|
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
|
2 // Use of this source code is governed by a BSD-style license that can be |
|
3 // found in the LICENSE file. |
|
4 |
|
5 |
|
6 // Windows Timer Primer |
|
7 // |
|
8 // A good article: http://www.ddj.com/windows/184416651 |
|
9 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 |
|
10 // |
|
11 // The default windows timer, GetSystemTimeAsFileTime is not very precise. |
|
12 // It is only good to ~15.5ms. |
|
13 // |
|
14 // QueryPerformanceCounter is the logical choice for a high-precision timer. |
|
15 // However, it is known to be buggy on some hardware. Specifically, it can |
|
16 // sometimes "jump". On laptops, QPC can also be very expensive to call. |
|
17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower |
|
18 // on laptops. A unittest exists which will show the relative cost of various |
|
19 // timers on any system. |
|
20 // |
|
21 // The next logical choice is timeGetTime(). timeGetTime has a precision of |
|
22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other |
|
23 // applications on the system. By default, precision is only 15.5ms. |
|
24 // Unfortunately, we don't want to call timeBeginPeriod because we don't |
|
25 // want to affect other applications. Further, on mobile platforms, use of |
|
26 // faster multimedia timers can hurt battery life. See the intel |
|
27 // article about this here: |
|
28 // http://softwarecommunity.intel.com/articles/eng/1086.htm |
|
29 // |
|
30 // To work around all this, we're going to generally use timeGetTime(). We |
|
31 // will only increase the system-wide timer if we're not running on battery |
|
32 // power. Using timeBeginPeriod(1) is a requirement in order to make our |
|
33 // message loop waits have the same resolution that our time measurements |
|
34 // do. Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when |
|
35 // there is nothing else to waken the Wait. |
|
36 |
|
37 #include "base/time/time.h" |
|
38 |
|
39 #pragma comment(lib, "winmm.lib") |
|
40 #include <windows.h> |
|
41 #include <mmsystem.h> |
|
42 |
|
43 #include "base/basictypes.h" |
|
44 #include "base/cpu.h" |
|
45 #include "base/logging.h" |
|
46 #include "base/memory/singleton.h" |
|
47 #include "base/synchronization/lock.h" |
|
48 |
|
49 using base::Time; |
|
50 using base::TimeDelta; |
|
51 using base::TimeTicks; |
|
52 |
|
53 namespace { |
|
54 |
|
55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of |
|
56 // 100-nanosecond intervals since January 1, 1601 (UTC)." |
|
57 int64 FileTimeToMicroseconds(const FILETIME& ft) { |
|
58 // Need to bit_cast to fix alignment, then divide by 10 to convert |
|
59 // 100-nanoseconds to milliseconds. This only works on little-endian |
|
60 // machines. |
|
61 return bit_cast<int64, FILETIME>(ft) / 10; |
|
62 } |
|
63 |
|
64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) { |
|
65 DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not " |
|
66 "representable in FILETIME"; |
|
67 |
|
68 // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will |
|
69 // handle alignment problems. This only works on little-endian machines. |
|
70 *ft = bit_cast<FILETIME, int64>(us * 10); |
|
71 } |
|
72 |
|
73 int64 CurrentWallclockMicroseconds() { |
|
74 FILETIME ft; |
|
75 ::GetSystemTimeAsFileTime(&ft); |
|
76 return FileTimeToMicroseconds(ft); |
|
77 } |
|
78 |
|
79 // Time between resampling the un-granular clock for this API. 60 seconds. |
|
80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; |
|
81 |
|
82 int64 initial_time = 0; |
|
83 TimeTicks initial_ticks; |
|
84 |
|
85 void InitializeClock() { |
|
86 initial_ticks = TimeTicks::Now(); |
|
87 initial_time = CurrentWallclockMicroseconds(); |
|
88 } |
|
89 |
|
90 } // namespace |
|
91 |
|
92 // Time ----------------------------------------------------------------------- |
|
93 |
|
94 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 |
|
95 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the |
|
96 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding |
