1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/media/libvpx/vp9/encoder/vp9_segmentation.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,289 @@ 1.4 +/* 1.5 + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license 1.8 + * that can be found in the LICENSE file in the root of the source 1.9 + * tree. An additional intellectual property rights grant can be found 1.10 + * in the file PATENTS. All contributing project authors may 1.11 + * be found in the AUTHORS file in the root of the source tree. 1.12 + */ 1.13 + 1.14 + 1.15 +#include <limits.h> 1.16 +#include "vpx_mem/vpx_mem.h" 1.17 +#include "vp9/encoder/vp9_segmentation.h" 1.18 +#include "vp9/common/vp9_pred_common.h" 1.19 +#include "vp9/common/vp9_tile_common.h" 1.20 + 1.21 +void vp9_enable_segmentation(VP9_PTR ptr) { 1.22 + VP9_COMP *cpi = (VP9_COMP *)ptr; 1.23 + struct segmentation *const seg = &cpi->common.seg; 1.24 + 1.25 + seg->enabled = 1; 1.26 + seg->update_map = 1; 1.27 + seg->update_data = 1; 1.28 +} 1.29 + 1.30 +void vp9_disable_segmentation(VP9_PTR ptr) { 1.31 + VP9_COMP *cpi = (VP9_COMP *)ptr; 1.32 + struct segmentation *const seg = &cpi->common.seg; 1.33 + seg->enabled = 0; 1.34 +} 1.35 + 1.36 +void vp9_set_segmentation_map(VP9_PTR ptr, 1.37 + unsigned char *segmentation_map) { 1.38 + VP9_COMP *cpi = (VP9_COMP *)ptr; 1.39 + struct segmentation *const seg = &cpi->common.seg; 1.40 + 1.41 + // Copy in the new segmentation map 1.42 + vpx_memcpy(cpi->segmentation_map, segmentation_map, 1.43 + (cpi->common.mi_rows * cpi->common.mi_cols)); 1.44 + 1.45 + // Signal that the map should be updated. 1.46 + seg->update_map = 1; 1.47 + seg->update_data = 1; 1.48 +} 1.49 + 1.50 +void vp9_set_segment_data(VP9_PTR ptr, 1.51 + signed char *feature_data, 1.52 + unsigned char abs_delta) { 1.53 + VP9_COMP *cpi = (VP9_COMP *)ptr; 1.54 + struct segmentation *const seg = &cpi->common.seg; 1.55 + 1.56 + seg->abs_delta = abs_delta; 1.57 + 1.58 + vpx_memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data)); 1.59 + 1.60 + // TBD ?? Set the feature mask 1.61 + // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0, 1.62 + // sizeof(cpi->mb.e_mbd.segment_feature_mask)); 1.63 +} 1.64 + 1.65 +// Based on set of segment counts calculate a probability tree 1.66 +static void calc_segtree_probs(int *segcounts, vp9_prob *segment_tree_probs) { 1.67 + // Work out probabilities of each segment 1.68 + const int c01 = segcounts[0] + segcounts[1]; 1.69 + const int c23 = segcounts[2] + segcounts[3]; 1.70 + const int c45 = segcounts[4] + segcounts[5]; 1.71 + const int c67 = segcounts[6] + segcounts[7]; 1.72 + 1.73 + segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67); 1.74 + segment_tree_probs[1] = get_binary_prob(c01, c23); 1.75 + segment_tree_probs[2] = get_binary_prob(c45, c67); 1.76 + segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]); 1.77 + segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]); 1.78 + segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]); 1.79 + segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]); 1.80 +} 1.81 + 1.82 +// Based on set of segment counts and probabilities calculate a cost estimate 1.83 +static int cost_segmap(int *segcounts, vp9_prob *probs) { 1.84 + const int c01 = segcounts[0] + segcounts[1]; 1.85 + const int c23 = segcounts[2] + segcounts[3]; 1.86 + const int c45 = segcounts[4] + segcounts[5]; 1.87 + const int c67 = segcounts[6] + segcounts[7]; 1.88 + const int c0123 = c01 + c23; 1.89 + const int c4567 = c45 + c67; 1.90 + 1.91 + // Cost the top node of the tree 1.92 + int cost = c0123 * vp9_cost_zero(probs[0]) + 1.93 + c4567 * vp9_cost_one(probs[0]); 1.94 + 1.95 + // Cost subsequent levels 1.96 + if (c0123 > 0) { 1.97 + cost += c01 * vp9_cost_zero(probs[1]) + 1.98 + c23 * vp9_cost_one(probs[1]); 1.99 + 1.100 + if (c01 > 0) 1.101 + cost += segcounts[0] * vp9_cost_zero(probs[3]) + 1.102 + segcounts[1] * vp9_cost_one(probs[3]); 1.103 + if (c23 > 0) 1.104 + cost += segcounts[2] * vp9_cost_zero(probs[4]) + 1.105 + segcounts[3] * vp9_cost_one(probs[4]); 1.106 + } 1.107 + 1.108 + if (c4567 > 0) { 1.109 + cost += c45 * vp9_cost_zero(probs[2]) + 1.110 + c67 * vp9_cost_one(probs[2]); 1.111 + 1.112 + if (c45 > 0) 1.113 + cost += segcounts[4] * vp9_cost_zero(probs[5]) + 1.114 + segcounts[5] * vp9_cost_one(probs[5]); 1.115 + if (c67 > 0) 1.116 + cost += segcounts[6] * vp9_cost_zero(probs[6]) + 1.117 + segcounts[7] * vp9_cost_one(probs[6]); 1.118 + } 1.119 + 1.120 + return cost; 1.121 +} 1.122 + 1.123 +static void count_segs(VP9_COMP *cpi, const TileInfo *const tile, 1.124 + MODE_INFO **mi_8x8, 1.125 + int *no_pred_segcounts, 1.126 + int (*temporal_predictor_count)[2], 1.127 + int *t_unpred_seg_counts, 1.128 + int bw, int bh, int mi_row, int mi_col) { 1.129 + VP9_COMMON *const cm = &cpi->common; 1.130 + MACROBLOCKD *const xd = &cpi->mb.e_mbd; 1.131 + int segment_id; 1.132 + 1.133 + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) 1.134 + return; 1.135 + 1.136 + xd->mi_8x8 = mi_8x8; 1.137 + segment_id = xd->mi_8x8[0]->mbmi.segment_id; 1.138 + 1.139 + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); 1.140 + 1.141 + // Count the number of hits on each segment with no prediction 1.142 + no_pred_segcounts[segment_id]++; 1.143 + 1.144 + // Temporal prediction not allowed on key frames 1.145 + if (cm->frame_type != KEY_FRAME) { 1.146 + const BLOCK_SIZE bsize = mi_8x8[0]->mbmi.sb_type; 1.147 + // Test to see if the segment id matches the predicted value. 1.148 + const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map, 1.149 + bsize, mi_row, mi_col); 1.150 + const int pred_flag = pred_segment_id == segment_id; 1.151 + const int pred_context = vp9_get_pred_context_seg_id(xd); 1.152 + 1.153 + // Store the prediction status for this mb and update counts 1.154 + // as appropriate 1.155 + vp9_set_pred_flag_seg_id(xd, pred_flag); 1.156 + temporal_predictor_count[pred_context][pred_flag]++; 1.157 + 1.158 + if (!pred_flag) 1.159 + // Update the "unpredicted" segment count 1.160 + t_unpred_seg_counts[segment_id]++; 1.161 + } 1.162 +} 1.163 + 1.164 +static void count_segs_sb(VP9_COMP *cpi, const TileInfo *const tile, 1.165 + MODE_INFO **mi_8x8, 1.166 + int *no_pred_segcounts, 1.167 + int (*temporal_predictor_count)[2], 1.168 + int *t_unpred_seg_counts, 1.169 + int mi_row, int mi_col, 1.170 + BLOCK_SIZE bsize) { 1.171 + const VP9_COMMON *const cm = &cpi->common; 1.172 + const int mis = cm->mode_info_stride; 1.173 + int bw, bh; 1.174 + const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2; 1.175 + 1.176 + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) 1.177 + return; 1.178 + 1.179 + bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type]; 1.180 + bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type]; 1.181 + 1.182 + if (bw == bs && bh == bs) { 1.183 + count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count, 1.184 + t_unpred_seg_counts, bs, bs, mi_row, mi_col); 1.185 + } else if (bw == bs && bh < bs) { 1.186 + count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count, 1.187 + t_unpred_seg_counts, bs, hbs, mi_row, mi_col); 1.188 + count_segs(cpi, tile, mi_8x8 + hbs * mis, no_pred_segcounts, 1.189 + temporal_predictor_count, t_unpred_seg_counts, bs, hbs, 1.190 + mi_row + hbs, mi_col); 1.191 + } else if (bw < bs && bh == bs) { 1.192 + count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count, 1.193 + t_unpred_seg_counts, hbs, bs, mi_row, mi_col); 1.194 + count_segs(cpi, tile, mi_8x8 + hbs, 1.195 + no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 