|
1 /* |
|
2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
|
3 * |
|
4 * Use of this source code is governed by a BSD-style license |
|
5 * that can be found in the LICENSE file in the root of the source |
|
6 * tree. An additional intellectual property rights grant can be found |
|
7 * in the file PATENTS. All contributing project authors may |
|
8 * be found in the AUTHORS file in the root of the source tree. |
|
9 */ |
|
10 |
|
11 |
|
12 #include <limits.h> |
|
13 #include "vpx_mem/vpx_mem.h" |
|
14 #include "vp9/encoder/vp9_segmentation.h" |
|
15 #include "vp9/common/vp9_pred_common.h" |
|
16 #include "vp9/common/vp9_tile_common.h" |
|
17 |
|
18 void vp9_enable_segmentation(VP9_PTR ptr) { |
|
19 VP9_COMP *cpi = (VP9_COMP *)ptr; |
|
20 struct segmentation *const seg = &cpi->common.seg; |
|
21 |
|
22 seg->enabled = 1; |
|
23 seg->update_map = 1; |
|
24 seg->update_data = 1; |
|
25 } |
|
26 |
|
27 void vp9_disable_segmentation(VP9_PTR ptr) { |
|
28 VP9_COMP *cpi = (VP9_COMP *)ptr; |
|
29 struct segmentation *const seg = &cpi->common.seg; |
|
30 seg->enabled = 0; |
|
31 } |
|
32 |
|
33 void vp9_set_segmentation_map(VP9_PTR ptr, |
|
34 unsigned char *segmentation_map) { |
|
35 VP9_COMP *cpi = (VP9_COMP *)ptr; |
|
36 struct segmentation *const seg = &cpi->common.seg; |
|
37 |
|
38 // Copy in the new segmentation map |
|
39 vpx_memcpy(cpi->segmentation_map, segmentation_map, |
|
40 (cpi->common.mi_rows * cpi->common.mi_cols)); |
|
41 |
|
42 // Signal that the map should be updated. |
|
43 seg->update_map = 1; |
|
44 seg->update_data = 1; |
|
45 } |
|
46 |
|
47 void vp9_set_segment_data(VP9_PTR ptr, |
|
48 signed char *feature_data, |
|
49 unsigned char abs_delta) { |
|
50 VP9_COMP *cpi = (VP9_COMP *)ptr; |
|
51 struct segmentation *const seg = &cpi->common.seg; |
|
52 |
|
53 seg->abs_delta = abs_delta; |
|
54 |
|
55 vpx_memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data)); |
|
56 |
|
57 // TBD ?? Set the feature mask |
|
58 // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0, |
|
59 // sizeof(cpi->mb.e_mbd.segment_feature_mask)); |
|
60 } |
|
61 |
|
62 // Based on set of segment counts calculate a probability tree |
|
63 static void calc_segtree_probs(int *segcounts, vp9_prob *segment_tree_probs) { |
|
64 // Work out probabilities of each segment |
|
65 const int c01 = segcounts[0] + segcounts[1]; |
|
66 const int c23 = segcounts[2] + segcounts[3]; |
|
67 const int c45 = segcounts[4] + segcounts[5]; |
|
68 const int c67 = segcounts[6] + segcounts[7]; |
|
69 |
|
70 segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67); |
|
71 segment_tree_probs[1] = get_binary_prob(c01, c23); |
|
72 segment_tree_probs[2] = get_binary_prob(c45, c67); |
|
73 segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]); |
|
74 segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]); |
|
75 segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]); |
|
76 segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]); |
|
77 } |
|
78 |
|
79 // Based on set of segment counts and probabilities calculate a cost estimate |
|
80 static int cost_segmap(int *segcounts, vp9_prob *probs) { |
|
81 const int c01 = segcounts[0] + segcounts[1]; |
|
82 const int c23 = segcounts[2] + segcounts[3]; |
|
83 const int c45 = segcounts[4] + segcounts[5]; |
|
84 const int c67 = segcounts[6] + segcounts[7]; |
|
85 const int c0123 = c01 + c23; |
|
86 const int c4567 = c45 + c67; |
|
87 |
|
88 // Cost the top node of the tree |
|
89 int cost = c0123 * vp9_cost_zero(probs[0]) + |
|
90 c4567 * vp9_cost_one(probs[0]); |
|
91 |
|
92 // Cost subsequent levels |
|
93 if (c0123 > 0) { |
|
94 cost += c01 * vp9_cost_zero(probs[1]) + |
|
95 c23 * vp9_cost_one(probs[1]); |
|
96 |
|
97 if (c01 > 0) |
|
