|
1 /* |
|
2 * mpprime.c |
|
3 * |
|
4 * Utilities for finding and working with prime and pseudo-prime |
|
5 * integers |
|
6 * |
|
7 * This Source Code Form is subject to the terms of the Mozilla Public |
|
8 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
9 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
10 |
|
11 #include "mpi-priv.h" |
|
12 #include "mpprime.h" |
|
13 #include "mplogic.h" |
|
14 #include <stdlib.h> |
|
15 #include <string.h> |
|
16 |
|
17 #define SMALL_TABLE 0 /* determines size of hard-wired prime table */ |
|
18 |
|
19 #define RANDOM() rand() |
|
20 |
|
21 #include "primes.c" /* pull in the prime digit table */ |
|
22 |
|
23 /* |
|
24 Test if any of a given vector of digits divides a. If not, MP_NO |
|
25 is returned; otherwise, MP_YES is returned and 'which' is set to |
|
26 the index of the integer in the vector which divided a. |
|
27 */ |
|
28 mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which); |
|
29 |
|
30 /* {{{ mpp_divis(a, b) */ |
|
31 |
|
32 /* |
|
33 mpp_divis(a, b) |
|
34 |
|
35 Returns MP_YES if a is divisible by b, or MP_NO if it is not. |
|
36 */ |
|
37 |
|
38 mp_err mpp_divis(mp_int *a, mp_int *b) |
|
39 { |
|
40 mp_err res; |
|
41 mp_int rem; |
|
42 |
|
43 if((res = mp_init(&rem)) != MP_OKAY) |
|
44 return res; |
|
45 |
|
46 if((res = mp_mod(a, b, &rem)) != MP_OKAY) |
|
47 goto CLEANUP; |
|
48 |
|
49 if(mp_cmp_z(&rem) == 0) |
|
50 res = MP_YES; |
|
51 else |
|
52 res = MP_NO; |
|
53 |
|
54 CLEANUP: |
|
55 mp_clear(&rem); |
|
56 return res; |
|
57 |
|
58 } /* end mpp_divis() */ |
|
59 |
|
60 /* }}} */ |
|
61 |
|
62 /* {{{ mpp_divis_d(a, d) */ |
|
63 |
|
64 /* |
|
65 mpp_divis_d(a, d) |
|
66 |
|
67 Return MP_YES if a is divisible by d, or MP_NO if it is not. |
|
68 */ |
|
69 |
|
70 mp_err mpp_divis_d(mp_int *a, mp_digit d) |
|
71 { |
|
72 mp_err res; |
|
73 mp_digit rem; |
|
74 |
|
75 ARGCHK(a != NULL, MP_BADARG); |
|
76 |
|
77 if(d == 0) |
|
78 return MP_NO; |
|
79 |
|
80 if((res = mp_mod_d(a, d, &rem)) != MP_OKAY) |
|
81 return res; |
|
82 |
|
83 if(rem == 0) |
|
84 return MP_YES; |
|
85 else |
|
86 return MP_NO; |
|
87 |
|
88 } /* end mpp_divis_d() */ |
|
89 |
|
90 /* }}} */ |
|
91 |
|
92 /* {{{ mpp_random(a) */ |
|
93 |
|
94 /* |
|
95 mpp_random(a) |
|
96 |
|
97 Assigns a random value to a. This value is generated using the |
|
98 standard C library's rand() function, so it should not be used for |
|
99 cryptographic purposes, but it should be fine for primality testing, |
|
100 since all we really care about there is good statistical properties. |
|
101 |
|
102 As many digits as a currently has are filled with random digits. |
|
103 */ |
|
104 |
|
105 mp_err mpp_random(mp_int *a) |
|
106 |
|
107 { |
|
108 mp_digit next = 0; |
|
109 unsigned int ix, jx; |
|
110 |
|
111 ARGCHK(a != NULL, MP_BADARG); |
|
112 |
|
113 for(ix = 0; ix < USED(a); ix++) { |
|
114 for(jx = 0; jx < sizeof(mp_digit); jx++) { |
|
115 next = (next << CHAR_BIT) | (RANDOM() & UCHAR_MAX); |
|
116 } |
|
117 DIGIT(a, ix) = next; |
|
118 } |
|
119 |
|
120 return MP_OKAY; |
|
121 |
|
122 } /* end mpp_random() */ |
|
123 |
|
124 /* }}} */ |
|
125 |
|
126 /* {{{ mpp_random_size(a, prec) */ |
|
127 |
|
128 mp_err mpp_random_size(mp_int *a, mp_size prec) |
|
129 { |
|
130 mp_err res; |
|
131 |
|
