 VP9_COMMON *const cm = &cpi->common;
1360 MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1361 FRAME_CONTEXT *const fc = &cm->fc;
1362 vp9_writer header_bc;
1363
1364 vp9_start_encode(&header_bc, data);
1365
1366 if (xd->lossless)
1367 cm->tx_mode = ONLY_4X4;
1368 else
1369 encode_txfm_probs(cpi, &header_bc);
1370
1371 update_coef_probs(cpi, &header_bc);
1372
1373 #ifdef ENTROPY_STATS
1374 active_section = 2;
1375 #endif
1376
1377 vp9_update_skip_probs(cpi, &header_bc);
1378
1379 if (!frame_is_intra_only(cm)) {
1380 int i;
1381 #ifdef ENTROPY_STATS
1382 active_section = 1;
1383 #endif
1384
1385 update_inter_mode_probs(cm, &header_bc);
1386 vp9_zero(cm->counts.inter_mode);
1387
1388 if (cm->mcomp_filter_type == SWITCHABLE)
1389 update_switchable_interp_probs(cpi, &header_bc);
1390
1391 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1392 vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1393 cpi->intra_inter_count[i]);
1394
1395 if (cm->allow_comp_inter_inter) {
1396 const int comp_pred_mode = cpi->common.comp_pred_mode;
1397 const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY;
1398 const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION;
1399
1400 vp9_write_bit(&header_bc, use_compound_pred);
1401 if (use_compound_pred) {
1402 vp9_write_bit(&header_bc, use_hybrid_pred);
1403 if (use_hybrid_pred)
1404 for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1405 vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1406 cpi->comp_inter_count[i]);
1407 }
1408 }
1409
1410 if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
1411 for (i = 0; i < REF_CONTEXTS; i++) {
1412 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1413 cpi->single_ref_count[i][0]);
1414 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1415 cpi->single_ref_count[i][1]);
1416 }
1417 }
1418
1419 if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
1420 for (i = 0; i < REF_CONTEXTS; i++)
1421 vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1422 cpi->comp_ref_count[i]);
1423
1424 update_mbintra_mode_probs(cpi, &header_bc);
1425
1426 for (i = 0; i < PARTITION_CONTEXTS; ++i) {
1427 unsigned int bct[PARTITION_TYPES - 1][2];
1428 update_mode(&header_bc, PARTITION_TYPES, vp9_partition_tree,
1429 fc->partition_prob[i], bct,
1430 (unsigned int *)cpi->partition_count[i]);
1431 }
1432
1433 vp9_write_nmv_probs(cpi, cm->allow_high_precision_mv, &header_bc);
1434 }
1435
1436 vp9_stop_encode(&header_bc);
1437 assert(header_bc.pos <= 0xffff);
1438
1439 return header_bc.pos;
1440 }
1441
1442 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
1443 uint8_t *data = dest;
1444 size_t first_part_size;
1445 struct vp9_write_bit_buffer wb = {data, 0};
1446 struct vp9_write_bit_buffer saved_wb;
1447
1448 write_uncompressed_header(cpi, &wb);
1449 saved_wb = wb;
1450 vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
1451
1452 data += vp9_rb_bytes_written(&wb);
1453
1454 vp9_compute_update_table();
1455
1456 #ifdef ENTROPY_STATS
1457 if (cm->frame_type == INTER_FRAME)
1458 active_section = 0;
1459 else
1460 active_section = 7;
1461 #endif
1462
1463 vp9_clear_system_state(); // __asm emms;
1464
1465 first_part_size = write_compressed_header(cpi, data);
1466 data += first_part_size;
1467 vp9_wb_write_literal(&saved_wb, first_part_size, 16);
1468
1469 data += encode_tiles(cpi, data);
1470
1471 *size = data - dest;
1472 }
1473
1474 #ifdef ENTROPY_STATS
1475 static void print_tree_update_for_type(FILE *f,
1476 vp9_coeff_stats *tree_update_hist,
1477 int block_types, const char *header) {
1478 int i, j, k, l, m;
1479
1480 fprintf(f, "const vp9_coeff_prob %s = {\n", header);
1481 for (i = 0; i < block_types; i++) {
1482 fprintf(f, " { \n");
1483 for (j = 0; j < REF_TYPES; j++) {
1484 fprintf(f, " { \n");
1485 for (k = 0; k < COEF_BANDS; k++) {
1486 fprintf(f, " {\n");
1487 for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
1488 fprintf(f, " {");
1489 for (m = 0; m < ENTROPY_NODES; m++) {
1490 fprintf(f, "%3d, ",
1491 get_binary_prob(tree_update_hist[i][j][k][l][m][0],
1492 tree_update_hist[i][j][k][l][m][1]));
1493 }
1494 fprintf(f, "},\n");
1495 }
1496 fprintf(f, "},\n");
1497 }
1498 fprintf(f, " },\n");
1499 }
1500 fprintf(f, " },\n");
1501 }
1502 fprintf(f, "};\n");
1503 }
1504
1505 void print_tree_update_probs() {
1506 FILE *f = fopen("coefupdprob.h", "w");
1507 fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
1508
1509 print_tree_update_for_type(f, tree_update_hist[TX_4X4], BLOCK_TYPES,
1510 "vp9_coef_update_probs_4x4[BLOCK_TYPES]");
1511 print_tree_update_for_type(f, tree_update_hist[TX_8X8], BLOCK_TYPES,
1512 "vp9_coef_update_probs_8x8[BLOCK_TYPES]");
1513 print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES,
1514 "vp9_coef_update_probs_16x16[BLOCK_TYPES]");
1515 print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES,
1516 "vp9_coef_update_probs_32x32[BLOCK_TYPES]");
1517
1518 fclose(f);
1519 f = fopen("treeupdate.bin", "wb");
1520 fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
1521 fclose(f);
1522 }
1523 #endif

mercurial