media/libvpx/vp9/encoder/vp9_bitstream.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
     3  *
     4  *  Use of this source code is governed by a BSD-style license
     5  *  that can be found in the LICENSE file in the root of the source
     6  *  tree. An additional intellectual property rights grant can be found
     7  *  in the file PATENTS.  All contributing project authors may
     8  *  be found in the AUTHORS file in the root of the source tree.
     9  */
    11 #include <assert.h>
    12 #include <stdio.h>
    13 #include <limits.h>
    15 #include "vpx/vpx_encoder.h"
    16 #include "vpx_mem/vpx_mem.h"
    18 #include "vp9/common/vp9_entropymode.h"
    19 #include "vp9/common/vp9_entropymv.h"
    20 #include "vp9/common/vp9_findnearmv.h"
    21 #include "vp9/common/vp9_tile_common.h"
    22 #include "vp9/common/vp9_seg_common.h"
    23 #include "vp9/common/vp9_pred_common.h"
    24 #include "vp9/common/vp9_entropy.h"
    25 #include "vp9/common/vp9_mvref_common.h"
    26 #include "vp9/common/vp9_treecoder.h"
    27 #include "vp9/common/vp9_systemdependent.h"
    28 #include "vp9/common/vp9_pragmas.h"
    30 #include "vp9/encoder/vp9_mcomp.h"
    31 #include "vp9/encoder/vp9_encodemv.h"
    32 #include "vp9/encoder/vp9_bitstream.h"
    33 #include "vp9/encoder/vp9_segmentation.h"
    34 #include "vp9/encoder/vp9_subexp.h"
    35 #include "vp9/encoder/vp9_write_bit_buffer.h"
    38 #if defined(SECTIONBITS_OUTPUT)
    39 unsigned __int64 Sectionbits[500];
    40 #endif
    42 #ifdef ENTROPY_STATS
    43 int intra_mode_stats[INTRA_MODES]
    44                     [INTRA_MODES]
    45                     [INTRA_MODES];
    46 vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];
    48 extern unsigned int active_section;
    49 #endif
    52 #ifdef MODE_STATS
    53 int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES];
    54 int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1];
    55 int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2];
    56 int64_t switchable_interp_stats[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
    58 void init_tx_count_stats() {
    59   vp9_zero(tx_count_32x32p_stats);
    60   vp9_zero(tx_count_16x16p_stats);
    61   vp9_zero(tx_count_8x8p_stats);
    62 }
    64 void init_switchable_interp_stats() {
    65   vp9_zero(switchable_interp_stats);
    66 }
    68 static void update_tx_count_stats(VP9_COMMON *cm) {
    69   int i, j;
    70   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    71     for (j = 0; j < TX_SIZES; j++) {
    72       tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j];
    73     }
    74   }
    75   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    76     for (j = 0; j < TX_SIZES - 1; j++) {
    77       tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j];
    78     }
    79   }
    80   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
    81     for (j = 0; j < TX_SIZES - 2; j++) {
    82       tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j];
    83     }
    84   }
    85 }
    87 static void update_switchable_interp_stats(VP9_COMMON *cm) {
    88   int i, j;
    89   for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
    90     for (j = 0; j < SWITCHABLE_FILTERS; ++j)
    91       switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j];
    92 }
    94 void write_tx_count_stats() {
    95   int i, j;
    96   FILE *fp = fopen("tx_count.bin", "wb");
    97   fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp);
    98   fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp);
    99   fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp);
   100   fclose(fp);
   102   printf(
   103       "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n");
   104   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   105     printf("  { ");
   106     for (j = 0; j < TX_SIZES; j++) {
   107       printf("%"PRId64", ", tx_count_32x32p_stats[i][j]);
   108     }
   109     printf("},\n");
   110   }
   111   printf("};\n");
   112   printf(
   113       "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n");
   114   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   115     printf("  { ");
   116     for (j = 0; j < TX_SIZES - 1; j++) {
   117       printf("%"PRId64", ", tx_count_16x16p_stats[i][j]);
   118     }
   119     printf("},\n");
   120   }
   121   printf("};\n");
   122   printf(
   123       "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n");
   124   for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
   125     printf("  { ");
   126     for (j = 0; j < TX_SIZES - 2; j++) {
   127       printf("%"PRId64", ", tx_count_8x8p_stats[i][j]);
   128     }
   129     printf("},\n");
   130   }
   131   printf("};\n");
   132 }
   134 void write_switchable_interp_stats() {
   135   int i, j;
   136   FILE *fp = fopen("switchable_interp.bin", "wb");
   137   fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp);
   138   fclose(fp);
   140   printf(
   141       "vp9_default_switchable_filter_count[SWITCHABLE_FILTER_CONTEXTS]"
   142       "[SWITCHABLE_FILTERS] = {\n");
   143   for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
   144     printf("  { ");
   145     for (j = 0; j < SWITCHABLE_FILTERS; j++) {
   146       printf("%"PRId64", ", switchable_interp_stats[i][j]);
   147     }
   148     printf("},\n");
   149   }
   150   printf("};\n");
   151 }
   152 #endif
   154 static INLINE void write_be32(uint8_t *p, int value) {
   155   p[0] = value >> 24;
   156   p[1] = value >> 16;
   157   p[2] = value >> 8;
   158   p[3] = value;
   159 }
   161 void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb,
   162                              int data, int max) {
   163   vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
   164 }
   166 static void update_mode(vp9_writer *w, int n, vp9_tree tree,
   167                         vp9_prob Pcur[/* n-1 */],
   168                         unsigned int bct[/* n-1 */][2],
   169                         const unsigned int num_events[/* n */]) {
   170   int i = 0;
   172   vp9_tree_probs_from_distribution(tree, bct, num_events);
   173   for (i = 0; i < n - 1; ++i)
   174     vp9_cond_prob_diff_update(w, &Pcur[i], bct[i]);
   175 }
   177 static void update_mbintra_mode_probs(VP9_COMP* const cpi,
   178                                       vp9_writer* const bc) {
   179   VP9_COMMON *const cm = &cpi->common;
   180   int j;
   181   unsigned int bct[INTRA_MODES - 1][2];
   183   for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
   184     update_mode(bc, INTRA_MODES, vp9_intra_mode_tree,
   185                 cm->fc.y_mode_prob[j], bct,
   186                 (unsigned int *)cpi->y_mode_count[j]);
   187 }
   189 static void write_selected_tx_size(const VP9_COMP *cpi, MODE_INFO *m,
   190                                    TX_SIZE tx_size, BLOCK_SIZE bsize,
   191                                    vp9_writer *w) {
   192   const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
