security/sandbox/chromium/base/time/time_win.cc

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/security/sandbox/chromium/base/time/time_win.cc	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,532 @@
     1.4 +// Copyright (c) 2012 The Chromium Authors. All rights reserved.
     1.5 +// Use of this source code is governed by a BSD-style license that can be
     1.6 +// found in the LICENSE file.
     1.7 +
     1.8 +
     1.9 +// Windows Timer Primer
    1.10 +//
    1.11 +// A good article:  http://www.ddj.com/windows/184416651
    1.12 +// A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
    1.13 +//
    1.14 +// The default windows timer, GetSystemTimeAsFileTime is not very precise.
    1.15 +// It is only good to ~15.5ms.
    1.16 +//
    1.17 +// QueryPerformanceCounter is the logical choice for a high-precision timer.
    1.18 +// However, it is known to be buggy on some hardware.  Specifically, it can
    1.19 +// sometimes "jump".  On laptops, QPC can also be very expensive to call.
    1.20 +// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
    1.21 +// on laptops.  A unittest exists which will show the relative cost of various
    1.22 +// timers on any system.
    1.23 +//
    1.24 +// The next logical choice is timeGetTime().  timeGetTime has a precision of
    1.25 +// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
    1.26 +// applications on the system.  By default, precision is only 15.5ms.
    1.27 +// Unfortunately, we don't want to call timeBeginPeriod because we don't
    1.28 +// want to affect other applications.  Further, on mobile platforms, use of
    1.29 +// faster multimedia timers can hurt battery life.  See the intel
    1.30 +// article about this here:
    1.31 +// http://softwarecommunity.intel.com/articles/eng/1086.htm
    1.32 +//
    1.33 +// To work around all this, we're going to generally use timeGetTime().  We
    1.34 +// will only increase the system-wide timer if we're not running on battery
    1.35 +// power.  Using timeBeginPeriod(1) is a requirement in order to make our
    1.36 +// message loop waits have the same resolution that our time measurements
    1.37 +// do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
    1.38 +// there is nothing else to waken the Wait.
    1.39 +
    1.40 +#include "base/time/time.h"
    1.41 +
    1.42 +#pragma comment(lib, "winmm.lib")
    1.43 +#include <windows.h>
    1.44 +#include <mmsystem.h>
    1.45 +
    1.46 +#include "base/basictypes.h"
    1.47 +#include "base/cpu.h"
    1.48 +#include "base/logging.h"
    1.49 +#include "base/memory/singleton.h"
    1.50 +#include "base/synchronization/lock.h"
    1.51 +
    1.52 +using base::Time;
    1.53 +using base::TimeDelta;
    1.54 +using base::TimeTicks;
    1.55 +
    1.56 +namespace {
    1.57 +
    1.58 +// From MSDN, FILETIME "Contains a 64-bit value representing the number of
    1.59 +// 100-nanosecond intervals since January 1, 1601 (UTC)."
    1.60 +int64 FileTimeToMicroseconds(const FILETIME& ft) {
    1.61 +  // Need to bit_cast to fix alignment, then divide by 10 to convert
    1.62 +  // 100-nanoseconds to milliseconds. This only works on little-endian
    1.63 +  // machines.
    1.64 +  return bit_cast<int64, FILETIME>(ft) / 10;
    1.65 +}
    1.66 +
    1.67 +void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
    1.68 +  DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not "
    1.69 +      "representable in FILETIME";
    1.70 +
    1.71 +  // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
    1.72 +  // handle alignment problems. This only works on little-endian machines.
    1.73 +  *ft = bit_cast<FILETIME, int64>(us * 10);
    1.74 +}
    1.75 +
    1.76 +int64 CurrentWallclockMicroseconds() {
    1.77 +  FILETIME ft;
    1.78 +  ::GetSystemTimeAsFileTime(&ft);
    1.79 +  return FileTimeToMicroseconds(ft);
    1.80 +}
    1.81 +
    1.82 +// Time between resampling the un-granular clock for this API.  60 seconds.
