security/nss/lib/freebl/ecl/ecp_fp160.c

changeset 0
6474c204b198
equal deleted inserted replaced
-1:000000000000 0:385506327c24
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4
5 #include "ecp_fp.h"
6 #include <stdlib.h>
7
8 #define ECFP_BSIZE 160
9 #define ECFP_NUMDOUBLES 7
10
11 #include "ecp_fpinc.c"
12
13 /* Performs a single step of reduction, just on the uppermost float
14 * (assumes already tidied), and then retidies. Note, this does not
15 * guarantee that the result will be less than p, but truncates the number
16 * of bits. */
17 void
18 ecfp160_singleReduce(double *d, const EC_group_fp * group)
19 {
20 double q;
21
22 ECFP_ASSERT(group->doubleBitSize == 24);
23 ECFP_ASSERT(group->primeBitSize == 160);
24 ECFP_ASSERT(ECFP_NUMDOUBLES == 7);
25
26 q = d[ECFP_NUMDOUBLES - 1] - ecfp_beta_160;
27 q += group->bitSize_alpha;
28 q -= group->bitSize_alpha;
29
30 d[ECFP_NUMDOUBLES - 1] -= q;
31 d[0] += q * ecfp_twom160;
32 d[1] += q * ecfp_twom129;
33 ecfp_positiveTidy(d, group);
34
35 /* Assertions for the highest order term */
36 ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] / ecfp_exp[ECFP_NUMDOUBLES - 1] ==
37 (unsigned long long) (d[ECFP_NUMDOUBLES - 1] /
38 ecfp_exp[ECFP_NUMDOUBLES - 1]));
39 ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] >= 0);
40 }
41
42 /* Performs imperfect reduction. This might leave some negative terms,
43 * and one more reduction might be required for the result to be between 0
44 * and p-1. x should not already be reduced, i.e. should have
45 * 2*ECFP_NUMDOUBLES significant terms. x and r can be the same, but then
46 * the upper parts of r are not zeroed */
47 void
48 ecfp160_reduce(double *r, double *x, const EC_group_fp * group)
49 {
50
51 double x7, x8, q;
52
53 ECFP_ASSERT(group->doubleBitSize == 24);
54 ECFP_ASSERT(group->primeBitSize == 160);
55 ECFP_ASSERT(ECFP_NUMDOUBLES == 7);
56
57 /* Tidy just the upper bits, the lower bits can wait. */
58 ecfp_tidyUpper(x, group);
59
60 /* Assume that this is already tidied so that we have enough extra
61 * bits */
62 x7 = x[7] + x[13] * ecfp_twom129; /* adds bits 15-39 */
63
64 /* Tidy x7, or we won't have enough bits later to add it in */
65 q = x7 + group->alpha[8];
66 q -= group->alpha[8];
67 x7 -= q; /* holds bits 0-24 */
68 x8 = x[8] + q; /* holds bits 0-25 */
69
70 r[6] = x[6] + x[13] * ecfp_twom160 + x[12] * ecfp_twom129; /* adds
71 * bits
72 * 8-39 */
73 r[5] = x[5] + x[12] * ecfp_twom160 + x[11] * ecfp_twom129;
74 r[4] = x[4] + x[11] * ecfp_twom160 + x[10] * ecfp_twom129;
75 r[3] = x[3] + x[10] * ecfp_twom160 + x[9] * ecfp_twom129;
76 r[2] = x[2] + x[9] * ecfp_twom160 + x8 * ecfp_twom129; /* adds bits
77 * 8-40 */
78 r[1] = x[1] + x8 * ecfp_twom160 + x7 * ecfp_twom129; /* adds bits
79 * 8-39 */
80 r[0] = x[0] + x7 * ecfp_twom160;
81
82 /* Tidy up just r[ECFP_NUMDOUBLES-2] so that the number of reductions
83 * is accurate plus or minus one. (Rather than tidy all to make it
84 * totally accurate, which is more costly.) */
85 q = r[ECFP_NUMDOUBLES - 2] + group->alpha[ECFP_NUMDOUBLES - 1];
86 q -= group->alpha[ECFP_NUMDOUBLES - 1];
87 r[ECFP_NUMDOUBLES - 2] -= q;
88 r[ECFP_NUMDOUBLES - 1] += q;
89
90 /* Tidy up the excess bits on r[ECFP_NUMDOUBLES-1] using reduction */
91 /* Use ecfp_beta so we get a positive result */
92 q = r[ECFP_NUMDOUBLES - 1] - ecfp_beta_160;
93 q += group->bitSize_alpha;
94 q -= group->bitSize_alpha;
95
96 r[ECFP_NUMDOUBLES - 1] -= q;
97 r[0] += q * ecfp_twom160;
98 r[1] += q * ecfp_twom129;
99
100 /* Tidy the result */
101 ecfp_tidyShort(r, group);
102 }
103
104 /* Sets group to use optimized calculations in this file */
105 mp_err
106 ec_group_set_secp160r1_fp(ECGroup *group)
107 {
108
109 EC_group_fp *fpg = NULL;
110
111 /* Allocate memory for floating point group data */
112 fpg = (EC_group_fp *) malloc(sizeof(EC_group_fp));
113 if (fpg == NULL) {
114 return MP_MEM;
115 }
116
117 fpg->numDoubles = ECFP_NUMDOUBLES;
118 fpg->primeBitSize = ECFP_BSIZE;
119 fpg->orderBitSize = 161;
120 fpg->doubleBitSize = 24;
121 fpg->numInts = (ECFP_BSIZE + ECL_BITS - 1) / ECL_BITS;
122 fpg->aIsM3 = 1;
123 fpg->ecfp_singleReduce = &ecfp160_singleReduce;
124 fpg->ecfp_reduce = &ecfp160_reduce;
125 fpg->ecfp_tidy = &ecfp_tidy;
126
127 fpg->pt_add_jac_aff = &ecfp160_pt_add_jac_aff;
128 fpg->pt_add_jac = &ecfp160_pt_add_jac;
129 fpg->pt_add_jm_chud = &ecfp160_pt_add_jm_chud;
130 fpg->pt_add_chud = &ecfp160_pt_add_chud;
131 fpg->pt_dbl_jac = &ecfp160_pt_dbl_jac;
132 fpg->pt_dbl_jm = &ecfp160_pt_dbl_jm;
133 fpg->pt_dbl_aff2chud = &ecfp160_pt_dbl_aff2chud;
134 fpg->precompute_chud = &ecfp160_precompute_chud;
135 fpg->precompute_jac = &ecfp160_precompute_jac;
136
137 group->point_mul = &ec_GFp_point_mul_wNAF_fp;
138 group->points_mul = &ec_pts_mul_basic;
139 group->extra1 = fpg;
140 group->extra_free = &ec_GFp_extra_free_fp;
141
142 ec_set_fp_precision(fpg);
143 fpg->bitSize_alpha = ECFP_TWO160 * fpg->alpha[0];
144 return MP_OKAY;
145 }

mercurial