   193   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   194   const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
   195                                                  &cpi->common.fc.tx_probs);
   196   vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
   197   if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
   198     vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
   199     if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
   200       vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
   201   }
   202 }
   204 static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m,
   205                             vp9_writer *w) {
   206   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   207   if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) {
   208     return 1;
   209   } else {
   210     const int skip_coeff = m->mbmi.skip_coeff;
   211     vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd));
   212     return skip_coeff;
   213   }
   214 }
   216 void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) {
   217   VP9_COMMON *cm = &cpi->common;
   218   int k;
   220   for (k = 0; k < MBSKIP_CONTEXTS; ++k)
   221     vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], cm->counts.mbskip[k]);
   222 }
   224 static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) {
   225   write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m);
   226 }
   228 static void update_switchable_interp_probs(VP9_COMP *cpi, vp9_writer *w) {
   229   VP9_COMMON *const cm = &cpi->common;
   230   unsigned int branch_ct[SWITCHABLE_FILTERS - 1][2];
   231   int i, j;
   232   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
   233     vp9_tree_probs_from_distribution(vp9_switchable_interp_tree, branch_ct,
   234                                      cm->counts.switchable_interp[j]);
   236     for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
   237       vp9_cond_prob_diff_update(w, &cm->fc.switchable_interp_prob[j][i],
   238                                 branch_ct[i]);
   239   }
   241 #ifdef MODE_STATS
   242   if (!cpi->dummy_packing)
   243     update_switchable_interp_stats(cm);
   244 #endif
   245 }
   247 static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer *w) {
   248   int i, j;
   250   for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
   251     unsigned int branch_ct[INTER_MODES - 1][2];
   252     vp9_tree_probs_from_distribution(vp9_inter_mode_tree, branch_ct,
   253                                      cm->counts.inter_mode[i]);
   255     for (j = 0; j < INTER_MODES - 1; ++j)
   256       vp9_cond_prob_diff_update(w, &cm->fc.inter_mode_probs[i][j],
   257                                 branch_ct[j]);
   258   }
   259 }
   261 static void pack_mb_tokens(vp9_writer* const w,
   262                            TOKENEXTRA **tp,
   263                            const TOKENEXTRA *const stop) {
   264   TOKENEXTRA *p = *tp;
   266   while (p < stop && p->token != EOSB_TOKEN) {
   267     const int t = p->token;
   268     const struct vp9_token *const a = &vp9_coef_encodings[t];
   269     const vp9_extra_bit *const b = &vp9_extra_bits[t];
   270     int i = 0;
   271     const vp9_prob *pp;
   272     int v = a->value;
   273     int n = a->len;
   274     vp9_prob probs[ENTROPY_NODES];
   276     if (t >= TWO_TOKEN) {
   277       vp9_model_to_full_probs(p->context_tree, probs);
   278       pp = probs;
   279     } else {
   280       pp = p->context_tree;
   281     }
   282     assert(pp != 0);
   284     /* skip one or two nodes */
   285     if (p->skip_eob_node) {
   286       n -= p->skip_eob_node;
   287       i = 2 * p->skip_eob_node;
   288     }
   290     do {
   291       const int bb = (v >> --n) & 1;
   292       vp9_write(w, bb, pp[i >> 1]);
   293       i = vp9_coef_tree[i + bb];
   294     } while (n);
   296     if (b->base_val) {
   297       const int e = p->extra, l = b->len;
   299       if (l) {
   300         const unsigned char *pb = b->prob;
   301         int v = e >> 1;
   302         int n = l;              /* number of bits in v, assumed nonzero */
   303         int i = 0;
   305         do {
   306           const int bb = (v >> --n) & 1;
   307           vp9_write(w, bb, pb[i >> 1]);
   308           i = b->tree[i + bb];
   309         } while (n);
   310       }
   312       vp9_write_bit(w, e & 1);
   313     }
   314     ++p;
   315   }
   317   *tp = p + (p->token == EOSB_TOKEN);
   318 }
   320 static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode,
   321                             const vp9_prob *p) {
   322   assert(is_inter_mode(mode));
   323   write_token(w, vp9_inter_mode_tree, p,
   324               &vp9_inter_mode_encodings[INTER_OFFSET(mode)]);
   325 }
   328 static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
   329                              int segment_id) {
   330   if (seg->enabled && seg->update_map)
   331     treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3);
   332 }
   334 // This function encodes the reference frame
   335 static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) {
   336   VP9_COMMON *const cm = &cpi->common;
   337   MACROBLOCK *const x = &cpi->mb;
   338   MACROBLOCKD *const xd = &x->e_mbd;
   339   MB_MODE_INFO *mi = &xd->mi_8x8[0]->mbmi;
   340   const int segment_id = mi->segment_id;
   341   int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id,
   342                                              SEG_LVL_REF_FRAME);
   343   // If segment level coding of this signal is disabled...
   344   // or the segment allows multiple reference frame options
   345   if (!seg_ref_active) {
   346     // does the feature use compound prediction or not
   347     // (if not specified at the frame/segment level)
   348     if (cm->comp_pred_mode == HYBRID_PREDICTION) {
   349       vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME,
   350                 vp9_get_pred_prob_comp_inter_inter(cm, xd));
   351     } else {
   352       assert((mi->ref_frame[1] <= INTRA_FRAME) ==
   353                  (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY));
   354     }
   356     if (mi->ref_frame[1] > INTRA_FRAME) {
   357       vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME,
   358                 vp9_get_pred_prob_comp_ref_p(cm, xd));
   359     } else {
   360       vp9_write(bc, mi->ref_frame[0] != LAST_FRAME,
   361                 vp9_get_pred_prob_single_ref_p1(cm, xd));
   362       if (mi->ref_frame[0] != LAST_FRAME)
   363         vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME,
   364                   vp9_get_pred_prob_single_ref_p2(cm, xd));
   365     }
   366   } else {
   367     assert(mi->ref_frame[1] <= INTRA_FRAME);
   368     assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ==
   369            mi->ref_frame[0]);
   370   }
   372   // If using the prediction model we have nothing further to do because
   373   // the reference frame is fully coded by the segment.