    1.83 +const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
    1.84 +
    1.85 +int64 initial_time = 0;
    1.86 +TimeTicks initial_ticks;
    1.87 +
    1.88 +void InitializeClock() {
    1.89 +  initial_ticks = TimeTicks::Now();
    1.90 +  initial_time = CurrentWallclockMicroseconds();
    1.91 +}
    1.92 +
    1.93 +}  // namespace
    1.94 +
    1.95 +// Time -----------------------------------------------------------------------
    1.96 +
    1.97 +// The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
    1.98 +// 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
    1.99 +// number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
   1.100 +// 1700, 1800, and 1900.
   1.101 +// static
   1.102 +const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
   1.103 +
   1.104 +bool Time::high_resolution_timer_enabled_ = false;
   1.105 +int Time::high_resolution_timer_activated_ = 0;
   1.106 +
   1.107 +// static
   1.108 +Time Time::Now() {
   1.109 +  if (initial_time == 0)
   1.110 +    InitializeClock();
   1.111 +
   1.112 +  // We implement time using the high-resolution timers so that we can get
   1.113 +  // timeouts which are smaller than 10-15ms.  If we just used
   1.114 +  // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
   1.115 +  //
   1.116 +  // To make this work, we initialize the clock (initial_time) and the
   1.117 +  // counter (initial_ctr).  To compute the initial time, we can check
   1.118 +  // the number of ticks that have elapsed, and compute the delta.
   1.119 +  //
   1.120 +  // To avoid any drift, we periodically resync the counters to the system
   1.121 +  // clock.
   1.122 +  while (true) {
   1.123 +    TimeTicks ticks = TimeTicks::Now();
   1.124 +
   1.125 +    // Calculate the time elapsed since we started our timer
   1.126 +    TimeDelta elapsed = ticks - initial_ticks;
   1.127 +
   1.128 +    // Check if enough time has elapsed that we need to resync the clock.
   1.129 +    if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
   1.130 +      InitializeClock();
   1.131 +      continue;
   1.132 +    }
   1.133 +
   1.134 +    return Time(elapsed + Time(initial_time));
   1.135 +  }
   1.136 +}
   1.137 +
   1.138 +// static
   1.139 +Time Time::NowFromSystemTime() {
   1.140 +  // Force resync.
   1.141 +  InitializeClock();
   1.142 +  return Time(initial_time);
   1.143 +}
   1.144 +
   1.145 +// static
   1.146 +Time Time::FromFileTime(FILETIME ft) {
   1.147 +  if (bit_cast<int64, FILETIME>(ft) == 0)
   1.148 +    return Time();
   1.149 +  if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
   1.150 +      ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
   1.151 +    return Max();
   1.152 +  return Time(FileTimeToMicroseconds(ft));
   1.153 +}
   1.154 +
   1.155 +FILETIME Time::ToFileTime() const {
   1.156 +  if (is_null())
   1.157 +    return bit_cast<FILETIME, int64>(0);
   1.158 +  if (is_max()) {
   1.159 +    FILETIME result;
   1.160 +    result.dwHighDateTime = std::numeric_limits<DWORD>::max();
   1.161 +    result.dwLowDateTime = std::numeric_limits<DWORD>::max();
   1.162 +    return result;
   1.163 +  }
   1.164 +  FILETIME utc_ft;
   1.165 +  MicrosecondsToFileTime(us_, &utc_ft);
   1.166 +  return utc_ft;
   1.167 +}
   1.168 +
   1.169 +// static
   1.170 +void Time::EnableHighResolutionTimer(bool enable) {
   1.171 +  // Test for single-threaded access.
   1.172 +  static PlatformThreadId my_thread = PlatformThread::CurrentId();
   1.173 +  DCHECK(PlatformThread::CurrentId() == my_thread);
   1.174 +
   1.175 +  if (high_resolution_timer_enabled_ == enable)
   1.176 +    return;
   1.177 +
   1.178 +  high_resolution_timer_enabled_ = enable;
   1.179 +}
   1.180 +
   1.181 +// static
   1.182 +bool Time::ActivateHighResolutionTimer(bool activating) {
   1.183 +  if (!high_resolution_timer_enabled_ && activating)
   1.184 +    return false;
   1.185 +
   1.186 +  // Using anything other than 1ms makes timers granular
   1.187 +  // to that interval.