|
97 // 1700, 1800, and 1900. |
|
98 // static |
|
99 const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000); |
|
100 |
|
101 bool Time::high_resolution_timer_enabled_ = false; |
|
102 int Time::high_resolution_timer_activated_ = 0; |
|
103 |
|
104 // static |
|
105 Time Time::Now() { |
|
106 if (initial_time == 0) |
|
107 InitializeClock(); |
|
108 |
|
109 // We implement time using the high-resolution timers so that we can get |
|
110 // timeouts which are smaller than 10-15ms. If we just used |
|
111 // CurrentWallclockMicroseconds(), we'd have the less-granular timer. |
|
112 // |
|
113 // To make this work, we initialize the clock (initial_time) and the |
|
114 // counter (initial_ctr). To compute the initial time, we can check |
|
115 // the number of ticks that have elapsed, and compute the delta. |
|
116 // |
|
117 // To avoid any drift, we periodically resync the counters to the system |
|
118 // clock. |
|
119 while (true) { |
|
120 TimeTicks ticks = TimeTicks::Now(); |
|
121 |
|
122 // Calculate the time elapsed since we started our timer |
|
123 TimeDelta elapsed = ticks - initial_ticks; |
|
124 |
|
125 // Check if enough time has elapsed that we need to resync the clock. |
|
126 if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) { |
|
127 InitializeClock(); |
|
128 continue; |
|
129 } |
|
130 |
|
131 return Time(elapsed + Time(initial_time)); |
|
132 } |
|
133 } |
|
134 |
|
135 // static |
|
136 Time Time::NowFromSystemTime() { |
|
137 // Force resync. |
|
138 InitializeClock(); |
|
139 return Time(initial_time); |
|
140 } |
|
141 |
|
142 // static |
|
143 Time Time::FromFileTime(FILETIME ft) { |
|
144 if (bit_cast<int64, FILETIME>(ft) == 0) |
|
145 return Time(); |
|
146 if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() && |
|
147 ft.dwLowDateTime == std::numeric_limits<DWORD>::max()) |
|
148 return Max(); |
|
149 return Time(FileTimeToMicroseconds(ft)); |
|
150 } |
|
151 |
|
152 FILETIME Time::ToFileTime() const { |
|
153 if (is_null()) |
|
154 return bit_cast<FILETIME, int64>(0); |
|
155 if (is_max()) { |
|
156 FILETIME result; |
|
157 result.dwHighDateTime = std::numeric_limits<DWORD>::max(); |
|
158 result.dwLowDateTime = std::numeric_limits<DWORD>::max(); |
|
159 return result; |
|
160 } |
|
161 FILETIME utc_ft; |
|
162 MicrosecondsToFileTime(us_, &utc_ft); |
|
163 return utc_ft; |
|
164 } |
|
165 |
|
166 // static |
|
167 void Time::EnableHighResolutionTimer(bool enable) { |
|
168 // Test for single-threaded access. |
|
169 static PlatformThreadId my_thread = PlatformThread::CurrentId(); |
|
170 DCHECK(PlatformThread::CurrentId() == my_thread); |
|
171 |
|
172 if (high_resolution_timer_enabled_ == enable) |
|
173 return; |
|
174 |
|
175 high_resolution_timer_enabled_ = enable; |
|
176 } |
|
177 |
|
178 // static |
|
179 bool Time::ActivateHighResolutionTimer(bool activating) { |
|
180 if (!high_resolution_timer_enabled_ && activating) |
|
181 return false; |
|
182 |
|
183 // Using anything other than 1ms makes timers granular |
|
184 // to that interval. |
|
185 const int kMinTimerIntervalMs = 1; |
|
186 MMRESULT result; |
|
187 if (activating) { |
|
188 result = timeBeginPeriod(kMinTimerIntervalMs); |
|
189 high_resolution_timer_activated_++; |
|
190 } else { |
|
191 result = timeEndPeriod(kMinTimerIntervalMs); |
|
192 high_resolution_timer_activated_--; |
|
193 } |
|
194 return result == TIMERR_NOERROR; |
|
195 } |
|
196 |
|
197 // static |
|
198 bool Time::IsHighResolutionTimerInUse() { |
|
199 // Note: we should track the high_resolution_timer_activated_ value |
|
200 // under a lock if we want it to be accurate in a system with multiple |
|
201 // message loops. We don't do that - because we don't want to take the |
|
202 // expense of a lock for this. We *only* track this value so that unit |
|
203 // tests can see if the high resolution timer is on or off. |
|
204 return high_resolution_timer_enabled_ && |
|
205 high_resolution_timer_activated_ > 0; |
|
206 } |
|
207 |
|
208 // static |
|