   374 }
   376 static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) {
   377   VP9_COMMON *const cm = &cpi->common;
   378   const nmv_context *nmvc = &cm->fc.nmvc;
   379   MACROBLOCK *const x = &cpi->mb;
   380   MACROBLOCKD *const xd = &x->e_mbd;
   381   struct segmentation *seg = &cm->seg;
   382   MB_MODE_INFO *const mi = &m->mbmi;
   383   const MV_REFERENCE_FRAME rf = mi->ref_frame[0];
   384   const MB_PREDICTION_MODE mode = mi->mode;
   385   const int segment_id = mi->segment_id;
   386   int skip_coeff;
   387   const BLOCK_SIZE bsize = mi->sb_type;
   388   const int allow_hp = cm->allow_high_precision_mv;
   390 #ifdef ENTROPY_STATS
   391   active_section = 9;
   392 #endif
   394   if (seg->update_map) {
   395     if (seg->temporal_update) {
   396       const int pred_flag = mi->seg_id_predicted;
   397       vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
   398       vp9_write(bc, pred_flag, pred_prob);
   399       if (!pred_flag)
   400         write_segment_id(bc, seg, segment_id);
   401     } else {
   402       write_segment_id(bc, seg, segment_id);
   403     }
   404   }
   406   skip_coeff = write_skip_coeff(cpi, segment_id, m, bc);
   408   if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
   409     vp9_write(bc, rf != INTRA_FRAME,
   410               vp9_get_pred_prob_intra_inter(cm, xd));
   412   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
   413       !(rf != INTRA_FRAME &&
   414         (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
   415     write_selected_tx_size(cpi, m, mi->tx_size, bsize, bc);
   416   }
   418   if (rf == INTRA_FRAME) {
   419 #ifdef ENTROPY_STATS
   420     active_section = 6;
   421 #endif
   423     if (bsize >= BLOCK_8X8) {
   424       write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
   425     } else {
   426       int idx, idy;
   427       const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
   428       const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
   429       for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
   430         for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
   431           const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode;
   432           write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]);
   433         }
   434       }
   435     }
   436     write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]);
   437   } else {
   438     vp9_prob *mv_ref_p;
   439     encode_ref_frame(cpi, bc);
   440     mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]];
   442 #ifdef ENTROPY_STATS
   443     active_section = 3;
   444 #endif
   446     // If segment skip is not enabled code the mode.
   447     if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
   448       if (bsize >= BLOCK_8X8) {
   449         write_sb_mv_ref(bc, mode, mv_ref_p);
   450         ++cm->counts.inter_mode[mi->mode_context[rf]]
   451                                [INTER_OFFSET(mode)];
   452       }
   453     }
   455     if (cm->mcomp_filter_type == SWITCHABLE) {
   456       const int ctx = vp9_get_pred_context_switchable_interp(xd);
   457       write_token(bc, vp9_switchable_interp_tree,
   458                   cm->fc.switchable_interp_prob[ctx],
   459                   &vp9_switchable_interp_encodings[mi->interp_filter]);
   460     } else {
   461       assert(mi->interp_filter == cm->mcomp_filter_type);
   462     }
   464     if (bsize < BLOCK_8X8) {
   465       const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
   466       const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
   467       int idx, idy;
   468       for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
   469         for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
   470           const int j = idy * 2 + idx;
   471           const MB_PREDICTION_MODE blockmode = m->bmi[j].as_mode;
   472           write_sb_mv_ref(bc, blockmode, mv_ref_p);
   473           ++cm->counts.inter_mode[mi->mode_context[rf]]
   474                                  [INTER_OFFSET(blockmode)];
   476           if (blockmode == NEWMV) {
   477 #ifdef ENTROPY_STATS
   478             active_section = 11;
   479 #endif
   480             vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[0].as_mv,
   481                           &mi->best_mv[0].as_mv, nmvc, allow_hp);
   483             if (has_second_ref(mi))
   484               vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[1].as_mv,
   485                             &mi->best_mv[1].as_mv, nmvc, allow_hp);
   486           }
   487         }
   488       }
   489     } else if (mode == NEWMV) {
   490 #ifdef ENTROPY_STATS
   491       active_section = 5;
   492 #endif
   493       vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv,
   494                     &mi->best_mv[0].as_mv, nmvc, allow_hp);
   496       if (has_second_ref(mi))
   497         vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv,
   498                       &mi->best_mv[1].as_mv, nmvc, allow_hp);
   499     }
   500   }
   501 }
   503 static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
   504                               vp9_writer *bc) {
   505   const VP9_COMMON *const cm = &cpi->common;
   506   const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   507   const struct segmentation *const seg = &cm->seg;
   508   MODE_INFO *m = mi_8x8[0];
   509   const int ym = m->mbmi.mode;
   510   const int segment_id = m->mbmi.segment_id;
   511   MODE_INFO *above_mi = mi_8x8[-xd->mode_info_stride];
   512   MODE_INFO *left_mi = xd->left_available ? mi_8x8[-1] : NULL;
   514   if (seg->update_map)
   515     write_segment_id(bc, seg, m->mbmi.segment_id);
   517   write_skip_coeff(cpi, segment_id, m, bc);
   519   if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
   520     write_selected_tx_size(cpi, m, m->mbmi.tx_size, m->mbmi.sb_type, bc);
   522   if (m->mbmi.sb_type >= BLOCK_8X8) {
   523     const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0);
   524     const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, 0);
   525     write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]);
   526   } else {
   527     int idx, idy;
   528     const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type];
   529     const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type];
   530     for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
   531       for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
   532         int i = idy * 2 + idx;
   533         const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, i);
   534         const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, i);
   535         const int bm = m->bmi[i].as_mode;
   536 #ifdef ENTROPY_STATS
   537         ++intra_mode_stats[A][L][bm];
   538 #endif
   539         write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]);
   540       }
   541     }
   542   }
   544   write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]);
   545 }
   547 static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
   548                           vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
   549                           int mi_row, int mi_col) {
   550   VP9_COMMON *const cm = &cpi->common;
   551   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
   552   MODE_INFO *m;
   554   xd->mi_8x8 = cm->mi_grid_visible + (mi_row * cm->mode_info_stride + mi_col);
   555   m = xd->mi_8x8[0];
   557   set_mi_row_col(xd, tile,
   558                  mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
   559                  mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
   560                  cm->mi_rows, cm->mi_cols);
   561   if (frame_is_intra_only(cm)) {
   562     write_mb_modes_kf(cpi, xd->mi_8x8, w);
   563 #ifdef ENTROPY_STATS
   564     active_section = 8;
   565 #endif
   566   } else {
   567     pack_inter_mode_mvs(cpi, m, w);
   568 #ifdef ENTROPY_STATS
   569     active_section = 1;
   570 #endif
   571   }
   573   assert(*tok < tok_end);
   574   pack_mb_tokens(w, tok, tok_end);
   575 }
   577 static void write_partition(VP9_COMP *cpi, int hbs, int mi_row, int mi_col,
   578                             PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
   579   VP9_COMMON *const cm = &cpi->common;
   580   const int ctx = partition_plane_context(cpi->above_seg_context,
   581                                           cpi->left_seg_context,
   582                                           mi_row, mi_col, bsize);
   583   const vp9_prob *const probs = get_partition_probs(cm, ctx);
   584   const int has_rows = (mi_row + hbs) < cm->mi_rows;
   585   const int has_cols = (mi_col + hbs) < cm->mi_cols;
   587   if (has_rows && has_cols) {
   588     write_token(w, vp9_partition_tree, probs, &vp9_partition_encodings[p]);
   589   } else if (!has_rows && has_cols) {
   590     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
   591     vp9_write(w, p == PARTITION_SPLIT, probs[1]);
   592   } else if (has_rows && !has_cols) {
   593     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
   594     vp9_write(w, p == PARTITION_SPLIT, probs[2]);
   595   } else {
   596     assert(p == PARTITION_SPLIT);
   597   }
   598 }
   600 static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile,