   1.188 +  const int kMinTimerIntervalMs = 1;
   1.189 +  MMRESULT result;
   1.190 +  if (activating) {
   1.191 +    result = timeBeginPeriod(kMinTimerIntervalMs);
   1.192 +    high_resolution_timer_activated_++;
   1.193 +  } else {
   1.194 +    result = timeEndPeriod(kMinTimerIntervalMs);
   1.195 +    high_resolution_timer_activated_--;
   1.196 +  }
   1.197 +  return result == TIMERR_NOERROR;
   1.198 +}
   1.199 +
   1.200 +// static
   1.201 +bool Time::IsHighResolutionTimerInUse() {
   1.202 +  // Note:  we should track the high_resolution_timer_activated_ value
   1.203 +  // under a lock if we want it to be accurate in a system with multiple
   1.204 +  // message loops.  We don't do that - because we don't want to take the
   1.205 +  // expense of a lock for this.  We *only* track this value so that unit
   1.206 +  // tests can see if the high resolution timer is on or off.
   1.207 +  return high_resolution_timer_enabled_ &&
   1.208 +      high_resolution_timer_activated_ > 0;
   1.209 +}
   1.210 +
   1.211 +// static
   1.212 +Time Time::FromExploded(bool is_local, const Exploded& exploded) {
   1.213 +  // Create the system struct representing our exploded time. It will either be
   1.214 +  // in local time or UTC.
   1.215 +  SYSTEMTIME st;
   1.216 +  st.wYear = exploded.year;
   1.217 +  st.wMonth = exploded.month;
   1.218 +  st.wDayOfWeek = exploded.day_of_week;
   1.219 +  st.wDay = exploded.day_of_month;
   1.220 +  st.wHour = exploded.hour;
   1.221 +  st.wMinute = exploded.minute;
   1.222 +  st.wSecond = exploded.second;
   1.223 +  st.wMilliseconds = exploded.millisecond;
   1.224 +
   1.225 +  FILETIME ft;
   1.226 +  bool success = true;
   1.227 +  // Ensure that it's in UTC.
   1.228 +  if (is_local) {
   1.229 +    SYSTEMTIME utc_st;
   1.230 +    success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) &&
   1.231 +              SystemTimeToFileTime(&utc_st, &ft);
   1.232 +  } else {
   1.233 +    success = !!SystemTimeToFileTime(&st, &ft);
   1.234 +  }
   1.235 +
   1.236 +  if (!success) {
   1.237 +    NOTREACHED() << "Unable to convert time";
   1.238 +    return Time(0);
   1.239 +  }
   1.240 +  return Time(FileTimeToMicroseconds(ft));
   1.241 +}
   1.242 +
   1.243 +void Time::Explode(bool is_local, Exploded* exploded) const {
   1.244 +  if (us_ < 0LL) {
   1.245 +    // We are not able to convert it to FILETIME.
   1.246 +    ZeroMemory(exploded, sizeof(*exploded));
   1.247 +    return;
   1.248 +  }
   1.249 +
   1.250 +  // FILETIME in UTC.
   1.251 +  FILETIME utc_ft;
   1.252 +  MicrosecondsToFileTime(us_, &utc_ft);
   1.253 +
   1.254 +  // FILETIME in local time if necessary.
   1.255 +  bool success = true;
   1.256 +  // FILETIME in SYSTEMTIME (exploded).
   1.257 +  SYSTEMTIME st;
   1.258 +  if (is_local) {
   1.259 +    SYSTEMTIME utc_st;
   1.260 +    // We don't use FileTimeToLocalFileTime here, since it uses the current
   1.261 +    // settings for the time zone and daylight saving time. Therefore, if it is
   1.262 +    // daylight saving time, it will take daylight saving time into account,
   1.263 +    // even if the time you are converting is in standard time.