132 ARGCHK(a != NULL && prec > 0, MP_BADARG); |
|
133 |
|
134 if((res = s_mp_pad(a, prec)) != MP_OKAY) |
|
135 return res; |
|
136 |
|
137 return mpp_random(a); |
|
138 |
|
139 } /* end mpp_random_size() */ |
|
140 |
|
141 /* }}} */ |
|
142 |
|
143 /* {{{ mpp_divis_vector(a, vec, size, which) */ |
|
144 |
|
145 /* |
|
146 mpp_divis_vector(a, vec, size, which) |
|
147 |
|
148 Determines if a is divisible by any of the 'size' digits in vec. |
|
149 Returns MP_YES and sets 'which' to the index of the offending digit, |
|
150 if it is; returns MP_NO if it is not. |
|
151 */ |
|
152 |
|
153 mp_err mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which) |
|
154 { |
|
155 ARGCHK(a != NULL && vec != NULL && size > 0, MP_BADARG); |
|
156 |
|
157 return s_mpp_divp(a, vec, size, which); |
|
158 |
|
159 } /* end mpp_divis_vector() */ |
|
160 |
|
161 /* }}} */ |
|
162 |
|
163 /* {{{ mpp_divis_primes(a, np) */ |
|
164 |
|
165 /* |
|
166 mpp_divis_primes(a, np) |
|
167 |
|
168 Test whether a is divisible by any of the first 'np' primes. If it |
|
169 is, returns MP_YES and sets *np to the value of the digit that did |
|
170 it. If not, returns MP_NO. |
|
171 */ |
|
172 mp_err mpp_divis_primes(mp_int *a, mp_digit *np) |
|
173 { |
|
174 int size, which; |
|
175 mp_err res; |
|
176 |
|
177 ARGCHK(a != NULL && np != NULL, MP_BADARG); |
|
178 |
|
179 size = (int)*np; |
|
180 if(size > prime_tab_size) |
|
181 size = prime_tab_size; |
|
182 |
|
183 res = mpp_divis_vector(a, prime_tab, size, &which); |
|
184 if(res == MP_YES) |
|
185 *np = prime_tab[which]; |
|
186 |
|
187 return res; |
|
188 |
|
189 } /* end mpp_divis_primes() */ |
|
190 |
|
191 /* }}} */ |
|
192 |
|
193 /* {{{ mpp_fermat(a, w) */ |
|
194 |
|
195 /* |
|
196 Using w as a witness, try pseudo-primality testing based on Fermat's |
|
197 little theorem. If a is prime, and (w, a) = 1, then w^a == w (mod |
|
198 a). So, we compute z = w^a (mod a) and compare z to w; if they are |
|
199 equal, the test passes and we return MP_YES. Otherwise, we return |
|
200 MP_NO. |
|
201 */ |
|
202 mp_err mpp_fermat(mp_int *a, mp_digit w) |
|
203 { |
|
204 mp_int base, test; |
|
205 mp_err res; |
|
206 |
|
207 if((res = mp_init(&base)) != MP_OKAY) |
|
208 return res; |
|
209 |
|
210 mp_set(&base, w); |
|
211 |
|
212 if((res = mp_init(&test)) != MP_OKAY) |
|
213 goto TEST; |
|
214 |
|
215 /* Compute test = base^a (mod a) */ |
|
216 if((res = mp_exptmod(&base, a, a, &test)) != MP_OKAY) |
|
217 goto CLEANUP; |
|
218 |
|
219 |
|
220 if(mp_cmp(&base, &test) == 0) |
|
221 res = MP_YES; |
|
222 else |
|
223 res = MP_NO; |
|
224 |
|
225 CLEANUP: |
|
226 mp_clear(&test); |
|
227 TEST: |
|
228 mp_clear(&base); |
|
229 |
|
230 return res; |
|
231 |
|
232 } /* end mpp_fermat() */ |
|
233 |
|
234 /* }}} */ |
|
235 |
|
236 /* |
|
237 Perform the fermat test on each of the primes in a list until |
|
238 a) one of them shows a is not prime, or |
|
239 b) the list is exhausted. |
|
240 Returns: MP_YES if it passes tests. |
|
241 MP_NO if fermat test reveals it is composite |
|
242 Some MP error code if some other error occurs. |
|
243 */ |
|
244 mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes) |
|
245 { |
|
246 mp_err rv = MP_YES; |
|
247 |
|
248 while (nPrimes-- > 0 && rv == MP_YES) { |
|
249 rv = mpp_fermat(a, *primes++); |
|
250 } |