98 cost += segcounts[0] * vp9_cost_zero(probs[3]) + |
|
99 segcounts[1] * vp9_cost_one(probs[3]); |
|
100 if (c23 > 0) |
|
101 cost += segcounts[2] * vp9_cost_zero(probs[4]) + |
|
102 segcounts[3] * vp9_cost_one(probs[4]); |
|
103 } |
|
104 |
|
105 if (c4567 > 0) { |
|
106 cost += c45 * vp9_cost_zero(probs[2]) + |
|
107 c67 * vp9_cost_one(probs[2]); |
|
108 |
|
109 if (c45 > 0) |
|
110 cost += segcounts[4] * vp9_cost_zero(probs[5]) + |
|
111 segcounts[5] * vp9_cost_one(probs[5]); |
|
112 if (c67 > 0) |
|
113 cost += segcounts[6] * vp9_cost_zero(probs[6]) + |
|
114 segcounts[7] * vp9_cost_one(probs[6]); |
|
115 } |
|
116 |
|
117 return cost; |
|
118 } |
|
119 |
|
120 static void count_segs(VP9_COMP *cpi, const TileInfo *const tile, |
|
121 MODE_INFO **mi_8x8, |
|
122 int *no_pred_segcounts, |
|
123 int (*temporal_predictor_count)[2], |
|
124 int *t_unpred_seg_counts, |
|
125 int bw, int bh, int mi_row, int mi_col) { |
|
126 VP9_COMMON *const cm = &cpi->common; |
|
127 MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
|
128 int segment_id; |
|
129 |
|
130 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
|
131 return; |
|
132 |
|
133 xd->mi_8x8 = mi_8x8; |
|
134 segment_id = xd->mi_8x8[0]->mbmi.segment_id; |
|
135 |
|
136 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); |
|
137 |
|
138 // Count the number of hits on each segment with no prediction |
|
139 no_pred_segcounts[segment_id]++; |
|
140 |
|
141 // Temporal prediction not allowed on key frames |
|
142 if (cm->frame_type != KEY_FRAME) { |
|
143 const BLOCK_SIZE bsize = mi_8x8[0]->mbmi.sb_type; |
|
144 // Test to see if the segment id matches the predicted value. |
|
145 const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map, |
|
146 bsize, mi_row, mi_col); |
|
147 const int pred_flag = pred_segment_id == segment_id; |
|
148 const int pred_context = vp9_get_pred_context_seg_id(xd); |
|
149 |
|
150 // Store the prediction status for this mb and update counts |
|
151 // as appropriate |
|
152 vp9_set_pred_flag_seg_id(xd, pred_flag); |
|
153 temporal_predictor_count[pred_context][pred_flag]++; |
|
154 |
|
155 if (!pred_flag) |
|
156 // Update the "unpredicted" segment count |
|
157 t_unpred_seg_counts[segment_id]++; |
|
158 } |
|
159 } |
|
160 |
|
161 static void count_segs_sb(VP9_COMP *cpi, const TileInfo *const tile, |
|
162 MODE_INFO **mi_8x8, |
|
163 int *no_pred_segcounts, |
|
164 int (*temporal_predictor_count)[2], |
|
165 int *t_unpred_seg_counts, |
|
166 int mi_row, int mi_col, |
|
167 BLOCK_SIZE bsize) { |
|
168 const VP9_COMMON *const cm = &cpi->common; |
|
169 const int mis = cm->mode_info_stride; |
|
170 int bw, bh; |
|
171 const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2; |
|
172 |
|
173 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
|
174 return; |
|
175 |
|
176 bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type]; |
|
177 bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type]; |
|
178 |
|
179 if (bw == bs && bh == bs) { |
|
180 count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count, |
|
181 t_unpred_seg_counts, bs, bs, mi_row, mi_col); |
|
182 } else if (bw == bs && bh < bs) { |
|
183 count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count, |
|
184 t_unpred_seg_counts, bs, hbs, mi_row, mi_col); |
|
185 count_segs(cpi, tile, mi_8x8 + hbs * mis, no_pred_segcounts, |
|
186 temporal_predictor_count, t_unpred_seg_counts, bs, hbs, |
|
187 mi_row + hbs, mi_col); |
|
188 } else if (bw < bs && bh == bs) { |
|
189 count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count, |
|
190 t_unpred_seg_counts, hbs, bs, mi_row, mi_col); |
|
191 count_segs(cpi, tile, mi_8x8 + hbs, |
|
192 no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, |
|