   601                            vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
   602                            int mi_row, int mi_col, BLOCK_SIZE bsize) {
   603   VP9_COMMON *const cm = &cpi->common;
   604   const int bsl = b_width_log2(bsize);
   605   const int bs = (1 << bsl) / 4;
   606   PARTITION_TYPE partition;
   607   BLOCK_SIZE subsize;
   608   MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mode_info_stride + mi_col];
   610   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
   611     return;
   613   partition = partition_lookup[bsl][m->mbmi.sb_type];
   614   write_partition(cpi, bs, mi_row, mi_col, partition, bsize, w);
   615   subsize = get_subsize(bsize, partition);
   616   if (subsize < BLOCK_8X8) {
   617     write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
   618   } else {
   619     switch (partition) {
   620       case PARTITION_NONE:
   621         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
   622         break;
   623       case PARTITION_HORZ:
   624         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
   625         if (mi_row + bs < cm->mi_rows)
   626           write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
   627         break;
   628       case PARTITION_VERT:
   629         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
   630         if (mi_col + bs < cm->mi_cols)
   631           write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
   632         break;
   633       case PARTITION_SPLIT:
   634         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
   635         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
   636                        subsize);
   637         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
   638                        subsize);
   639         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
   640                        subsize);
   641         break;
   642       default:
   643         assert(0);
   644     }
   645   }
   647   // update partition context
   648   if (bsize >= BLOCK_8X8 &&
   649       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
   650     update_partition_context(cpi->above_seg_context, cpi->left_seg_context,
   651                              mi_row, mi_col, subsize, bsize);
   652 }
   654 static void write_modes(VP9_COMP *cpi, const TileInfo *const tile,
   655                         vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
   656   int mi_row, mi_col;
   658   for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
   659        mi_row += MI_BLOCK_SIZE) {
   660       vp9_zero(cpi->left_seg_context);
   661     for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
   662          mi_col += MI_BLOCK_SIZE)
   663       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, BLOCK_64X64);
   664   }
   665 }
   667 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) {
   668   vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size];
   669   vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
   670   unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] =
   671       cpi->common.counts.eob_branch[tx_size];
   672   vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size];
   673   int i, j, k, l, m;
   675   for (i = 0; i < BLOCK_TYPES; ++i) {
   676     for (j = 0; j < REF_TYPES; ++j) {
   677       for (k = 0; k < COEF_BANDS; ++k) {
   678         for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
   679           if (l >= 3 && k == 0)
   680             continue;
   681           vp9_tree_probs_from_distribution(vp9_coef_tree,
   682                                            coef_branch_ct[i][j][k][l],
   683                                            coef_counts[i][j][k][l]);
   684           coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
   685                                              coef_branch_ct[i][j][k][l][0][0];
   686           for (m = 0; m < UNCONSTRAINED_NODES; ++m)
   687             coef_probs[i][j][k][l][m] = get_binary_prob(
   688                                             coef_branch_ct[i][j][k][l][m][0],
   689                                             coef_branch_ct[i][j][k][l][m][1]);
   690 #ifdef ENTROPY_STATS
   691           if (!cpi->dummy_packing) {
   692             int t;
   693             for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
   694               context_counters[tx_size][i][j][k][l][t] +=
   695                   coef_counts[i][j][k][l][t];
   696             context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] +=
   697                 eob_branch_ct[i][j][k][l];
   698           }
   699 #endif
   700         }
   701       }
   702     }
   703   }
   704 }
   706 static void build_coeff_contexts(VP9_COMP *cpi) {
   707   TX_SIZE t;
   708   for (t = TX_4X4; t <= TX_32X32; t++)
   709     build_tree_distribution(cpi, t);
   710 }
   712 static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
   713                                      TX_SIZE tx_size) {
   714   vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size];
   715   vp9_coeff_probs_model *old_frame_coef_probs =
   716       cpi->common.fc.coef_probs[tx_size];
   717   vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size];
   718   const vp9_prob upd = DIFF_UPDATE_PROB;
   719   const int entropy_nodes_update = UNCONSTRAINED_NODES;
   720   int i, j, k, l, t;
   721   switch (cpi->sf.use_fast_coef_updates) {
   722     case 0: {
   723       /* dry run to see if there is any udpate at all needed */
   724       int savings = 0;
   725       int update[2] = {0, 0};
   726       for (i = 0; i < BLOCK_TYPES; ++i) {
   727         for (j = 0; j < REF_TYPES; ++j) {
   728           for (k = 0; k < COEF_BANDS; ++k) {
   729             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
   730               for (t = 0; t < entropy_nodes_update; ++t) {
   731                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
   732                 const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
   733                 int s;
   734                 int u = 0;
   736                 if (l >= 3 && k == 0)
   737                   continue;
   738                 if (t == PIVOT_NODE)
   739                   s = vp9_prob_diff_update_savings_search_model(
   740                       frame_branch_ct[i][j][k][l][0],
   741                       old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
   742                 else
   743                   s = vp9_prob_diff_update_savings_search(
   744                       frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
   745                 if (s > 0 && newp != oldp)
   746                   u = 1;
   747                 if (u)
   748                   savings += s - (int)(vp9_cost_zero(upd));
   749                 else
   750                   savings -= (int)(vp9_cost_zero(upd));
   751                 update[u]++;
   752               }
   753             }
   754           }
   755         }
   756       }
   758       // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
   759       /* Is coef updated at all */
   760       if (update[1] == 0 || savings < 0) {
   761         vp9_write_bit(bc, 0);
   762         return;
   763       }
   764       vp9_write_bit(bc, 1);
   765       for (i = 0; i < BLOCK_TYPES; ++i) {
   766         for (j = 0; j < REF_TYPES; ++j) {
   767           for (k = 0; k < COEF_BANDS; ++k) {
   768             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
   769               // calc probs and branch cts for this frame only
   770               for (t = 0; t < entropy_nodes_update; ++t) {
   771                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
   772                 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
   773                 const vp9_prob upd = DIFF_UPDATE_PROB;
   774                 int s;
   775                 int u = 0;
   776                 if (l >= 3 && k == 0)
   777                   continue;
   778                 if (t == PIVOT_NODE)
   779                   s = vp9_prob_diff_update_savings_search_model(
   780                       frame_branch_ct[i][j][k][l][0],
   781                       old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
   782                 else
   783                   s = vp9_prob_diff_update_savings_search(
   784                       frame_branch_ct[i][j][k][l][t],
   785                       *oldp, &newp, upd);
   786                 if (s > 0 && newp != *oldp)
   787                   u = 1;
   788                 vp9_write(bc, u, upd);
   789 #ifdef ENTROPY_STATS
   790                 if (!cpi->dummy_packing)
   791                   ++tree_update_hist[tx_size][i][j][k][l][t][u];
   792 #endif
   793                 if (u) {
   794                   /* send/use new probability */
   795                   vp9_write_prob_diff_update(bc, newp, *oldp);
   796                   *oldp = newp;
   797                 }
   798               }
   799             }
   800           }
   801         }
   802       }
   803       return;
   804     }
   806     case 1:
   807     case 2: {
   808       const int prev_coef_contexts_to_update =
   809           (cpi->sf.use_fast_coef_updates == 2 ?