|
251 return rv; |
|
252 } |
|
253 |
|
254 /* {{{ mpp_pprime(a, nt) */ |
|
255 |
|
256 /* |
|
257 mpp_pprime(a, nt) |
|
258 |
|
259 Performs nt iteration of the Miller-Rabin probabilistic primality |
|
260 test on a. Returns MP_YES if the tests pass, MP_NO if one fails. |
|
261 If MP_NO is returned, the number is definitely composite. If MP_YES |
|
262 is returned, it is probably prime (but that is not guaranteed). |
|
263 */ |
|
264 |
|
265 mp_err mpp_pprime(mp_int *a, int nt) |
|
266 { |
|
267 mp_err res; |
|
268 mp_int x, amo, m, z; /* "amo" = "a minus one" */ |
|
269 int iter; |
|
270 unsigned int jx; |
|
271 mp_size b; |
|
272 |
|
273 ARGCHK(a != NULL, MP_BADARG); |
|
274 |
|
275 MP_DIGITS(&x) = 0; |
|
276 MP_DIGITS(&amo) = 0; |
|
277 MP_DIGITS(&m) = 0; |
|
278 MP_DIGITS(&z) = 0; |
|
279 |
|
280 /* Initialize temporaries... */ |
|
281 MP_CHECKOK( mp_init(&amo)); |
|
282 /* Compute amo = a - 1 for what follows... */ |
|
283 MP_CHECKOK( mp_sub_d(a, 1, &amo) ); |
|
284 |
|
285 b = mp_trailing_zeros(&amo); |
|
286 if (!b) { /* a was even ? */ |
|
287 res = MP_NO; |
|
288 goto CLEANUP; |
|
289 } |
|
290 |
|
291 MP_CHECKOK( mp_init_size(&x, MP_USED(a)) ); |
|
292 MP_CHECKOK( mp_init(&z) ); |
|
293 MP_CHECKOK( mp_init(&m) ); |
|
294 MP_CHECKOK( mp_div_2d(&amo, b, &m, 0) ); |
|
295 |
|
296 /* Do the test nt times... */ |
|
297 for(iter = 0; iter < nt; iter++) { |
|
298 |
|
299 /* Choose a random value for 1 < x < a */ |
|
300 s_mp_pad(&x, USED(a)); |
|
301 mpp_random(&x); |
|
302 MP_CHECKOK( mp_mod(&x, a, &x) ); |
|
303 if(mp_cmp_d(&x, 1) <= 0) { |
|
304 iter--; /* don't count this iteration */ |
|
305 continue; /* choose a new x */ |
|
306 } |
|
307 |
|
308 /* Compute z = (x ** m) mod a */ |
|
309 MP_CHECKOK( mp_exptmod(&x, &m, a, &z) ); |
|
310 |
|
311 if(mp_cmp_d(&z, 1) == 0 || mp_cmp(&z, &amo) == 0) { |
|
312 res = MP_YES; |
|
313 continue; |
|
314 } |
|
315 |
|
316 res = MP_NO; /* just in case the following for loop never executes. */ |
|
317 for (jx = 1; jx < b; jx++) { |
|
318 /* z = z^2 (mod a) */ |
|
319 MP_CHECKOK( mp_sqrmod(&z, a, &z) ); |
|
320 res = MP_NO; /* previous line set res to MP_YES */ |
|
321 |
|
322 if(mp_cmp_d(&z, 1) == 0) { |
|
323 break; |
|
324 } |
|
325 if(mp_cmp(&z, &amo) == 0) { |
|
326 res = MP_YES; |
|
327 break; |
|
328 } |
|
329 } /* end testing loop */ |
|
330 |
|
331 /* If the test passes, we will continue iterating, but a failed |
|
332 test means the candidate is definitely NOT prime, so we will |
|
333 immediately break out of this loop |
|
334 */ |
|
335 if(res == MP_NO) |
|
336 break; |
|
337 |
|
338 } /* end iterations loop */ |
|
339 |
|
340 CLEANUP: |
|
341 mp_clear(&m); |
|
342 mp_clear(&z); |
|
343 mp_clear(&x); |
|
344 mp_clear(&amo); |
|
345 return res; |
|
346 |
|
347 } /* end mpp_pprime() */ |
|
348 |
|
349 /* }}} */ |
|
350 |
|
351 /* Produce table of composites from list of primes and trial value. |
|
352 ** trial must be odd. List of primes must not include 2. |
|
353 ** sieve should have dimension >= MAXPRIME/2, where MAXPRIME is largest |
|
354 ** prime in list of primes. After this function is finished, |
|
355 ** if sieve[i] is non-zero, then (trial + 2*i) is composite. |
|
356 ** Each prime used in the sieve costs one division of trial, and eliminates |
|
