security/nss/lib/freebl/mpi/mpprime.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/nss/lib/freebl/mpi/mpprime.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,584 @@
     1.4 +/*
     1.5 + *  mpprime.c
     1.6 + *
     1.7 + *  Utilities for finding and working with prime and pseudo-prime
     1.8 + *  integers
     1.9 + *
    1.10 + * This Source Code Form is subject to the terms of the Mozilla Public
    1.11 + * License, v. 2.0. If a copy of the MPL was not distributed with this
    1.12 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
    1.13 +
    1.14 +#include "mpi-priv.h"
    1.15 +#include "mpprime.h"
    1.16 +#include "mplogic.h"
    1.17 +#include <stdlib.h>
    1.18 +#include <string.h>
    1.19 +
    1.20 +#define SMALL_TABLE 0 /* determines size of hard-wired prime table */
    1.21 +
    1.22 +#define RANDOM() rand()
    1.23 +
    1.24 +#include "primes.c"  /* pull in the prime digit table */
    1.25 +
    1.26 +/* 
    1.27 +   Test if any of a given vector of digits divides a.  If not, MP_NO
    1.28 +   is returned; otherwise, MP_YES is returned and 'which' is set to
    1.29 +   the index of the integer in the vector which divided a.
    1.30 + */
    1.31 +mp_err    s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which);
    1.32 +
    1.33 +/* {{{ mpp_divis(a, b) */
    1.34 +
    1.35 +/*
    1.36 +  mpp_divis(a, b)
    1.37 +
    1.38 +  Returns MP_YES if a is divisible by b, or MP_NO if it is not.
    1.39 + */
    1.40 +
    1.41 +mp_err  mpp_divis(mp_int *a, mp_int *b)
    1.42 +{
    1.43 +  mp_err  res;
    1.44 +  mp_int  rem;
    1.45 +
    1.46 +  if((res = mp_init(&rem)) != MP_OKAY)
    1.47 +    return res;
    1.48 +
    1.49 +  if((res = mp_mod(a, b, &rem)) != MP_OKAY)
    1.50 +    goto CLEANUP;
    1.51 +
    1.52 +  if(mp_cmp_z(&rem) == 0)
    1.53 +    res = MP_YES;
    1.54 +  else
    1.55 +    res = MP_NO;
    1.56 +
    1.57 +CLEANUP:
    1.58 +  mp_clear(&rem);
    1.59 +  return res;
    1.60 +
    1.61 +} /* end mpp_divis() */
    1.62 +
    1.63 +/* }}} */
    1.64 +
    1.65 +/* {{{ mpp_divis_d(a, d) */
    1.66 +
    1.67 +/*
    1.68 +  mpp_divis_d(a, d)
    1.69 +
    1.70 +  Return MP_YES if a is divisible by d, or MP_NO if it is not.
    1.71 + */
    1.72 +
    1.73 +mp_err  mpp_divis_d(mp_int *a, mp_digit d)
    1.74 +{
    1.75 +  mp_err     res;
    1.76 +  mp_digit   rem;
    1.77 +
    1.78 +  ARGCHK(a != NULL, MP_BADARG);
    1.79 +
    1.80 +  if(d == 0)
    1.81 +    return MP_NO;
    1.82 +
    1.83 +  if((res = mp_mod_d(a, d, &rem)) != MP_OKAY)
    1.84 +    return res;
    1.85 +
    1.86 +  if(rem == 0)
    1.87 +    return MP_YES;
    1.88 +  else
    1.89 +    return MP_NO;
    1.90 +
    1.91 +} /* end mpp_divis_d() */
    1.92 +
    1.93 +/* }}} */
    1.94 +
    1.95 +/* {{{ mpp_random(a) */
    1.96 +
    1.97 +/*
    1.98 +  mpp_random(a)
    1.99 +
   1.100 +  Assigns a random value to a.  This value is generated using the
   1.101 +  standard C library's rand() function, so it should not be used for
   1.102 +  cryptographic purposes, but it should be fine for primality testing,
   1.103 +  since all we really care about there is good statistical properties.
   1.104 +
   1.105 +  As many digits as a currently has are filled with random digits.