   1.264 +    success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
   1.265 +              SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st);
   1.266 +  } else {
   1.267 +    success = !!FileTimeToSystemTime(&utc_ft, &st);
   1.268 +  }
   1.269 +
   1.270 +  if (!success) {
   1.271 +    NOTREACHED() << "Unable to convert time, don't know why";
   1.272 +    ZeroMemory(exploded, sizeof(*exploded));
   1.273 +    return;
   1.274 +  }
   1.275 +
   1.276 +  exploded->year = st.wYear;
   1.277 +  exploded->month = st.wMonth;
   1.278 +  exploded->day_of_week = st.wDayOfWeek;
   1.279 +  exploded->day_of_month = st.wDay;
   1.280 +  exploded->hour = st.wHour;
   1.281 +  exploded->minute = st.wMinute;
   1.282 +  exploded->second = st.wSecond;
   1.283 +  exploded->millisecond = st.wMilliseconds;
   1.284 +}
   1.285 +
   1.286 +// TimeTicks ------------------------------------------------------------------
   1.287 +namespace {
   1.288 +
   1.289 +// We define a wrapper to adapt between the __stdcall and __cdecl call of the
   1.290 +// mock function, and to avoid a static constructor.  Assigning an import to a
   1.291 +// function pointer directly would require setup code to fetch from the IAT.
   1.292 +DWORD timeGetTimeWrapper() {
   1.293 +  return timeGetTime();
   1.294 +}
   1.295 +
   1.296 +DWORD (*tick_function)(void) = &timeGetTimeWrapper;
   1.297 +
   1.298 +// Accumulation of time lost due to rollover (in milliseconds).
   1.299 +int64 rollover_ms = 0;
   1.300 +
   1.301 +// The last timeGetTime value we saw, to detect rollover.
   1.302 +DWORD last_seen_now = 0;
   1.303 +
   1.304 +// Lock protecting rollover_ms and last_seen_now.
   1.305 +// Note: this is a global object, and we usually avoid these. However, the time
   1.306 +// code is low-level, and we don't want to use Singletons here (it would be too
   1.307 +// easy to use a Singleton without even knowing it, and that may lead to many
   1.308 +// gotchas). Its impact on startup time should be negligible due to low-level
   1.309 +// nature of time code.
   1.310 +base::Lock rollover_lock;
   1.311 +
   1.312 +// We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
   1.313 +// because it returns the number of milliseconds since Windows has started,
   1.314 +// which will roll over the 32-bit value every ~49 days.  We try to track
   1.315 +// rollover ourselves, which works if TimeTicks::Now() is called at least every
   1.316 +// 49 days.
   1.317 +TimeDelta RolloverProtectedNow() {
   1.318 +  base::AutoLock locked(rollover_lock);
   1.319 +  // We should hold the lock while calling tick_function to make sure that
   1.320 +  // we keep last_seen_now stay correctly in sync.
   1.321 +  DWORD now = tick_function();
   1.322 +  if (now < last_seen_now)
   1.323 +    rollover_ms += 0x100000000I64;  // ~49.7 days.
   1.324 +  last_seen_now = now;
   1.325 +  return TimeDelta::FromMilliseconds(now + rollover_ms);
   1.326 +}
   1.327 +
   1.328 +bool IsBuggyAthlon(const base::CPU& cpu) {
   1.329 +  // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
   1.330 +  // unreliable.  Fallback to low-res clock.
   1.331 +  return cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15;
   1.332 +}
   1.333 +
   1.334 +// Overview of time counters:
   1.335 +// (1) CPU cycle counter. (Retrieved via RDTSC)
   1.336 +// The CPU counter provides the highest resolution time stamp and is the least
   1.337 +// expensive to retrieve. However, the CPU counter is unreliable and should not
   1.338 +// be used in production. Its biggest issue is that it is per processor and it
   1.339 +// is not synchronized between processors. Also, on some computers, the counters
   1.340 +// will change frequency due to thermal and power changes, and stop in some
   1.341 +// states.
   1.342 +//
   1.343 +// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
   1.344 +// resolution (100 nanoseconds) time stamp but is comparatively more expensive
   1.345 +// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
   1.346 +// (with some help from ACPI).