357 ** one or more values from the search space. (3 eliminates 1/3 of the values |
|
358 ** alone!) Each value left in the search space costs 1 or more modular |
|
359 ** exponentations. So, these divisions are a bargain! |
|
360 */ |
|
361 mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes, |
|
362 unsigned char *sieve, mp_size nSieve) |
|
363 { |
|
364 mp_err res; |
|
365 mp_digit rem; |
|
366 mp_size ix; |
|
367 unsigned long offset; |
|
368 |
|
369 memset(sieve, 0, nSieve); |
|
370 |
|
371 for(ix = 0; ix < nPrimes; ix++) { |
|
372 mp_digit prime = primes[ix]; |
|
373 mp_size i; |
|
374 if((res = mp_mod_d(trial, prime, &rem)) != MP_OKAY) |
|
375 return res; |
|
376 |
|
377 if (rem == 0) { |
|
378 offset = 0; |
|
379 } else { |
|
380 offset = prime - (rem / 2); |
|
381 } |
|
382 for (i = offset; i < nSieve ; i += prime) { |
|
383 sieve[i] = 1; |
|
384 } |
|
385 } |
|
386 |
|
387 return MP_OKAY; |
|
388 } |
|
389 |
|
390 #define SIEVE_SIZE 32*1024 |
|
391 |
|
392 mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong, |
|
393 unsigned long * nTries) |
|
394 { |
|
395 mp_digit np; |
|
396 mp_err res; |
|
397 int i = 0; |
|
398 mp_int trial; |
|
399 mp_int q; |
|
400 mp_size num_tests; |
|
401 unsigned char *sieve; |
|
402 |
|
403 ARGCHK(start != 0, MP_BADARG); |
|
404 ARGCHK(nBits > 16, MP_RANGE); |
|
405 |
|
406 sieve = malloc(SIEVE_SIZE); |
|
407 ARGCHK(sieve != NULL, MP_MEM); |
|
408 |
|
409 MP_DIGITS(&trial) = 0; |
|
410 MP_DIGITS(&q) = 0; |
|
411 MP_CHECKOK( mp_init(&trial) ); |
|
412 MP_CHECKOK( mp_init(&q) ); |
|
413 /* values taken from table 4.4, HandBook of Applied Cryptography */ |
|
414 if (nBits >= 1300) { |
|
415 num_tests = 2; |
|
416 } else if (nBits >= 850) { |
|
417 num_tests = 3; |
|
418 } else if (nBits >= 650) { |
|
419 num_tests = 4; |
|
420 } else if (nBits >= 550) { |
|
421 num_tests = 5; |
|
422 } else if (nBits >= 450) { |
|
423 num_tests = 6; |
|
424 } else if (nBits >= 400) { |
|
425 num_tests = 7; |
|
426 } else if (nBits >= 350) { |
|
427 num_tests = 8; |
|
428 } else if (nBits >= 300) { |
|
429 num_tests = 9; |
|
430 } else if (nBits >= 250) { |
|
431 num_tests = 12; |
|
432 } else if (nBits >= 200) { |
|
433 num_tests = 15; |
|
434 } else if (nBits >= 150) { |
|
435 num_tests = 18; |
|
436 } else if (nBits >= 100) { |
|
437 num_tests = 27; |
|
438 } else |
|
439 num_tests = 50; |
|
440 |
|
441 if (strong) |
|
442 --nBits; |
|
443 MP_CHECKOK( mpl_set_bit(start, nBits - 1, 1) ); |
|
444 MP_CHECKOK( mpl_set_bit(start, 0, 1) ); |
|
445 for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) { |
|
446 MP_CHECKOK( mpl_set_bit(start, i, 0) ); |
|
447 } |
|
448 /* start sieveing with prime value of 3. */ |
|
449 MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1, |
|
450 sieve, SIEVE_SIZE) ); |
|
451 |
|
452 #ifdef DEBUG_SIEVE |
|
453 res = 0; |
|
454 for (i = 0; i < SIEVE_SIZE; ++i) { |
|
455 if (!sieve[i]) |
|
456 ++res; |
|
457 } |
|
458 fprintf(stderr,"sieve found %d potential primes.\n", res); |
|
459 #define FPUTC(x,y) fputc(x,y) |
|
460 #else |
|
461 #define FPUTC(x,y) |
|
462 #endif |
|
463 |
|
464 res = MP_NO; |
|
465 for(i = 0; i < SIEVE_SIZE; ++i) { |
|
466 if (sieve[i]) /* this number is composite */ |
|
467 continue; |
|
468 MP_CHECKOK( mp_add_d(start, 2 * i, &trial) ); |
|
469 FPUTC('.', stderr); |
|