   1.106 + */
   1.107 +
   1.108 +mp_err  mpp_random(mp_int *a)
   1.109 +
   1.110 +{
   1.111 +  mp_digit  next = 0;
   1.112 +  unsigned int       ix, jx;
   1.113 +
   1.114 +  ARGCHK(a != NULL, MP_BADARG);
   1.115 +
   1.116 +  for(ix = 0; ix < USED(a); ix++) {
   1.117 +    for(jx = 0; jx < sizeof(mp_digit); jx++) {
   1.118 +      next = (next << CHAR_BIT) | (RANDOM() & UCHAR_MAX);
   1.119 +    }
   1.120 +    DIGIT(a, ix) = next;
   1.121 +  }
   1.122 +
   1.123 +  return MP_OKAY;
   1.124 +
   1.125 +} /* end mpp_random() */
   1.126 +
   1.127 +/* }}} */
   1.128 +
   1.129 +/* {{{ mpp_random_size(a, prec) */
   1.130 +
   1.131 +mp_err  mpp_random_size(mp_int *a, mp_size prec)
   1.132 +{
   1.133 +  mp_err   res;
   1.134 +
   1.135 +  ARGCHK(a != NULL && prec > 0, MP_BADARG);
   1.136 +  
   1.137 +  if((res = s_mp_pad(a, prec)) != MP_OKAY)
   1.138 +    return res;
   1.139 +
   1.140 +  return mpp_random(a);
   1.141 +
   1.142 +} /* end mpp_random_size() */
   1.143 +
   1.144 +/* }}} */
   1.145 +
   1.146 +/* {{{ mpp_divis_vector(a, vec, size, which) */
   1.147 +
   1.148 +/*
   1.149 +  mpp_divis_vector(a, vec, size, which)
   1.150 +
   1.151 +  Determines if a is divisible by any of the 'size' digits in vec.
   1.152 +  Returns MP_YES and sets 'which' to the index of the offending digit,
   1.153 +  if it is; returns MP_NO if it is not.
   1.154 + */
   1.155 +
   1.156 +mp_err  mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which)
   1.157 +{
   1.158 +  ARGCHK(a != NULL && vec != NULL && size > 0, MP_BADARG);
   1.159 +  
   1.160 +  return s_mpp_divp(a, vec, size, which);
   1.161 +
   1.162 +} /* end mpp_divis_vector() */
   1.163 +
   1.164 +/* }}} */
   1.165 +
   1.166 +/* {{{ mpp_divis_primes(a, np) */
   1.167 +
   1.168 +/*
   1.169 +  mpp_divis_primes(a, np)
   1.170 +
   1.171 +  Test whether a is divisible by any of the first 'np' primes.  If it
   1.172 +  is, returns MP_YES and sets *np to the value of the digit that did
   1.173 +  it.  If not, returns MP_NO.
   1.174 + */
   1.175 +mp_err  mpp_divis_primes(mp_int *a, mp_digit *np)
   1.176 +{
   1.177 +  int     size, which;
   1.178 +  mp_err  res;
   1.179 +
   1.180 +  ARGCHK(a != NULL && np != NULL, MP_BADARG);
   1.181 +
   1.182 +  size = (int)*np;
   1.183 +  if(size > prime_tab_size)
   1.184 +    size = prime_tab_size;
   1.185 +
   1.186 +  res = mpp_divis_vector(a, prime_tab, size, &which);
   1.187 +  if(res == MP_YES) 
   1.188 +    *np = prime_tab[which];
   1.189 +
   1.190 +  return res;
   1.191 +
   1.192 +} /* end mpp_divis_primes() */
   1.193 +
   1.194 +/* }}} */
   1.195 +
   1.196 +/* {{{ mpp_fermat(a, w) */
   1.197 +
   1.198 +/*
   1.199 +  Using w as a witness, try pseudo-primality testing based on Fermat's
   1.200 +  little theorem.  If a is prime, and (w, a) = 1, then w^a == w (mod
   1.201 +  a).  So, we compute z = w^a (mod a) and compare z to w; if they are
   1.202 +  equal, the test passes and we return MP_YES.  Otherwise, we return
   1.203 +  MP_NO.