   810            PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS);
   811       const int coef_band_to_update =
   812           (cpi->sf.use_fast_coef_updates == 2 ?
   813            COEF_BANDS >> 1 : COEF_BANDS);
   814       int updates = 0;
   815       int noupdates_before_first = 0;
   816       for (i = 0; i < BLOCK_TYPES; ++i) {
   817         for (j = 0; j < REF_TYPES; ++j) {
   818           for (k = 0; k < COEF_BANDS; ++k) {
   819             for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
   820               // calc probs and branch cts for this frame only
   821               for (t = 0; t < entropy_nodes_update; ++t) {
   822                 vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
   823                 vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
   824                 int s;
   825                 int u = 0;
   826                 if (l >= 3 && k == 0)
   827                   continue;
   828                 if (l >= prev_coef_contexts_to_update ||
   829                     k >= coef_band_to_update) {
   830                   u = 0;
   831                 } else {
   832                   if (t == PIVOT_NODE)
   833                     s = vp9_prob_diff_update_savings_search_model(
   834                         frame_branch_ct[i][j][k][l][0],
   835                         old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
   836                   else
   837                     s = vp9_prob_diff_update_savings_search(
   838                         frame_branch_ct[i][j][k][l][t],
   839                         *oldp, &newp, upd);
   840                   if (s > 0 && newp != *oldp)
   841                     u = 1;
   842                 }
   843                 updates += u;
   844                 if (u == 0 && updates == 0) {
   845                   noupdates_before_first++;
   846 #ifdef ENTROPY_STATS
   847                   if (!cpi->dummy_packing)
   848                     ++tree_update_hist[tx_size][i][j][k][l][t][u];
   849 #endif
   850                   continue;
   851                 }
   852                 if (u == 1 && updates == 1) {
   853                   int v;
   854                   // first update
   855                   vp9_write_bit(bc, 1);
   856                   for (v = 0; v < noupdates_before_first; ++v)
   857                     vp9_write(bc, 0, upd);
   858                 }
   859                 vp9_write(bc, u, upd);
   860 #ifdef ENTROPY_STATS
   861                 if (!cpi->dummy_packing)
   862                   ++tree_update_hist[tx_size][i][j][k][l][t][u];
   863 #endif
   864                 if (u) {
   865                   /* send/use new probability */
   866                   vp9_write_prob_diff_update(bc, newp, *oldp);
   867                   *oldp = newp;
   868                 }
   869               }
   870             }
   871           }
   872         }
   873       }
   874       if (updates == 0) {
   875         vp9_write_bit(bc, 0);  // no updates
   876       }
   877       return;
   878     }
   880     default:
   881       assert(0);
   882   }
   883 }
   885 static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
   886   const TX_MODE tx_mode = cpi->common.tx_mode;
   888   vp9_clear_system_state();
   890   // Build the cofficient contexts based on counts collected in encode loop
   891   build_coeff_contexts(cpi);
   893   update_coef_probs_common(bc, cpi, TX_4X4);
   895   // do not do this if not even allowed
   896   if (tx_mode > ONLY_4X4)
   897     update_coef_probs_common(bc, cpi, TX_8X8);
   899   if (tx_mode > ALLOW_8X8)
   900     update_coef_probs_common(bc, cpi, TX_16X16);
   902   if (tx_mode > ALLOW_16X16)
   903     update_coef_probs_common(bc, cpi, TX_32X32);
   904 }
   906 static void encode_loopfilter(struct loopfilter *lf,
   907                               struct vp9_write_bit_buffer *wb) {
   908   int i;
   910   // Encode the loop filter level and type
   911   vp9_wb_write_literal(wb, lf->filter_level, 6);
   912   vp9_wb_write_literal(wb, lf->sharpness_level, 3);
   914   // Write out loop filter deltas applied at the MB level based on mode or
   915   // ref frame (if they are enabled).