1.196 + hbs, bs, mi_row, mi_col + hbs); 1.197 + } else { 1.198 + const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; 1.199 + int n; 1.200 + 1.201 + assert(bw < bs && bh < bs); 1.202 + 1.203 + for (n = 0; n < 4; n++) { 1.204 + const int mi_dc = hbs * (n & 1); 1.205 + const int mi_dr = hbs * (n >> 1); 1.206 + 1.207 + count_segs_sb(cpi, tile, &mi_8x8[mi_dr * mis + mi_dc], 1.208 + no_pred_segcounts, temporal_predictor_count, 1.209 + t_unpred_seg_counts, 1.210 + mi_row + mi_dr, mi_col + mi_dc, subsize); 1.211 + } 1.212 + } 1.213 +} 1.214 + 1.215 +void vp9_choose_segmap_coding_method(VP9_COMP *cpi) { 1.216 + VP9_COMMON *const cm = &cpi->common; 1.217 + struct segmentation *seg = &cm->seg; 1.218 + 1.219 + int no_pred_cost; 1.220 + int t_pred_cost = INT_MAX; 1.221 + 1.222 + int i, tile_col, mi_row, mi_col; 1.223 + 1.224 + int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } }; 1.225 + int no_pred_segcounts[MAX_SEGMENTS] = { 0 }; 1.226 + int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 }; 1.227 + 1.228 + vp9_prob no_pred_tree[SEG_TREE_PROBS]; 1.229 + vp9_prob t_pred_tree[SEG_TREE_PROBS]; 1.230 + vp9_prob t_nopred_prob[PREDICTION_PROBS]; 1.231 + 1.232 + const int mis = cm->mode_info_stride; 1.233 + MODE_INFO **mi_ptr, **mi; 1.234 + 1.235 + // Set default state for the segment tree probabilities and the 1.236 + // temporal coding probabilities 1.237 + vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs)); 1.238 + vpx_memset(seg->pred_probs, 255, sizeof(seg->pred_probs)); 1.239 + 1.240 + // First of all generate stats regarding how well the last segment map 1.241 + // predicts this one 1.242 + for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) { 1.243 + TileInfo tile; 1.244 + 1.245 + vp9_tile_init(&tile, cm, 0, tile_col); 1.246 + mi_ptr = cm->mi_grid_visible + tile.mi_col_start; 1.247 + for (mi_row = 0; mi_row < cm->mi_rows; 1.248 + mi_row += 8, mi_ptr += 8 * mis) { 1.249 + mi = mi_ptr; 1.250 + for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; 1.251 + mi_col += 8, mi += 8) 1.252 + count_segs_sb(cpi, &tile, mi, no_pred_segcounts, 1.253 + temporal_predictor_count, t_unpred_seg_counts, 1.254 + mi_row, mi_col, BLOCK_64X64); 1.255 + } 1.256 + } 1.257 + 1.258 + // Work out probability tree for coding segments without prediction 1.259 + // and the cost. 1.260 + calc_segtree_probs(no_pred_segcounts, no_pred_tree); 1.261 + no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree); 1.262 + 1.263 + // Key frames cannot use temporal prediction 1.264 + if (!frame_is_intra_only(cm)) { 1.265 + // Work out probability tree for coding those segments not 1.266 + // predicted using the temporal method and the cost. 1.267 + calc_segtree_probs(t_unpred_seg_counts, t_pred_tree); 1.268 + t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree); 1.269 + 1.270 + // Add in the cost of the signaling for each prediction context. 1.271 + for (i = 0; i < PREDICTION_PROBS; i++) { 1.272 + const int count0 = temporal_predictor_count[i][0]; 1.273 + const int count1 = temporal_predictor_count[i][1]; 1.274 + 1.275 + t_nopred_prob[i] = get_binary_prob(count0, count1); 1.276 + 1.277 + // Add in the predictor signaling cost 1.278 + t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) + 1.279 + count1 * vp9_cost_one(t_nopred_prob[i]); 1.280 + } 1.281 + } 1.282 + 1.283 + // Now choose which coding method to use. 1.284 + if (t_pred_cost < no_pred_cost) { 1.285 + seg->temporal_update = 1; 1.286 + vpx_memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree)); 1.287 + vpx_memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob)); 1.288 + } else { 1.289 + seg->temporal_update = 0; 1.290 + vpx_memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree)); 1.291 + } 1.292 +}