193 hbs, bs, mi_row, mi_col + hbs); |
|
194 } else { |
|
195 const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; |
|
196 int n; |
|
197 |
|
198 assert(bw < bs && bh < bs); |
|
199 |
|
200 for (n = 0; n < 4; n++) { |
|
201 const int mi_dc = hbs * (n & 1); |
|
202 const int mi_dr = hbs * (n >> 1); |
|
203 |
|
204 count_segs_sb(cpi, tile, &mi_8x8[mi_dr * mis + mi_dc], |
|
205 no_pred_segcounts, temporal_predictor_count, |
|
206 t_unpred_seg_counts, |
|
207 mi_row + mi_dr, mi_col + mi_dc, subsize); |
|
208 } |
|
209 } |
|
210 } |
|
211 |
|
212 void vp9_choose_segmap_coding_method(VP9_COMP *cpi) { |
|
213 VP9_COMMON *const cm = &cpi->common; |
|
214 struct segmentation *seg = &cm->seg; |
|
215 |
|
216 int no_pred_cost; |
|
217 int t_pred_cost = INT_MAX; |
|
218 |
|
219 int i, tile_col, mi_row, mi_col; |
|
220 |
|
221 int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } }; |
|
222 int no_pred_segcounts[MAX_SEGMENTS] = { 0 }; |
|
223 int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 }; |
|
224 |
|
225 vp9_prob no_pred_tree[SEG_TREE_PROBS]; |
|
226 vp9_prob t_pred_tree[SEG_TREE_PROBS]; |
|
227 vp9_prob t_nopred_prob[PREDICTION_PROBS]; |
|
228 |
|
229 const int mis = cm->mode_info_stride; |
|
230 MODE_INFO **mi_ptr, **mi; |
|
231 |
|
232 // Set default state for the segment tree probabilities and the |
|
233 // temporal coding probabilities |
|
234 vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs)); |
|
235 vpx_memset(seg->pred_probs, 255, sizeof(seg->pred_probs)); |
|
236 |
|
237 // First of all generate stats regarding how well the last segment map |
|
238 // predicts this one |
|
239 for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) { |
|
240 TileInfo tile; |
|
241 |
|
242 vp9_tile_init(&tile, cm, 0, tile_col); |
|
243 mi_ptr = cm->mi_grid_visible + tile.mi_col_start; |
|
244 for (mi_row = 0; mi_row < cm->mi_rows; |
|
245 mi_row += 8, mi_ptr += 8 * mis) { |
|
246 mi = mi_ptr; |
|
247 for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; |
|
248 mi_col += 8, mi += 8) |
|
249 count_segs_sb(cpi, &tile, mi, no_pred_segcounts, |
|
250 temporal_predictor_count, t_unpred_seg_counts, |
|
251 mi_row, mi_col, BLOCK_64X64); |
|
252 } |
|
253 } |
|
254 |
|
255 // Work out probability tree for coding segments without prediction |
|
256 // and the cost. |
|
257 calc_segtree_probs(no_pred_segcounts, no_pred_tree); |
|
258 no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree); |
|
259 |
|
260 // Key frames cannot use temporal prediction |
|
261 if (!frame_is_intra_only(cm)) { |
|
262 // Work out probability tree for coding those segments not |
|
263 // predicted using the temporal method and the cost. |
|
264 calc_segtree_probs(t_unpred_seg_counts, t_pred_tree); |
|
265 t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree); |
|
266 |
|
267 // Add in the cost of the signaling for each prediction context. |
|
268 for (i = 0; i < PREDICTION_PROBS; i++) { |
|
269 const int count0 = temporal_predictor_count[i][0]; |
|
270 const int count1 = temporal_predictor_count[i][1]; |
|
271 |
|
272 t_nopred_prob[i] = get_binary_prob(count0, count1); |
|
273 |
|
274 // Add in the predictor signaling cost |
|
275 t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) + |
|
276 count1 * vp9_cost_one(t_nopred_prob[i]); |
|
277 } |
|
278 } |
|
279 |
|
280 // Now choose which coding method to use. |
|
281 if (t_pred_cost < no_pred_cost) { |
|
282 seg->temporal_update = 1; |
|
283 vpx_memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree)); |
|
284 vpx_memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob)); |
|
285 } else { |
|
286 seg->temporal_update = 0; |
|
287 vpx_memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree)); |
|
288 } |
|
289 } |