   916   vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
   918   if (lf->mode_ref_delta_enabled) {
   919     // Do the deltas need to be updated
   920     vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
   921     if (lf->mode_ref_delta_update) {
   922       // Send update
   923       for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
   924         const int delta = lf->ref_deltas[i];
   926         // Frame level data
   927         if (delta != lf->last_ref_deltas[i]) {
   928           lf->last_ref_deltas[i] = delta;
   929           vp9_wb_write_bit(wb, 1);
   931           assert(delta != 0);
   932           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
   933           vp9_wb_write_bit(wb, delta < 0);
   934         } else {
   935           vp9_wb_write_bit(wb, 0);
   936         }
   937       }
   939       // Send update
   940       for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
   941         const int delta = lf->mode_deltas[i];
   942         if (delta != lf->last_mode_deltas[i]) {
   943           lf->last_mode_deltas[i] = delta;
   944           vp9_wb_write_bit(wb, 1);
   946           assert(delta != 0);
   947           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
   948           vp9_wb_write_bit(wb, delta < 0);
   949         } else {
   950           vp9_wb_write_bit(wb, 0);
   951         }
   952       }
   953     }
   954   }
   955 }
   957 static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
   958   if (delta_q != 0) {
   959     vp9_wb_write_bit(wb, 1);
   960     vp9_wb_write_literal(wb, abs(delta_q), 4);
   961     vp9_wb_write_bit(wb, delta_q < 0);
   962   } else {
   963     vp9_wb_write_bit(wb, 0);
   964   }
   965 }
   967 static void encode_quantization(VP9_COMMON *cm,
   968                                 struct vp9_write_bit_buffer *wb) {
   969   vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
   970   write_delta_q(wb, cm->y_dc_delta_q);
   971   write_delta_q(wb, cm->uv_dc_delta_q);
   972   write_delta_q(wb, cm->uv_ac_delta_q);
   973 }
   976 static void encode_segmentation(VP9_COMP *cpi,
   977                                 struct vp9_write_bit_buffer *wb) {
   978   int i, j;
   980   struct segmentation *seg = &cpi->common.seg;
   982   vp9_wb_write_bit(wb, seg->enabled);
   983   if (!seg->enabled)
   984     return;
   986   // Segmentation map
   987   vp9_wb_write_bit(wb, seg->update_map);
   988   if (seg->update_map) {
   989     // Select the coding strategy (temporal or spatial)
   990     vp9_choose_segmap_coding_method(cpi);
   991     // Write out probabilities used to decode unpredicted  macro-block segments
   992     for (i = 0; i < SEG_TREE_PROBS; i++) {
   993       const int prob = seg->tree_probs[i];
   994       const int update = prob != MAX_PROB;
   995       vp9_wb_write_bit(wb, update);
   996       if (update)
   997         vp9_wb_write_literal(wb, prob, 8);
   998     }
  1000     // Write out the chosen coding method.
  1001     vp9_wb_write_bit(wb, seg->temporal_update);
  1002     if (seg->temporal_update) {
  1003       for (i = 0; i < PREDICTION_PROBS; i++) {
  1004         const int prob = seg->pred_probs[i];
  1005         const int update = prob != MAX_PROB;
  1006         vp9_wb_write_bit(wb, update);
  1007         if (update)
  1008           vp9_wb_write_literal(wb, prob, 8);
  1013   // Segmentation data
  1014   vp9_wb_write_bit(wb, seg->update_data);
  1015   if (seg->update_data) {
  1016     vp9_wb_write_bit(wb, seg->abs_delta);
  1018     for (i = 0; i < MAX_SEGMENTS; i++) {
  1019       for (j = 0; j < SEG_LVL_MAX; j++) {
  1020         const int active = vp9_segfeature_active(seg, i, j);
  1021         vp9_wb_write_bit(wb, active);
  1022         if (active) {
  1023           const int data = vp9_get_segdata(seg, i, j);
  1024           const int data_max = vp9_seg_feature_data_max(j);
  1026           if (vp9_is_segfeature_signed(j)) {
  1027             vp9_encode_unsigned_max(wb, abs(data), data_max);
  1028             vp9_wb_write_bit(wb, data < 0);
  1029           } else {
  1030             vp9_encode_unsigned_max(wb, data, data_max);
  1039 static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) {
  1040   VP9_COMMON *const cm = &cpi->common;
  1042   // Mode
  1043   vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
  1044   if (cm->tx_mode >= ALLOW_32X32)
  1045     vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
  1047   // Probabilities
  1048   if (cm->tx_mode == TX_MODE_SELECT) {
  1049     int i, j;
  1050     unsigned int ct_8x8p[TX_SIZES - 3][2];
  1051     unsigned int ct_16x16p[TX_SIZES - 2][2];
  1052     unsigned int ct_32x32p[TX_SIZES - 1][2];
  1055     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
  1056       tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
  1057       for (j = 0; j < TX_SIZES - 3; j++)
  1058         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
  1061     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
  1062       tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
  1063       for (j = 0; j < TX_SIZES - 2; j++)
  1064         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
  1065                                   ct_16x16p[j]);
  1068     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
  1069       tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
  1070       for (j = 0; j < TX_SIZES - 1; j++)
  1071         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
  1072                                   ct_32x32p[j]);
  1074 #ifdef MODE_STATS
  1075     if (!cpi->dummy_packing)
  1076       update_tx_count_stats(cm);
  1077 #endif
  1081 static void write_interp_filter_type(INTERPOLATION_TYPE type,
  1082                                      struct vp9_write_bit_buffer *wb) {
  1083   const int type_to_literal[] = { 1, 0, 2, 3 };
  1085   vp9_wb_write_bit(wb, type == SWITCHABLE);
  1086   if (type != SWITCHABLE)
  1087     vp9_wb_write_literal(wb, type_to_literal[type], 2);
  1090 static void fix_mcomp_filter_type(VP9_COMP *cpi) {
  1091   VP9_COMMON *const cm = &cpi->common;
  1093   if (cm->mcomp_filter_type == SWITCHABLE) {
  1094     // Check to see if only one of the filters is actually used
  1095     int count[SWITCHABLE_FILTERS];
  1096     int i, j, c = 0;
  1097     for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
  1098       count[i] = 0;
  1099       for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
  1100         count[i] += cm->counts.switchable_interp[j][i];
  1101       c += (count[i] > 0);
  1103     if (c == 1) {
  1104       // Only one filter is used. So set the filter at frame level
  1105       for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
  1106         if (count[i]) {
  1107           cm->mcomp_filter_type = i;
  1108           break;
  1115 static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
  1116   int min_log2_tile_cols, max_log2_tile_cols, ones;
  1117   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
  1119   // columns
  1120   ones = cm->log2_tile_cols - min_log2_tile_cols;
  1121   while (ones--)
  1122     vp9_wb_write_bit(wb, 1);
  1124   if (cm->log2_tile_cols < max_log2_tile_cols)
  1125     vp9_wb_write_bit(wb, 0);
  1127   // rows
  1128   vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
  1129   if (cm->log2_tile_rows != 0)
  1130     vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
  1133 static int get_refresh_mask(VP9_COMP *cpi) {
  1134     // Should the GF or ARF be updated using the transmitted frame or buffer
  1135 #if CONFIG_MULTIPLE_ARF
  1136     if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
  1137         !cpi->refresh_alt_ref_frame) {
  1138 #else
  1139     if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
  1140         !cpi->use_svc) {
  1141 #endif
  1142       // Preserve the previously existing golden frame and update the frame in
  1143       // the alt ref slot instead. This is highly specific to the use of
  1144       // alt-ref as a forward reference, and this needs to be generalized as
  1145       // other uses are implemented (like RTC/temporal scaling)
  1146       //
  1147       // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
  1148       // that happens in vp9_onyx_if.c:update_reference_frames() so that it can
  1149       // be done outside of the recode loop.
