|
1 /* This Source Code Form is subject to the terms of the Mozilla Public |
|
2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
4 |
|
5 #include "ecp_fp.h" |
|
6 #include <stdlib.h> |
|
7 |
|
8 #define ECFP_BSIZE 160 |
|
9 #define ECFP_NUMDOUBLES 7 |
|
10 |
|
11 #include "ecp_fpinc.c" |
|
12 |
|
13 /* Performs a single step of reduction, just on the uppermost float |
|
14 * (assumes already tidied), and then retidies. Note, this does not |
|
15 * guarantee that the result will be less than p, but truncates the number |
|
16 * of bits. */ |
|
17 void |
|
18 ecfp160_singleReduce(double *d, const EC_group_fp * group) |
|
19 { |
|
20 double q; |
|
21 |
|
22 ECFP_ASSERT(group->doubleBitSize == 24); |
|
23 ECFP_ASSERT(group->primeBitSize == 160); |
|
24 ECFP_ASSERT(ECFP_NUMDOUBLES == 7); |
|
25 |
|
26 q = d[ECFP_NUMDOUBLES - 1] - ecfp_beta_160; |
|
27 q += group->bitSize_alpha; |
|
28 q -= group->bitSize_alpha; |
|
29 |
|
30 d[ECFP_NUMDOUBLES - 1] -= q; |
|
31 d[0] += q * ecfp_twom160; |
|
32 d[1] += q * ecfp_twom129; |
|
33 ecfp_positiveTidy(d, group); |
|
34 |
|
35 /* Assertions for the highest order term */ |
|
36 ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] / ecfp_exp[ECFP_NUMDOUBLES - 1] == |
|
37 (unsigned long long) (d[ECFP_NUMDOUBLES - 1] / |
|
38 ecfp_exp[ECFP_NUMDOUBLES - 1])); |
|
39 ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] >= 0); |
|
40 } |
|
41 |
|
42 /* Performs imperfect reduction. This might leave some negative terms, |
|
43 * and one more reduction might be required for the result to be between 0 |
|
44 * and p-1. x should not already be reduced, i.e. should have |
|
45 * 2*ECFP_NUMDOUBLES significant terms. x and r can be the same, but then |
|
46 * the upper parts of r are not zeroed */ |
|
47 void |
|
48 ecfp160_reduce(double *r, double *x, const EC_group_fp * group) |
|
49 { |
|
50 |
|
51 double x7, x8, q; |
|
52 |
|
53 ECFP_ASSERT(group->doubleBitSize == 24); |
|
54 ECFP_ASSERT(group->primeBitSize == 160); |
|
55 ECFP_ASSERT(ECFP_NUMDOUBLES == 7); |
|
56 |
|
57 /* Tidy just the upper bits, the lower bits can wait. */ |
|
58 ecfp_tidyUpper(x, group); |
|
59 |
|
60 /* Assume that this is already tidied so that we have enough extra |
|
61 * bits */ |
|
62 x7 = x[7] + x[13] * ecfp_twom129; /* adds bits 15-39 */ |
|
63 |
|
64 /* Tidy x7, or we won't have enough bits later to add it in */ |
|
65 q = x7 + group->alpha[8]; |
|
66 q -= group->alpha[8]; |
|
67 x7 -= q; /* holds bits 0-24 */ |
|
68 x8 = x[8] + q; /* holds bits 0-25 */ |
|
69 |
|
70 r[6] = x[6] + x[13] * ecfp_twom160 + x[12] * ecfp_twom129; /* adds |
|
71 * bits |
|
72 * 8-39 */ |
|
73 r[5] = x[5] + x[12] * ecfp_twom160 + x[11] * ecfp_twom129; |
|