209 Time Time::FromExploded(bool is_local, const Exploded& exploded) { |
|
210 // Create the system struct representing our exploded time. It will either be |
|
211 // in local time or UTC. |
|
212 SYSTEMTIME st; |
|
213 st.wYear = exploded.year; |
|
214 st.wMonth = exploded.month; |
|
215 st.wDayOfWeek = exploded.day_of_week; |
|
216 st.wDay = exploded.day_of_month; |
|
217 st.wHour = exploded.hour; |
|
218 st.wMinute = exploded.minute; |
|
219 st.wSecond = exploded.second; |
|
220 st.wMilliseconds = exploded.millisecond; |
|
221 |
|
222 FILETIME ft; |
|
223 bool success = true; |
|
224 // Ensure that it's in UTC. |
|
225 if (is_local) { |
|
226 SYSTEMTIME utc_st; |
|
227 success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) && |
|
228 SystemTimeToFileTime(&utc_st, &ft); |
|
229 } else { |
|
230 success = !!SystemTimeToFileTime(&st, &ft); |
|
231 } |
|
232 |
|
233 if (!success) { |
|
234 NOTREACHED() << "Unable to convert time"; |
|
235 return Time(0); |
|
236 } |
|
237 return Time(FileTimeToMicroseconds(ft)); |
|
238 } |
|
239 |
|
240 void Time::Explode(bool is_local, Exploded* exploded) const { |
|
241 if (us_ < 0LL) { |
|
242 // We are not able to convert it to FILETIME. |
|
243 ZeroMemory(exploded, sizeof(*exploded)); |
|
244 return; |
|
245 } |
|
246 |
|
247 // FILETIME in UTC. |
|
248 FILETIME utc_ft; |
|
249 MicrosecondsToFileTime(us_, &utc_ft); |
|
250 |
|
251 // FILETIME in local time if necessary. |
|
252 bool success = true; |
|
253 // FILETIME in SYSTEMTIME (exploded). |
|
254 SYSTEMTIME st; |
|
255 if (is_local) { |
|
256 SYSTEMTIME utc_st; |
|
257 // We don't use FileTimeToLocalFileTime here, since it uses the current |
|
258 // settings for the time zone and daylight saving time. Therefore, if it is |
|
259 // daylight saving time, it will take daylight saving time into account, |
|
260 // even if the time you are converting is in standard time. |
|
261 success = FileTimeToSystemTime(&utc_ft, &utc_st) && |
|
262 SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st); |
|
263 } else { |
|
264 success = !!FileTimeToSystemTime(&utc_ft, &st); |
|
265 } |
|
266 |
|
267 if (!success) { |
|
268 NOTREACHED() << "Unable to convert time, don't know why"; |
|
269 ZeroMemory(exploded, sizeof(*exploded)); |
|
270 return; |
|
271 } |
|
272 |
|
273 exploded->year = st.wYear; |
|
274 exploded->month = st.wMonth; |
|
275 exploded->day_of_week = st.wDayOfWeek; |
|
276 exploded->day_of_month = st.wDay; |
|
277 exploded->hour = st.wHour; |
|
278 exploded->minute = st.wMinute; |
|
279 exploded->second = st.wSecond; |
|
280 exploded->millisecond = st.wMilliseconds; |
|
281 } |
|
282 |
|
283 // TimeTicks ------------------------------------------------------------------ |
|
284 namespace { |
|
285 |
|
286 // We define a wrapper to adapt between the __stdcall and __cdecl call of the |
|
287 // mock function, and to avoid a static constructor. Assigning an import to a |
|
288 // function pointer directly would require setup code to fetch from the IAT. |
|
289 DWORD timeGetTimeWrapper() { |
|
290 return timeGetTime(); |
|
291 } |
|
292 |
|
293 DWORD (*tick_function)(void) = &timeGetTimeWrapper; |
|
294 |
|
295 // Accumulation of time lost due to rollover (in milliseconds). |
|
296 int64 rollover_ms = 0; |
|
297 |
|
298 // The last timeGetTime value we saw, to detect rollover. |
|
299 DWORD last_seen_now = 0; |
|
300 |
|
301 // Lock protecting rollover_ms and last_seen_now. |
|
302 // Note: this is a global object, and we usually avoid these. However, the time |
|
303 // code is low-level, and we don't want to use Singletons here (it would be too |
|
304 // easy to use a Singleton without even knowing it, and that may lead to many |
|
305 // gotchas). Its impact on startup time should be negligible due to low-level |
|
306 // nature of time code. |
|
307 base::Lock rollover_lock; |
|
308 |
|
309 // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic |
|
310 // because it returns the number of milliseconds since Windows has started, |
|
311 // which will roll over the 32-bit value every ~49 days. We try to track |