   1.204 + */
   1.205 +mp_err  mpp_fermat(mp_int *a, mp_digit w)
   1.206 +{
   1.207 +  mp_int  base, test;
   1.208 +  mp_err  res;
   1.209 +  
   1.210 +  if((res = mp_init(&base)) != MP_OKAY)
   1.211 +    return res;
   1.212 +
   1.213 +  mp_set(&base, w);
   1.214 +
   1.215 +  if((res = mp_init(&test)) != MP_OKAY)
   1.216 +    goto TEST;
   1.217 +
   1.218 +  /* Compute test = base^a (mod a) */
   1.219 +  if((res = mp_exptmod(&base, a, a, &test)) != MP_OKAY)
   1.220 +    goto CLEANUP;
   1.221 +
   1.222 +  
   1.223 +  if(mp_cmp(&base, &test) == 0)
   1.224 +    res = MP_YES;
   1.225 +  else
   1.226 +    res = MP_NO;
   1.227 +
   1.228 + CLEANUP:
   1.229 +  mp_clear(&test);
   1.230 + TEST:
   1.231 +  mp_clear(&base);
   1.232 +
   1.233 +  return res;
   1.234 +
   1.235 +} /* end mpp_fermat() */
   1.236 +
   1.237 +/* }}} */
   1.238 +
   1.239 +/*
   1.240 +  Perform the fermat test on each of the primes in a list until
   1.241 +  a) one of them shows a is not prime, or 
   1.242 +  b) the list is exhausted.
   1.243 +  Returns:  MP_YES if it passes tests.
   1.244 +	    MP_NO  if fermat test reveals it is composite
   1.245 +	    Some MP error code if some other error occurs.
   1.246 + */
   1.247 +mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes)
   1.248 +{
   1.249 +  mp_err rv = MP_YES;
   1.250 +
   1.251 +  while (nPrimes-- > 0 && rv == MP_YES) {
   1.252 +    rv = mpp_fermat(a, *primes++);
   1.253 +  }
   1.254 +  return rv;
   1.255 +}
   1.256 +
   1.257 +/* {{{ mpp_pprime(a, nt) */
   1.258 +
   1.259 +/*
   1.260 +  mpp_pprime(a, nt)
   1.261 +
   1.262 +  Performs nt iteration of the Miller-Rabin probabilistic primality
   1.263 +  test on a.  Returns MP_YES if the tests pass, MP_NO if one fails.
   1.264 +  If MP_NO is returned, the number is definitely composite.  If MP_YES
   1.265 +  is returned, it is probably prime (but that is not guaranteed).
   1.266 + */
   1.267 +
   1.268 +mp_err  mpp_pprime(mp_int *a, int nt)
   1.269 +{
   1.270 +  mp_err   res;
   1.271 +  mp_int   x, amo, m, z;	/* "amo" = "a minus one" */
   1.272 +  int      iter;
   1.273 +  unsigned int jx;
   1.274 +  mp_size  b;
   1.275 +
   1.276 +  ARGCHK(a != NULL, MP_BADARG);
   1.277 +
   1.278 +  MP_DIGITS(&x) = 0;
   1.279 +  MP_DIGITS(&amo) = 0;
   1.280 +  MP_DIGITS(&m) = 0;
   1.281 +  MP_DIGITS(&z) = 0;
   1.282 +
   1.283 +  /* Initialize temporaries... */
   1.284 +  MP_CHECKOK( mp_init(&amo));
   1.285 +  /* Compute amo = a - 1 for what follows...    */
   1.286 +  MP_CHECKOK( mp_sub_d(a, 1, &amo) );
   1.287 +
   1.288 +  b = mp_trailing_zeros(&amo);
   1.289 +  if (!b) { /* a was even ? */
   1.290 +    res = MP_NO;
   1.291 +    goto CLEANUP;
   1.292 +  }
   1.293 +
   1.294 +  MP_CHECKOK( mp_init_size(&x, MP_USED(a)) );
   1.295 +  MP_CHECKOK( mp_init(&z) );
   1.296 +  MP_CHECKOK( mp_init(&m) );
   1.297 +  MP_CHECKOK( mp_div_2d(&amo, b, &m, 0) );
   1.298 +
   1.299 +  /* Do the test nt times... */
   1.300 +  for(iter = 0; iter < nt; iter++) {
   1.301 +
   1.302 +    /* Choose a random value for 1 < x < a      */
   1.303 +    s_mp_pad(&x, USED(a));
   1.304 +    mpp_random(&x);
   1.305 +    MP_CHECKOK( mp_mod(&x, a, &x) );
   1.306 +    if(mp_cmp_d(&x, 1) <= 0) {
   1.307 +      iter--;    /* don't count this iteration */