   1.347 +// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
   1.348 +// in the worst case, it gets the counter from the rollover interrupt on the
   1.349 +// programmable interrupt timer. In best cases, the HAL may conclude that the
   1.350 +// RDTSC counter runs at a constant frequency, then it uses that instead. On
   1.351 +// multiprocessor machines, it will try to verify the values returned from
   1.352 +// RDTSC on each processor are consistent with each other, and apply a handful
   1.353 +// of workarounds for known buggy hardware. In other words, QPC is supposed to
   1.354 +// give consistent result on a multiprocessor computer, but it is unreliable in
   1.355 +// reality due to bugs in BIOS or HAL on some, especially old computers.
   1.356 +// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
   1.357 +// it should be used with caution.
   1.358 +//
   1.359 +// (3) System time. The system time provides a low-resolution (typically 10ms
   1.360 +// to 55 milliseconds) time stamp but is comparatively less expensive to
   1.361 +// retrieve and more reliable.
   1.362 +class HighResNowSingleton {
   1.363 + public:
   1.364 +  static HighResNowSingleton* GetInstance() {
   1.365 +    return Singleton<HighResNowSingleton>::get();
   1.366 +  }
   1.367 +
   1.368 +  bool IsUsingHighResClock() {
   1.369 +    return ticks_per_second_ != 0.0;
   1.370 +  }
   1.371 +
   1.372 +  void DisableHighResClock() {
   1.373 +    ticks_per_second_ = 0.0;
   1.374 +  }
   1.375 +
   1.376 +  TimeDelta Now() {
   1.377 +    if (IsUsingHighResClock())
   1.378 +      return TimeDelta::FromMicroseconds(UnreliableNow());
   1.379 +
   1.380 +    // Just fallback to the slower clock.
   1.381 +    return RolloverProtectedNow();
   1.382 +  }
   1.383 +
   1.384 +  int64 GetQPCDriftMicroseconds() {
   1.385 +    if (!IsUsingHighResClock())
   1.386 +      return 0;
   1.387 +    return abs((UnreliableNow() - ReliableNow()) - skew_);
   1.388 +  }
   1.389 +
   1.390 +  int64 QPCValueToMicroseconds(LONGLONG qpc_value) {
   1.391 +    if (!ticks_per_second_)
   1.392 +      return 0;
   1.393 +
   1.394 +    // Intentionally calculate microseconds in a round about manner to avoid
   1.395 +    // overflow and precision issues. Think twice before simplifying!
   1.396 +    int64 whole_seconds = qpc_value / ticks_per_second_;
   1.397 +    int64 leftover_ticks = qpc_value % ticks_per_second_;
   1.398 +    int64 microseconds = (whole_seconds * Time::kMicrosecondsPerSecond) +
   1.399 +                         ((leftover_ticks * Time::kMicrosecondsPerSecond) /
   1.400 +                          ticks_per_second_);
   1.401 +    return microseconds;
   1.402 +  }
   1.403 +
   1.404 + private:
   1.405 +  HighResNowSingleton()
   1.406 +    : ticks_per_second_(0),
   1.407 +      skew_(0) {
   1.408 +    InitializeClock();
   1.409 +
   1.410 +    base::CPU cpu;
   1.411 +    if (IsBuggyAthlon(cpu))
   1.412 +      DisableHighResClock();
   1.413 +  }
   1.414 +
   1.415 +  // Synchronize the QPC clock with GetSystemTimeAsFileTime.
   1.416 +  void InitializeClock() {
   1.417 +    LARGE_INTEGER ticks_per_sec = {0};
   1.418 +    if (!QueryPerformanceFrequency(&ticks_per_sec))
   1.419 +      return;  // Broken, we don't guarantee this function works.
   1.420 +    ticks_per_second_ = ticks_per_sec.QuadPart;
   1.421 +
   1.422 +    skew_ = UnreliableNow() - ReliableNow();
   1.423 +  }
   1.424 +
   1.425 +  // Get the number of microseconds since boot in an unreliable fashion.