|
312 // rollover ourselves, which works if TimeTicks::Now() is called at least every |
|
313 // 49 days. |
|
314 TimeDelta RolloverProtectedNow() { |
|
315 base::AutoLock locked(rollover_lock); |
|
316 // We should hold the lock while calling tick_function to make sure that |
|
317 // we keep last_seen_now stay correctly in sync. |
|
318 DWORD now = tick_function(); |
|
319 if (now < last_seen_now) |
|
320 rollover_ms += 0x100000000I64; // ~49.7 days. |
|
321 last_seen_now = now; |
|
322 return TimeDelta::FromMilliseconds(now + rollover_ms); |
|
323 } |
|
324 |
|
325 bool IsBuggyAthlon(const base::CPU& cpu) { |
|
326 // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is |
|
327 // unreliable. Fallback to low-res clock. |
|
328 return cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15; |
|
329 } |
|
330 |
|
331 // Overview of time counters: |
|
332 // (1) CPU cycle counter. (Retrieved via RDTSC) |
|
333 // The CPU counter provides the highest resolution time stamp and is the least |
|
334 // expensive to retrieve. However, the CPU counter is unreliable and should not |
|
335 // be used in production. Its biggest issue is that it is per processor and it |
|
336 // is not synchronized between processors. Also, on some computers, the counters |
|
337 // will change frequency due to thermal and power changes, and stop in some |
|
338 // states. |
|
339 // |
|
340 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- |
|
341 // resolution (100 nanoseconds) time stamp but is comparatively more expensive |
|
342 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. |
|
343 // (with some help from ACPI). |
|
344 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx |
|
345 // in the worst case, it gets the counter from the rollover interrupt on the |
|
346 // programmable interrupt timer. In best cases, the HAL may conclude that the |
|
347 // RDTSC counter runs at a constant frequency, then it uses that instead. On |
|
348 // multiprocessor machines, it will try to verify the values returned from |
|
349 // RDTSC on each processor are consistent with each other, and apply a handful |
|
350 // of workarounds for known buggy hardware. In other words, QPC is supposed to |
|
351 // give consistent result on a multiprocessor computer, but it is unreliable in |
|
352 // reality due to bugs in BIOS or HAL on some, especially old computers. |
|
353 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but |
|
354 // it should be used with caution. |
|
355 // |
|
356 // (3) System time. The system time provides a low-resolution (typically 10ms |
|
357 // to 55 milliseconds) time stamp but is comparatively less expensive to |
|
358 // retrieve and more reliable. |
|
359 class HighResNowSingleton { |
|
360 public: |
|
361 static HighResNowSingleton* GetInstance() { |
|
362 return Singleton<HighResNowSingleton>::get(); |
|
363 } |
|
364 |
|
365 bool IsUsingHighResClock() { |
|
366 return ticks_per_second_ != 0.0; |
|
367 } |
|
368 |
|
369 void DisableHighResClock() { |
|
370 ticks_per_second_ = 0.0; |
|
371 } |
|
372 |
|
373 TimeDelta Now() { |
|
374 if (IsUsingHighResClock()) |
|
375 return TimeDelta::FromMicroseconds(UnreliableNow()); |
|
376 |
|
377 // Just fallback to the slower clock. |
|
378 return RolloverProtectedNow(); |
|
379 } |
|
380 |
|
381 int64 GetQPCDriftMicroseconds() { |
|
382 if (!IsUsingHighResClock()) |
|
383 return 0; |
|
384 return abs((UnreliableNow() - ReliableNow()) - skew_); |
|
385 } |
|
386 |
|
387 int64 QPCValueToMicroseconds(LONGLONG qpc_value) { |
|
388 if (!ticks_per_second_) |
|
389 return 0; |
|
390 |
|
391 // Intentionally calculate microseconds in a round about manner to avoid |
|
392 // overflow and precision issues. Think twice before simplifying! |
|
393 int64 whole_seconds = qpc_value / ticks_per_second_; |
|
394 int64 leftover_ticks = qpc_value % ticks_per_second_; |
|
395 int64 microseconds = (whole_seconds * Time::kMicrosecondsPerSecond) + |
|
396 ((leftover_ticks * Time::kMicrosecondsPerSecond) / |