   1.308 +      continue;  /* choose a new x */
   1.309 +    }
   1.310 +
   1.311 +    /* Compute z = (x ** m) mod a               */
   1.312 +    MP_CHECKOK( mp_exptmod(&x, &m, a, &z) );
   1.313 +    
   1.314 +    if(mp_cmp_d(&z, 1) == 0 || mp_cmp(&z, &amo) == 0) {
   1.315 +      res = MP_YES;
   1.316 +      continue;
   1.317 +    }
   1.318 +    
   1.319 +    res = MP_NO;  /* just in case the following for loop never executes. */
   1.320 +    for (jx = 1; jx < b; jx++) {
   1.321 +      /* z = z^2 (mod a) */
   1.322 +      MP_CHECKOK( mp_sqrmod(&z, a, &z) );
   1.323 +      res = MP_NO;	/* previous line set res to MP_YES */
   1.324 +
   1.325 +      if(mp_cmp_d(&z, 1) == 0) {
   1.326 +	break;
   1.327 +      }
   1.328 +      if(mp_cmp(&z, &amo) == 0) {
   1.329 +	res = MP_YES;
   1.330 +	break;
   1.331 +      } 
   1.332 +    } /* end testing loop */
   1.333 +
   1.334 +    /* If the test passes, we will continue iterating, but a failed
   1.335 +       test means the candidate is definitely NOT prime, so we will
   1.336 +       immediately break out of this loop
   1.337 +     */
   1.338 +    if(res == MP_NO)
   1.339 +      break;
   1.340 +
   1.341 +  } /* end iterations loop */
   1.342 +  
   1.343 +CLEANUP:
   1.344 +  mp_clear(&m);
   1.345 +  mp_clear(&z);
   1.346 +  mp_clear(&x);
   1.347 +  mp_clear(&amo);
   1.348 +  return res;
   1.349 +
   1.350 +} /* end mpp_pprime() */
   1.351 +
   1.352 +/* }}} */
   1.353 +
   1.354 +/* Produce table of composites from list of primes and trial value.  
   1.355 +** trial must be odd. List of primes must not include 2.
   1.356 +** sieve should have dimension >= MAXPRIME/2, where MAXPRIME is largest 
   1.357 +** prime in list of primes.  After this function is finished,
   1.358 +** if sieve[i] is non-zero, then (trial + 2*i) is composite.
   1.359 +** Each prime used in the sieve costs one division of trial, and eliminates
   1.360 +** one or more values from the search space. (3 eliminates 1/3 of the values
   1.361 +** alone!)  Each value left in the search space costs 1 or more modular 
   1.362 +** exponentations.  So, these divisions are a bargain!
   1.363 +*/
   1.364 +mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes, 
   1.365 +		 unsigned char *sieve, mp_size nSieve)
   1.366 +{
   1.367 +  mp_err       res;
   1.368 +  mp_digit     rem;
   1.369 +  mp_size      ix;
   1.370 +  unsigned long offset;
   1.371 +
   1.372 +  memset(sieve, 0, nSieve);
   1.373 +
   1.374 +  for(ix = 0; ix < nPrimes; ix++) {
   1.375 +    mp_digit prime = primes[ix];
   1.376 +    mp_size  i;
   1.377 +    if((res = mp_mod_d(trial, prime, &rem)) != MP_OKAY) 
   1.378 +      return res;
   1.379 +
   1.380 +    if (rem == 0) {
   1.381 +      offset = 0;
   1.382 +    } else {
   1.383 +      offset = prime - (rem / 2);
   1.384 +    }
   1.385 +    for (i = offset; i < nSieve ; i += prime) {
   1.386 +      sieve[i] = 1;
   1.387 +    }
   1.388 +  }
   1.389 +
   1.390 +  return MP_OKAY;
   1.391 +}
   1.392 +
   1.393 +#define SIEVE_SIZE 32*1024
   1.394 +
   1.395 +mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong,
   1.396 +		      unsigned long * nTries)
   1.397 +{
   1.398 +  mp_digit      np;
   1.399 +  mp_err        res;
   1.400 +  int           i	= 0;
   1.401 +  mp_int        trial;
   1.402 +  mp_int        q;