470 /* run a Fermat test */ |
|
471 res = mpp_fermat(&trial, 2); |
|
472 if (res != MP_OKAY) { |
|
473 if (res == MP_NO) |
|
474 continue; /* was composite */ |
|
475 goto CLEANUP; |
|
476 } |
|
477 |
|
478 FPUTC('+', stderr); |
|
479 /* If that passed, run some Miller-Rabin tests */ |
|
480 res = mpp_pprime(&trial, num_tests); |
|
481 if (res != MP_OKAY) { |
|
482 if (res == MP_NO) |
|
483 continue; /* was composite */ |
|
484 goto CLEANUP; |
|
485 } |
|
486 FPUTC('!', stderr); |
|
487 |
|
488 if (!strong) |
|
489 break; /* success !! */ |
|
490 |
|
491 /* At this point, we have strong evidence that our candidate |
|
492 is itself prime. If we want a strong prime, we need now |
|
493 to test q = 2p + 1 for primality... |
|
494 */ |
|
495 MP_CHECKOK( mp_mul_2(&trial, &q) ); |
|
496 MP_CHECKOK( mp_add_d(&q, 1, &q) ); |
|
497 |
|
498 /* Test q for small prime divisors ... */ |
|
499 np = prime_tab_size; |
|
500 res = mpp_divis_primes(&q, &np); |
|
501 if (res == MP_YES) { /* is composite */ |
|
502 mp_clear(&q); |
|
503 continue; |
|
504 } |
|
505 if (res != MP_NO) |
|
506 goto CLEANUP; |
|
507 |
|
508 /* And test with Fermat, as with its parent ... */ |
|
509 res = mpp_fermat(&q, 2); |
|
510 if (res != MP_YES) { |
|
511 mp_clear(&q); |
|
512 if (res == MP_NO) |
|
513 continue; /* was composite */ |
|
514 goto CLEANUP; |
|
515 } |
|
516 |
|
517 /* And test with Miller-Rabin, as with its parent ... */ |
|
518 res = mpp_pprime(&q, num_tests); |
|
519 if (res != MP_YES) { |
|
520 mp_clear(&q); |
|
521 if (res == MP_NO) |
|
522 continue; /* was composite */ |
|
523 goto CLEANUP; |
|
524 } |
|
525 |
|
526 /* If it passed, we've got a winner */ |
|
527 mp_exch(&q, &trial); |
|
528 mp_clear(&q); |
|
529 break; |
|
530 |
|
531 } /* end of loop through sieved values */ |
|
532 if (res == MP_YES) |
|
533 mp_exch(&trial, start); |
|
534 CLEANUP: |
|
535 mp_clear(&trial); |
|
536 mp_clear(&q); |
|
537 if (nTries) |
|
538 *nTries += i; |
|
539 if (sieve != NULL) { |
|
540 memset(sieve, 0, SIEVE_SIZE); |
|
541 free (sieve); |
|
542 } |
|
543 return res; |
|
544 } |
|
545 |
|
546 /*========================================================================*/ |
|
547 /*------------------------------------------------------------------------*/ |
|
548 /* Static functions visible only to the library internally */ |
|
549 |
|
550 /* {{{ s_mpp_divp(a, vec, size, which) */ |
|
551 |
|
552 /* |
|
553 Test for divisibility by members of a vector of digits. Returns |
|
554 MP_NO if a is not divisible by any of them; returns MP_YES and sets |
|
555 'which' to the index of the offender, if it is. Will stop on the |
|
556 first digit against which a is divisible. |
|
557 */ |
|
558 |
|
559 mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which) |
|
560 { |
|
561 mp_err res; |
|
562 mp_digit rem; |
|
563 |
|
564 int ix; |
|
565 |
|
566 for(ix = 0; ix < size; ix++) { |
|
567 if((res = mp_mod_d(a, vec[ix], &rem)) != MP_OKAY) |
|
568 return res; |
|
569 |
|
570 if(rem == 0) { |
|
571 if(which) |
|
572 *which = ix; |
|
573 return MP_YES; |
|
574 } |
|
575 } |
|
576 |
|
577 return MP_NO; |
|
578 |
|
579 } /* end s_mpp_divp() */ |
|
580 |
|
581 /* }}} */ |
|
582 |
|
583 /*------------------------------------------------------------------------*/ |
|
584 /* HERE THERE BE DRAGONS */ |