  1150       return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
  1151              (cpi->refresh_golden_frame << cpi->alt_fb_idx);
  1152     } else {
  1153       int arf_idx = cpi->alt_fb_idx;
  1154 #if CONFIG_MULTIPLE_ARF
  1155       // Determine which ARF buffer to use to encode this ARF frame.
  1156       if (cpi->multi_arf_enabled) {
  1157         int sn = cpi->sequence_number;
  1158         arf_idx = (cpi->frame_coding_order[sn] < 0) ?
  1159             cpi->arf_buffer_idx[sn + 1] :
  1160             cpi->arf_buffer_idx[sn];
  1162 #endif
  1163       return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
  1164              (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
  1165              (cpi->refresh_alt_ref_frame << arf_idx);
  1169 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
  1170   VP9_COMMON *const cm = &cpi->common;
  1171   vp9_writer residual_bc;
  1173   int tile_row, tile_col;
  1174   TOKENEXTRA *tok[4][1 << 6], *tok_end;
  1175   size_t total_size = 0;
  1176   const int tile_cols = 1 << cm->log2_tile_cols;
  1177   const int tile_rows = 1 << cm->log2_tile_rows;
  1179   vpx_memset(cpi->above_seg_context, 0, sizeof(*cpi->above_seg_context) *
  1180              mi_cols_aligned_to_sb(cm->mi_cols));
  1182   tok[0][0] = cpi->tok;
  1183   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
  1184     if (tile_row)
  1185       tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
  1186                          cpi->tok_count[tile_row - 1][tile_cols - 1];
  1188     for (tile_col = 1; tile_col < tile_cols; tile_col++)
  1189       tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
  1190                                 cpi->tok_count[tile_row][tile_col - 1];
  1193   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
  1194     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
  1195       TileInfo tile;
  1197       vp9_tile_init(&tile, cm, tile_row, tile_col);
  1198       tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
  1200       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
  1201         vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
  1202       else
  1203         vp9_start_encode(&residual_bc, data_ptr + total_size);
  1205       write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
  1206       assert(tok[tile_row][tile_col] == tok_end);
  1207       vp9_stop_encode(&residual_bc);
  1208       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
  1209         // size of this tile
  1210         write_be32(data_ptr + total_size, residual_bc.pos);
  1211         total_size += 4;
  1214       total_size += residual_bc.pos;
  1218   return total_size;
  1221 static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) {
  1222   VP9_COMMON *const cm = &cpi->common;
  1224   const int scaling_active = cm->width != cm->display_width ||
  1225                              cm->height != cm->display_height;
  1226   vp9_wb_write_bit(wb, scaling_active);
  1227   if (scaling_active) {
  1228     vp9_wb_write_literal(wb, cm->display_width - 1, 16);
  1229     vp9_wb_write_literal(wb, cm->display_height - 1, 16);
  1233 static void write_frame_size(VP9_COMP *cpi,
  1234                              struct vp9_write_bit_buffer *wb) {
  1235   VP9_COMMON *const cm = &cpi->common;
  1236   vp9_wb_write_literal(wb, cm->width - 1, 16);
  1237   vp9_wb_write_literal(wb, cm->height - 1, 16);
  1239   write_display_size(cpi, wb);
  1242 static void write_frame_size_with_refs(VP9_COMP *cpi,
  1243                                        struct vp9_write_bit_buffer *wb) {
  1244   VP9_COMMON *const cm = &cpi->common;
  1245   int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
  1246                                       cpi->alt_fb_idx};
  1247   int i, found = 0;
  1249   for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
  1250     YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
  1251     found = cm->width == cfg->y_crop_width &&
  1252             cm->height == cfg->y_crop_height;
  1254     // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it
  1255     // in a better way.
  1256     if (cpi->use_svc) {
  1257       found = 0;
  1259     vp9_wb_write_bit(wb, found);
  1260     if (found) {
  1261       break;
  1265   if (!found) {
  1266     vp9_wb_write_literal(wb, cm->width - 1, 16);
  1267     vp9_wb_write_literal(wb, cm->height - 1, 16);
  1270   write_display_size(cpi, wb);
  1273 static void write_sync_code(struct vp9_write_bit_buffer *wb) {
  1274   vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
  1275   vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
  1276   vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
  1279 static void write_uncompressed_header(VP9_COMP *cpi,
  1280                                       struct vp9_write_bit_buffer *wb) {
  1281   VP9_COMMON *const cm = &cpi->common;
  1283   vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
  1285   // bitstream version.