   1.403 +  mp_size       num_tests;
   1.404 +  unsigned char *sieve;
   1.405 +  
   1.406 +  ARGCHK(start != 0, MP_BADARG);
   1.407 +  ARGCHK(nBits > 16, MP_RANGE);
   1.408 +
   1.409 +  sieve = malloc(SIEVE_SIZE);
   1.410 +  ARGCHK(sieve != NULL, MP_MEM);
   1.411 +
   1.412 +  MP_DIGITS(&trial) = 0;
   1.413 +  MP_DIGITS(&q) = 0;
   1.414 +  MP_CHECKOK( mp_init(&trial) );
   1.415 +  MP_CHECKOK( mp_init(&q)     );
   1.416 +  /* values taken from table 4.4, HandBook of Applied Cryptography */
   1.417 +  if (nBits >= 1300) {
   1.418 +    num_tests = 2;
   1.419 +  } else if (nBits >= 850) {
   1.420 +    num_tests = 3;
   1.421 +  } else if (nBits >= 650) {
   1.422 +    num_tests = 4;
   1.423 +  } else if (nBits >= 550) {
   1.424 +    num_tests = 5;
   1.425 +  } else if (nBits >= 450) {
   1.426 +    num_tests = 6;
   1.427 +  } else if (nBits >= 400) {
   1.428 +    num_tests = 7;
   1.429 +  } else if (nBits >= 350) {
   1.430 +    num_tests = 8;
   1.431 +  } else if (nBits >= 300) {
   1.432 +    num_tests = 9;
   1.433 +  } else if (nBits >= 250) {
   1.434 +    num_tests = 12;
   1.435 +  } else if (nBits >= 200) {
   1.436 +    num_tests = 15;
   1.437 +  } else if (nBits >= 150) {
   1.438 +    num_tests = 18;
   1.439 +  } else if (nBits >= 100) {
   1.440 +    num_tests = 27;
   1.441 +  } else
   1.442 +    num_tests = 50;
   1.443 +
   1.444 +  if (strong) 
   1.445 +    --nBits;
   1.446 +  MP_CHECKOK( mpl_set_bit(start, nBits - 1, 1) );
   1.447 +  MP_CHECKOK( mpl_set_bit(start,         0, 1) );
   1.448 +  for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) {
   1.449 +    MP_CHECKOK( mpl_set_bit(start, i, 0) );
   1.450 +  }
   1.451 +  /* start sieveing with prime value of 3. */
   1.452 +  MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1, 
   1.453 +		       sieve, SIEVE_SIZE) );
   1.454 +
   1.455 +#ifdef DEBUG_SIEVE
   1.456 +  res = 0;
   1.457 +  for (i = 0; i < SIEVE_SIZE; ++i) {
   1.458 +    if (!sieve[i])
   1.459 +      ++res;
   1.460 +  }
   1.461 +  fprintf(stderr,"sieve found %d potential primes.\n", res);
   1.462 +#define FPUTC(x,y) fputc(x,y)
   1.463 +#else
   1.464 +#define FPUTC(x,y) 
   1.465 +#endif
   1.466 +
   1.467 +  res = MP_NO;
   1.468 +  for(i = 0; i < SIEVE_SIZE; ++i) {
   1.469 +    if (sieve[i])	/* this number is composite */
   1.470 +      continue;
   1.471 +    MP_CHECKOK( mp_add_d(start, 2 * i, &trial) );
   1.472 +    FPUTC('.', stderr);
   1.473 +    /* run a Fermat test */
   1.474 +    res = mpp_fermat(&trial, 2);
   1.475 +    if (res != MP_OKAY) {
   1.476 +      if (res == MP_NO)
   1.477 +	continue;	/* was composite */
   1.478 +      goto CLEANUP;
   1.479 +    }
   1.480 +      
   1.481 +    FPUTC('+', stderr);
   1.482 +    /* If that passed, run some Miller-Rabin tests	*/
   1.483 +    res = mpp_pprime(&trial, num_tests);
   1.484 +    if (res != MP_OKAY) {
   1.485 +      if (res == MP_NO)
   1.486 +	continue;	/* was composite */
   1.487 +      goto CLEANUP;
   1.488 +    }
   1.489 +    FPUTC('!', stderr);
   1.490 +
   1.491 +    if (!strong) 
   1.492 +      break;	/* success !! */
   1.493 +
   1.494 +    /* At this point, we have strong evidence that our candidate
   1.495 +       is itself prime.  If we want a strong prime, we need now
   1.496 +       to test q = 2p + 1 for primality...
