1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/security/nss/lib/freebl/ecl/ecp_fp160.c Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,145 @@ 1.4 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.5 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.6 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.7 + 1.8 +#include "ecp_fp.h" 1.9 +#include <stdlib.h> 1.10 + 1.11 +#define ECFP_BSIZE 160 1.12 +#define ECFP_NUMDOUBLES 7 1.13 + 1.14 +#include "ecp_fpinc.c" 1.15 + 1.16 +/* Performs a single step of reduction, just on the uppermost float 1.17 + * (assumes already tidied), and then retidies. Note, this does not 1.18 + * guarantee that the result will be less than p, but truncates the number 1.19 + * of bits. */ 1.20 +void 1.21 +ecfp160_singleReduce(double *d, const EC_group_fp * group) 1.22 +{ 1.23 + double q; 1.24 + 1.25 + ECFP_ASSERT(group->doubleBitSize == 24); 1.26 + ECFP_ASSERT(group->primeBitSize == 160); 1.27 + ECFP_ASSERT(ECFP_NUMDOUBLES == 7); 1.28 + 1.29 + q = d[ECFP_NUMDOUBLES - 1] - ecfp_beta_160; 1.30 + q += group->bitSize_alpha; 1.31 + q -= group->bitSize_alpha; 1.32 + 1.33 + d[ECFP_NUMDOUBLES - 1] -= q; 1.34 + d[0] += q * ecfp_twom160; 1.35 + d[1] += q * ecfp_twom129; 1.36 + ecfp_positiveTidy(d, group); 1.37 + 1.38 + /* Assertions for the highest order term */ 1.39 + ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] / ecfp_exp[ECFP_NUMDOUBLES - 1] == 1.40 + (unsigned long long) (d[ECFP_NUMDOUBLES - 1] / 1.41 + ecfp_exp[ECFP_NUMDOUBLES - 1])); 1.42 + ECFP_ASSERT(d[ECFP_NUMDOUBLES - 1] >= 0); 1.43 +} 1.44 + 1.45 +/* Performs imperfect reduction. This might leave some negative terms, 1.46 + * and one more reduction might be required for the result to be between 0 1.47 + * and p-1. x should not already be reduced, i.e. should have 1.48 + * 2*ECFP_NUMDOUBLES significant terms. x and r can be the same, but then 1.49 + * the upper parts of r are not zeroed */ 1.50 +void 1.51 +ecfp160_reduce(double *r, double *x, const EC_group_fp * group) 1.52 +{ 1.53 + 1.54 + double x7, x8, q; 1.55 + 1.56 + ECFP_ASSERT(group->doubleBitSize == 24); 1.57 + ECFP_ASSERT(group->primeBitSize == 160); 1.58 + ECFP_ASSERT(ECFP_NUMDOUBLES == 7); 1.59 + 1.60 + /* Tidy just the upper bits, the lower bits can wait. */ 1.61 + ecfp_tidyUpper(x, group); 1.62 + 1.63 + /* Assume that this is already tidied so that we have enough extra 1.64 + * bits */ 1.65 + x7 = x[7] + x[13] * ecfp_twom129; /* adds bits 15-39 */ 1.66 + 1.67 + /* Tidy x7, or we won't have enough bits later to add it in */ 1.68 + q = x7 + group->alpha[8]; 1.69 + q -= group->alpha[8]; 1.70 + x7 -= q; /* holds bits 0-24 */ 1.71 + x8 = x[8] + q; /* holds bits 0-25 */ 1.72 + 1.73 + r[6] = x[6] + x[13] * ecfp_twom160 + x[12] * ecfp_twom129; /* adds 1.74 + * bits 1.75 + * 8-39 */ 1.76 + r[5] = x[5] + x[12] * ecfp_twom160 + x[11] * ecfp_twom129; 1.77 + r[4] = x[4] + x[11] * ecfp_twom160 + x[10] * ecfp_twom129; 1.78 + r[3] = x[3] + x[10] * ecfp_twom160 + x[9] * ecfp_twom129; 1.79 + r[2] = x[2] + x[9] * ecfp_twom160 + x8 * ecfp_twom129; /* adds bits 1.80 + * 8-40 */ 1.81 + r[1] = x[1] + x8 * ecfp_twom160 + x7 * ecfp_twom129; /* adds bits 1.82 + * 8-39 */ 1.83 + r[0] = x[0] + x7 * ecfp_twom160; 1.84 + 1.85 + /* Tidy up just r[ECFP_NUMDOUBLES-2] so that the number of reductions 1.86 + * is accurate plus or minus one. (Rather than tidy all to make it 1.87 + * totally accurate, which is more costly.) */ 1.88 + q = r[ECFP_NUMDOUBLES - 2] + group->alpha[ECFP_NUMDOUBLES - 1]; 1.89 + q -= group->alpha[ECFP_NUMDOUBLES - 1]; 1.90 + r[ECFP_NUMDOUBLES - 2] -= q; 1.91 + r[ECFP_NUMDOUBLES - 1] += q; 1.92 + 1.93 + /* Tidy up the excess bits on r[ECFP_NUMDOUBLES-1] using reduction */ 1.94 + /* Use ecfp_beta so we get a positive result */ 1.95 + q = r[ECFP_NUMDOUBLES - 1] - ecfp_beta_160; 1.96 + q += group->bitSize_alpha; 1.97 + q -= group->bitSize_alpha; 1.98 + 1.99 + r[ECFP_NUMDOUBLES - 1] -= q; 1.100 + r[0] += q * ecfp_twom160; 1.101 + r[1] += q * ecfp_twom129; 1.102 + 1.103 + /* Tidy the result */ 1.104 + ecfp_tidyShort(r, group); 1.105 +} 1.106 + 1.107 +/* Sets group to use optimized calculations in this file */ 1.108 +mp_err 1.109 +ec_group_set_secp160r1_fp(ECGroup *group) 1.110 +{ 1.111 + 1.112 + EC_group_fp *fpg = NULL; 1.113 + 1.114 + /* Allocate memory for floating point group data */ 1.115 + fpg = (EC_group_fp *) malloc(sizeof(EC_group_fp)); 1.116 + if (fpg == NULL) { 1.117 + return MP_MEM; 1.118 + } 1.119 + 1.120 + fpg->numDoubles = ECFP_NUMDOUBLES; 1.121 + fpg->primeBitSize = ECFP_BSIZE; 1.122 + fpg->orderBitSize = 161; 1.123 + fpg->doubleBitSize = 24; 1.124 + fpg->numInts = (ECFP_BSIZE + ECL_BITS - 1) / ECL_BITS; 1.125 + fpg->aIsM3 = 1; 1.126 + fpg->ecfp_singleReduce = &ecfp160_singleReduce; 1.127 + fpg->ecfp_reduce = &ecfp160_reduce; 1.128 + fpg->ecfp_tidy = &ecfp_tidy; 1.129 + 1.130 + fpg->pt_add_jac_aff = &ecfp160_pt_add_jac_aff; 1.131 + fpg->pt_add_jac = &ecfp160_pt_add_jac; 1.132 + fpg->pt_add_jm_chud = &ecfp160_pt_add_jm_chud; 1.133 + fpg->pt_add_chud = &ecfp160_pt_add_chud; 1.134 + fpg->pt_dbl_jac = &ecfp160_pt_dbl_jac; 1.135 + fpg->pt_dbl_jm = &ecfp160_pt_dbl_jm; 1.136 + fpg->pt_dbl_aff2chud = &ecfp160_pt_dbl_aff2chud; 1.137 + fpg->precompute_chud = &ecfp160_precompute_chud; 1.138 + fpg->precompute_jac = &ecfp160_precompute_jac; 1.139 + 1.140 + group->point_mul = &ec_GFp_point_mul_wNAF_fp; 1.141 + group->points_mul = &ec_pts_mul_basic; 1.142 + group->extra1 = fpg; 1.143 + group->extra_free = &ec_GFp_extra_free_fp; 1.144 + 1.145 + ec_set_fp_precision(fpg); 1.146 + fpg->bitSize_alpha = ECFP_TWO160 * fpg->alpha[0]; 1.147 + return MP_OKAY; 1.148 +}