  1286   // 00 - profile 0. 4:2:0 only
  1287   // 10 - profile 1. adds 4:4:4, 4:2:2, alpha
  1288   vp9_wb_write_bit(wb, cm->version);
  1289   vp9_wb_write_bit(wb, 0);
  1291   vp9_wb_write_bit(wb, 0);
  1292   vp9_wb_write_bit(wb, cm->frame_type);
  1293   vp9_wb_write_bit(wb, cm->show_frame);
  1294   vp9_wb_write_bit(wb, cm->error_resilient_mode);
  1296   if (cm->frame_type == KEY_FRAME) {
  1297     const COLOR_SPACE cs = UNKNOWN;
  1298     write_sync_code(wb);
  1299     vp9_wb_write_literal(wb, cs, 3);
  1300     if (cs != SRGB) {
  1301       vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
  1302       if (cm->version == 1) {
  1303         vp9_wb_write_bit(wb, cm->subsampling_x);
  1304         vp9_wb_write_bit(wb, cm->subsampling_y);
  1305         vp9_wb_write_bit(wb, 0);  // has extra plane
  1307     } else {
  1308       assert(cm->version == 1);
  1309       vp9_wb_write_bit(wb, 0);  // has extra plane
  1312     write_frame_size(cpi, wb);
  1313   } else {
  1314     const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
  1315                                               cpi->alt_fb_idx};
  1316     if (!cm->show_frame)
  1317       vp9_wb_write_bit(wb, cm->intra_only);
  1319     if (!cm->error_resilient_mode)
  1320       vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
  1322     if (cm->intra_only) {
  1323       write_sync_code(wb);
  1325       vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
  1326       write_frame_size(cpi, wb);
  1327     } else {
  1328       int i;
  1329       vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES);
  1330       for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
  1331         vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2);
  1332         vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]);
  1335       write_frame_size_with_refs(cpi, wb);
  1337       vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
  1339       fix_mcomp_filter_type(cpi);
  1340       write_interp_filter_type(cm->mcomp_filter_type, wb);
  1344   if (!cm->error_resilient_mode) {
  1345     vp9_wb_write_bit(wb, cm->refresh_frame_context);
  1346     vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
  1349   vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2);
  1351   encode_loopfilter(&cm->lf, wb);
  1352   encode_quantization(cm, wb);
  1353   encode_segmentation(cpi, wb);
  1355   write_tile_info(cm, wb);
  1358 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
  1359   VP9_COMMON *const cm = &cpi->common;
  1360   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
  1361   FRAME_CONTEXT *const fc = &cm->fc;
  1362   vp9_writer header_bc;
  1364   vp9_start_encode(&header_bc, data);
  1366   if (xd->lossless)
  1367     cm->tx_mode = ONLY_4X4;
  1368   else
  1369     encode_txfm_probs(cpi, &header_bc);
  1371   update_coef_probs(cpi, &header_bc);
  1373 #ifdef ENTROPY_STATS
  1374   active_section = 2;
  1375 #endif
  1377   vp9_update_skip_probs(cpi, &header_bc);
  1379   if (!frame_is_intra_only(cm)) {
  1380     int i;
  1381 #ifdef ENTROPY_STATS
  1382     active_section = 1;
  1383 #endif
  1385     update_inter_mode_probs(cm, &header_bc);
  1386     vp9_zero(cm->counts.inter_mode);
  1388     if (cm->mcomp_filter_type == SWITCHABLE)
  1389       update_switchable_interp_probs(cpi, &header_bc);
  1391     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
  1392       vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
  1393                                 cpi->intra_inter_count[i]);
  1395     if (cm->allow_comp_inter_inter) {
  1396       const int comp_pred_mode = cpi->common.comp_pred_mode;
  1397       const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY;
  1398       const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION;
  1400       vp9_write_bit(&header_bc, use_compound_pred);
  1401       if (use_compound_pred) {
  1402         vp9_write_bit(&header_bc, use_hybrid_pred);
  1403         if (use_hybrid_pred)
  1404           for (i = 0; i < COMP_INTER_CONTEXTS; i++)
  1405             vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
  1406                                       cpi->comp_inter_count[i]);
  1410     if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
  1411       for (i = 0; i < REF_CONTEXTS; i++) {
  1412         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
  1413                                   cpi->single_ref_count[i][0]);
  1414         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
  1415                                   cpi->single_ref_count[i][1]);
  1419     if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
  1420       for (i = 0; i < REF_CONTEXTS; i++)
  1421         vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
  1422                                   cpi->comp_ref_count[i]);
  1424     update_mbintra_mode_probs(cpi, &header_bc);
  1426     for (i = 0; i < PARTITION_CONTEXTS; ++i) {
  1427       unsigned int bct[PARTITION_TYPES - 1][2];
  1428       update_mode(&header_bc, PARTITION_TYPES, vp9_partition_tree,
  1429                   fc->partition_prob[i], bct,
  1430                   (unsigned int *)cpi->partition_count[i]);
  1433     vp9_write_nmv_probs(cpi, cm->allow_high_precision_mv, &header_bc);
  1436   vp9_stop_encode(&header_bc);
  1437   assert(header_bc.pos <= 0xffff);
  1439   return header_bc.pos;
  1442 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
  1443   uint8_t *data = dest;
  1444   size_t first_part_size;
  1445   struct vp9_write_bit_buffer wb = {data, 0};
  1446   struct vp9_write_bit_buffer saved_wb;
  1448   write_uncompressed_header(cpi, &wb);
  1449   saved_wb = wb;
  1450   vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
  1452   data += vp9_rb_bytes_written(&wb);
  1454   vp9_compute_update_table();
  1456 #ifdef ENTROPY_STATS
  1457   if (cm->frame_type == INTER_FRAME)
  1458     active_section = 0;
  1459   else
  1460     active_section = 7;
  1461 #endif
  1463   vp9_clear_system_state();  // __asm emms;
  1465   first_part_size = write_compressed_header(cpi, data);
  1466   data += first_part_size;
  1467   vp9_wb_write_literal(&saved_wb, first_part_size, 16);
  1469   data += encode_tiles(cpi, data);
  1471   *size = data - dest;
  1474 #ifdef ENTROPY_STATS
  1475 static void print_tree_update_for_type(FILE *f,
  1476                                        vp9_coeff_stats *tree_update_hist,
  1477                                        int block_types, const char *header) {
  1478   int i, j, k, l, m;
  1480   fprintf(f, "const vp9_coeff_prob %s = {\n", header);
  1481   for (i = 0; i < block_types; i++) {
  1482     fprintf(f, "  { \n");
  1483     for (j = 0; j < REF_TYPES; j++) {
  1484       fprintf(f, "  { \n");
  1485       for (k = 0; k < COEF_BANDS; k++) {
  1486         fprintf(f, "    {\n");
  1487         for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
  1488           fprintf(f, "      {");
  1489           for (m = 0; m < ENTROPY_NODES; m++) {
  1490             fprintf(f, "%3d, ",
  1491                     get_binary_prob(tree_update_hist[i][j][k][l][m][0],
  1492                                     tree_update_hist[i][j][k][l][m][1]));
  1494           fprintf(f, "},\n");
  1496         fprintf(f, "},\n");
  1498       fprintf(f, "    },\n");
  1500     fprintf(f, "  },\n");
  1502   fprintf(f, "};\n");
  1505 void print_tree_update_probs() {
  1506   FILE *f = fopen("coefupdprob.h", "w");
  1507   fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
  1509   print_tree_update_for_type(f, tree_update_hist[TX_4X4],   BLOCK_TYPES,
  1510                              "vp9_coef_update_probs_4x4[BLOCK_TYPES]");
  1511   print_tree_update_for_type(f, tree_update_hist[TX_8X8],   BLOCK_TYPES,
  1512                              "vp9_coef_update_probs_8x8[BLOCK_TYPES]");
  1513   print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES,
  1514                              "vp9_coef_update_probs_16x16[BLOCK_TYPES]");
  1515   print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES,
  1516                              "vp9_coef_update_probs_32x32[BLOCK_TYPES]");
  1518   fclose(f);
  1519   f = fopen("treeupdate.bin", "wb");
  1520   fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
  1521   fclose(f);
  1523 #endif

mercurial