   1.497 +     */
   1.498 +    MP_CHECKOK( mp_mul_2(&trial, &q) );
   1.499 +    MP_CHECKOK( mp_add_d(&q, 1, &q)  );
   1.500 +
   1.501 +    /* Test q for small prime divisors ... */
   1.502 +    np = prime_tab_size;
   1.503 +    res = mpp_divis_primes(&q, &np);
   1.504 +    if (res == MP_YES) { /* is composite */
   1.505 +      mp_clear(&q);
   1.506 +      continue;
   1.507 +    }
   1.508 +    if (res != MP_NO) 
   1.509 +      goto CLEANUP;
   1.510 +
   1.511 +    /* And test with Fermat, as with its parent ... */
   1.512 +    res = mpp_fermat(&q, 2);
   1.513 +    if (res != MP_YES) {
   1.514 +      mp_clear(&q);
   1.515 +      if (res == MP_NO)
   1.516 +	continue;	/* was composite */
   1.517 +      goto CLEANUP;
   1.518 +    }
   1.519 +
   1.520 +    /* And test with Miller-Rabin, as with its parent ... */
   1.521 +    res = mpp_pprime(&q, num_tests);
   1.522 +    if (res != MP_YES) {
   1.523 +      mp_clear(&q);
   1.524 +      if (res == MP_NO)
   1.525 +	continue;	/* was composite */
   1.526 +      goto CLEANUP;
   1.527 +    }
   1.528 +
   1.529 +    /* If it passed, we've got a winner */
   1.530 +    mp_exch(&q, &trial);
   1.531 +    mp_clear(&q);
   1.532 +    break;
   1.533 +
   1.534 +  } /* end of loop through sieved values */
   1.535 +  if (res == MP_YES) 
   1.536 +    mp_exch(&trial, start);
   1.537 +CLEANUP:
   1.538 +  mp_clear(&trial);
   1.539 +  mp_clear(&q);
   1.540 +  if (nTries)
   1.541 +    *nTries += i;
   1.542 +  if (sieve != NULL) {
   1.543 +  	memset(sieve, 0, SIEVE_SIZE);
   1.544 +  	free (sieve);
   1.545 +  }
   1.546 +  return res;
   1.547 +}
   1.548 +
   1.549 +/*========================================================================*/
   1.550 +/*------------------------------------------------------------------------*/
   1.551 +/* Static functions visible only to the library internally                */
   1.552 +
   1.553 +/* {{{ s_mpp_divp(a, vec, size, which) */
   1.554 +
   1.555 +/* 
   1.556 +   Test for divisibility by members of a vector of digits.  Returns
   1.557 +   MP_NO if a is not divisible by any of them; returns MP_YES and sets
   1.558 +   'which' to the index of the offender, if it is.  Will stop on the
   1.559 +   first digit against which a is divisible.
   1.560 + */
   1.561 +
   1.562 +mp_err    s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which)
   1.563 +{
   1.564 +  mp_err    res;
   1.565 +  mp_digit  rem;
   1.566 +
   1.567 +  int     ix;
   1.568 +
   1.569 +  for(ix = 0; ix < size; ix++) {
   1.570 +    if((res = mp_mod_d(a, vec[ix], &rem)) != MP_OKAY) 
   1.571 +      return res;
   1.572 +
   1.573 +    if(rem == 0) {
   1.574 +      if(which)
   1.575 +	*which = ix;
   1.576 +      return MP_YES;
   1.577 +    }
   1.578 +  }
   1.579 +
   1.580 +  return MP_NO;
   1.581 +
   1.582 +} /* end s_mpp_divp() */
   1.583 +
   1.584 +/* }}} */
   1.585 +
   1.586 +/*------------------------------------------------------------------------*/
   1.587 +/* HERE THERE BE DRAGONS                                                  */

mercurial