|
397 ticks_per_second_); |
|
398 return microseconds; |
|
399 } |
|
400 |
|
401 private: |
|
402 HighResNowSingleton() |
|
403 : ticks_per_second_(0), |
|
404 skew_(0) { |
|
405 InitializeClock(); |
|
406 |
|
407 base::CPU cpu; |
|
408 if (IsBuggyAthlon(cpu)) |
|
409 DisableHighResClock(); |
|
410 } |
|
411 |
|
412 // Synchronize the QPC clock with GetSystemTimeAsFileTime. |
|
413 void InitializeClock() { |
|
414 LARGE_INTEGER ticks_per_sec = {0}; |
|
415 if (!QueryPerformanceFrequency(&ticks_per_sec)) |
|
416 return; // Broken, we don't guarantee this function works. |
|
417 ticks_per_second_ = ticks_per_sec.QuadPart; |
|
418 |
|
419 skew_ = UnreliableNow() - ReliableNow(); |
|
420 } |
|
421 |
|
422 // Get the number of microseconds since boot in an unreliable fashion. |
|
423 int64 UnreliableNow() { |
|
424 LARGE_INTEGER now; |
|
425 QueryPerformanceCounter(&now); |
|
426 return QPCValueToMicroseconds(now.QuadPart); |
|
427 } |
|
428 |
|
429 // Get the number of microseconds since boot in a reliable fashion. |
|
430 int64 ReliableNow() { |
|
431 return RolloverProtectedNow().InMicroseconds(); |
|
432 } |
|
433 |
|
434 int64 ticks_per_second_; // 0 indicates QPF failed and we're broken. |
|
435 int64 skew_; // Skew between lo-res and hi-res clocks (for debugging). |
|
436 |
|
437 friend struct DefaultSingletonTraits<HighResNowSingleton>; |
|
438 }; |
|
439 |
|
440 TimeDelta HighResNowWrapper() { |
|
441 return HighResNowSingleton::GetInstance()->Now(); |
|
442 } |
|
443 |
|
444 typedef TimeDelta (*NowFunction)(void); |
|
445 NowFunction now_function = RolloverProtectedNow; |
|
446 |
|
447 bool CPUReliablySupportsHighResTime() { |
|
448 base::CPU cpu; |
|
449 if (!cpu.has_non_stop_time_stamp_counter()) |
|
450 return false; |
|
451 |
|
452 if (IsBuggyAthlon(cpu)) |
|
453 return false; |
|
454 |
|
455 return true; |
|
456 } |
|
457 |
|
458 } // namespace |
|
459 |
|
460 // static |
|
461 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction( |
|
462 TickFunctionType ticker) { |
|
463 base::AutoLock locked(rollover_lock); |
|
464 TickFunctionType old = tick_function; |
|
465 tick_function = ticker; |
|
466 rollover_ms = 0; |
|
467 last_seen_now = 0; |
|
468 return old; |
|
469 } |
|
470 |
|
471 // static |
|
472 bool TimeTicks::SetNowIsHighResNowIfSupported() { |
|
473 if (!CPUReliablySupportsHighResTime()) { |
|
474 return false; |
|
475 } |
|
476 |
|
477 now_function = HighResNowWrapper; |
|
478 return true; |
|
479 } |
|
480 |
|
481 // static |
|
482 TimeTicks TimeTicks::Now() { |
|
483 return TimeTicks() + now_function(); |
|
484 } |
|
485 |
|
486 // static |
|
487 TimeTicks TimeTicks::HighResNow() { |
|
488 return TimeTicks() + HighResNowSingleton::GetInstance()->Now(); |
|
489 } |
|
490 |
|
491 // static |
|
492 TimeTicks TimeTicks::ThreadNow() { |
|
493 NOTREACHED(); |
|
494 return TimeTicks(); |
|
495 } |
|
496 |
|
497 // static |
|
498 TimeTicks TimeTicks::NowFromSystemTraceTime() { |
|
499 return HighResNow(); |
|
500 } |
|
501 |
|
502 // static |
|
503 int64 TimeTicks::GetQPCDriftMicroseconds() { |
|
504 return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds(); |
|
505 } |
|
506 |
|
507 // static |
|
508 TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) { |
|
509 return TimeTicks( |
|
510 HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value)); |
|
511 } |
|
512 |
|
513 // static |
|
514 bool TimeTicks::IsHighResClockWorking() { |
|
515 return HighResNowSingleton::GetInstance()->IsUsingHighResClock(); |
|
516 } |
|
517 |
|
518 TimeTicks TimeTicks::UnprotectedNow() { |
|
519 if (now_function == HighResNowWrapper) { |
|
520 return Now(); |
|
521 } else { |
|
522 return TimeTicks() + TimeDelta::FromMilliseconds(timeGetTime()); |
|
523 } |
|
524 } |
|
525 |
|
526 // TimeDelta ------------------------------------------------------------------ |
|
527 |
|
528 // static |
|
529 TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) { |
|
530 return TimeDelta( |
|
531 HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value)); |
|
532 } |