74 r[4] = x[4] + x[11] * ecfp_twom160 + x[10] * ecfp_twom129; |
|
75 r[3] = x[3] + x[10] * ecfp_twom160 + x[9] * ecfp_twom129; |
|
76 r[2] = x[2] + x[9] * ecfp_twom160 + x8 * ecfp_twom129; /* adds bits |
|
77 * 8-40 */ |
|
78 r[1] = x[1] + x8 * ecfp_twom160 + x7 * ecfp_twom129; /* adds bits |
|
79 * 8-39 */ |
|
80 r[0] = x[0] + x7 * ecfp_twom160; |
|
81 |
|
82 /* Tidy up just r[ECFP_NUMDOUBLES-2] so that the number of reductions |
|
83 * is accurate plus or minus one. (Rather than tidy all to make it |
|
84 * totally accurate, which is more costly.) */ |
|
85 q = r[ECFP_NUMDOUBLES - 2] + group->alpha[ECFP_NUMDOUBLES - 1]; |
|
86 q -= group->alpha[ECFP_NUMDOUBLES - 1]; |
|
87 r[ECFP_NUMDOUBLES - 2] -= q; |
|
88 r[ECFP_NUMDOUBLES - 1] += q; |
|
89 |
|
90 /* Tidy up the excess bits on r[ECFP_NUMDOUBLES-1] using reduction */ |
|
91 /* Use ecfp_beta so we get a positive result */ |
|
92 q = r[ECFP_NUMDOUBLES - 1] - ecfp_beta_160; |
|
93 q += group->bitSize_alpha; |
|
94 q -= group->bitSize_alpha; |
|
95 |
|
96 r[ECFP_NUMDOUBLES - 1] -= q; |
|
97 r[0] += q * ecfp_twom160; |
|
98 r[1] += q * ecfp_twom129; |
|
99 |
|
100 /* Tidy the result */ |
|
101 ecfp_tidyShort(r, group); |
|
102 } |
|
103 |
|
104 /* Sets group to use optimized calculations in this file */ |
|
105 mp_err |
|
106 ec_group_set_secp160r1_fp(ECGroup *group) |
|
107 { |
|
108 |
|
109 EC_group_fp *fpg = NULL; |
|
110 |
|
111 /* Allocate memory for floating point group data */ |
|
112 fpg = (EC_group_fp *) malloc(sizeof(EC_group_fp)); |
|
113 if (fpg == NULL) { |
|
114 return MP_MEM; |
|
115 } |
|
116 |
|
117 fpg->numDoubles = ECFP_NUMDOUBLES; |
|
118 fpg->primeBitSize = ECFP_BSIZE; |
|
119 fpg->orderBitSize = 161; |
|
120 fpg->doubleBitSize = 24; |
|
121 fpg->numInts = (ECFP_BSIZE + ECL_BITS - 1) / ECL_BITS; |
|
122 fpg->aIsM3 = 1; |
|
123 fpg->ecfp_singleReduce = &ecfp160_singleReduce; |
|
124 fpg->ecfp_reduce = &ecfp160_reduce; |
|
125 fpg->ecfp_tidy = &ecfp_tidy; |
|
126 |
|
127 fpg->pt_add_jac_aff = &ecfp160_pt_add_jac_aff; |
|
128 fpg->pt_add_jac = &ecfp160_pt_add_jac; |
|
129 fpg->pt_add_jm_chud = &ecfp160_pt_add_jm_chud; |
|
130 fpg->pt_add_chud = &ecfp160_pt_add_chud; |
|
131 fpg->pt_dbl_jac = &ecfp160_pt_dbl_jac; |
|
132 fpg->pt_dbl_jm = &ecfp160_pt_dbl_jm; |
|
133 fpg->pt_dbl_aff2chud = &ecfp160_pt_dbl_aff2chud; |
|
134 fpg->precompute_chud = &ecfp160_precompute_chud; |
|
135 fpg->precompute_jac = &ecfp160_precompute_jac; |
|
136 |
|
137 group->point_mul = &ec_GFp_point_mul_wNAF_fp; |
|
138 group->points_mul = &ec_pts_mul_basic; |
|
139 group->extra1 = fpg; |
|
140 group->extra_free = &ec_GFp_extra_free_fp; |
|
141 |
|
142 ec_set_fp_precision(fpg); |
|
143 fpg->bitSize_alpha = ECFP_TWO160 * fpg->alpha[0]; |
|
144 return MP_OKAY; |
|
145 } |