   1.426 +  int64 UnreliableNow() {
   1.427 +    LARGE_INTEGER now;
   1.428 +    QueryPerformanceCounter(&now);
   1.429 +    return QPCValueToMicroseconds(now.QuadPart);
   1.430 +  }
   1.431 +
   1.432 +  // Get the number of microseconds since boot in a reliable fashion.
   1.433 +  int64 ReliableNow() {
   1.434 +    return RolloverProtectedNow().InMicroseconds();
   1.435 +  }
   1.436 +
   1.437 +  int64 ticks_per_second_;  // 0 indicates QPF failed and we're broken.
   1.438 +  int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
   1.439 +
   1.440 +  friend struct DefaultSingletonTraits<HighResNowSingleton>;
   1.441 +};
   1.442 +
   1.443 +TimeDelta HighResNowWrapper() {
   1.444 +  return HighResNowSingleton::GetInstance()->Now();
   1.445 +}
   1.446 +
   1.447 +typedef TimeDelta (*NowFunction)(void);
   1.448 +NowFunction now_function = RolloverProtectedNow;
   1.449 +
   1.450 +bool CPUReliablySupportsHighResTime() {
   1.451 +  base::CPU cpu;
   1.452 +  if (!cpu.has_non_stop_time_stamp_counter())
   1.453 +    return false;
   1.454 +
   1.455 +  if (IsBuggyAthlon(cpu))
   1.456 +    return false;
   1.457 +
   1.458 +  return true;
   1.459 +}
   1.460 +
   1.461 +}  // namespace
   1.462 +
   1.463 +// static
   1.464 +TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
   1.465 +    TickFunctionType ticker) {
   1.466 +  base::AutoLock locked(rollover_lock);
   1.467 +  TickFunctionType old = tick_function;
   1.468 +  tick_function = ticker;
   1.469 +  rollover_ms = 0;
   1.470 +  last_seen_now = 0;
   1.471 +  return old;
   1.472 +}
   1.473 +
   1.474 +// static
   1.475 +bool TimeTicks::SetNowIsHighResNowIfSupported() {
   1.476 +  if (!CPUReliablySupportsHighResTime()) {
   1.477 +    return false;
   1.478 +  }
   1.479 +
   1.480 +  now_function = HighResNowWrapper;
   1.481 +  return true;
   1.482 +}
   1.483 +
   1.484 +// static
   1.485 +TimeTicks TimeTicks::Now() {
   1.486 +  return TimeTicks() + now_function();
   1.487 +}
   1.488 +
   1.489 +// static
   1.490 +TimeTicks TimeTicks::HighResNow() {
   1.491 +  return TimeTicks() + HighResNowSingleton::GetInstance()->Now();
   1.492 +}
   1.493 +
   1.494 +// static
   1.495 +TimeTicks TimeTicks::ThreadNow() {
   1.496 +  NOTREACHED();
   1.497 +  return TimeTicks();
   1.498 +}
   1.499 +
   1.500 +// static
   1.501 +TimeTicks TimeTicks::NowFromSystemTraceTime() {
   1.502 +  return HighResNow();
   1.503 +}
   1.504 +
   1.505 +// static
   1.506 +int64 TimeTicks::GetQPCDriftMicroseconds() {
   1.507 +  return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds();
   1.508 +}
   1.509 +
   1.510 +// static
   1.511 +TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
   1.512 +  return TimeTicks(
   1.513 +      HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value));
   1.514 +}
   1.515 +
   1.516 +// static
   1.517 +bool TimeTicks::IsHighResClockWorking() {
   1.518 +  return HighResNowSingleton::GetInstance()->IsUsingHighResClock();
   1.519 +}
   1.520 +
   1.521 +TimeTicks TimeTicks::UnprotectedNow() {
   1.522 +  if (now_function == HighResNowWrapper) {
   1.523 +    return Now();
   1.524 +  } else {
   1.525 +    return TimeTicks() + TimeDelta::FromMilliseconds(timeGetTime());
   1.526 +  }
   1.527 +}
   1.528 +
   1.529 +// TimeDelta ------------------------------------------------------------------
   1.530 +
   1.531 +// static
   1.532 +TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
   1.533 +  return TimeDelta(
   1.534 +      HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value));
   1.535 +}

mercurial