|
1 /* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- |
|
2 * |
|
3 * This Source Code Form is subject to the terms of the Mozilla Public |
|
4 * License, v. 2.0. If a copy of the MPL was not distributed with this |
|
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
|
6 |
|
7 #include <stdio.h> |
|
8 #include <stdlib.h> |
|
9 #include <string.h> |
|
10 #include <time.h> |
|
11 #include <ctype.h> |
|
12 #include <errno.h> |
|
13 #include <math.h> |
|
14 |
|
15 #include "nspr.h" |
|
16 #include "tmreader.h" |
|
17 |
|
18 |
|
19 #define ERROR_REPORT(num, val, msg) fprintf(stderr, "error(%d):\t\"%s\"\t%s\n", (num), (val), (msg)); |
|
20 #define CLEANUP(ptr) do { if(NULL != ptr) { free(ptr); ptr = NULL; } } while(0) |
|
21 |
|
22 |
|
23 #define ticks2msec(reader, ticks) ticks2xsec((reader), (ticks), 1000) |
|
24 #define ticks2usec(reader, ticks) ticks2xsec((reader), (ticks), 1000000) |
|
25 #define TICK_RESOLUTION 1000 |
|
26 #define TICK_PRINTABLE(timeval) ((double)(timeval) / (double)ST_TIMEVAL_RESOLUTION) |
|
27 |
|
28 |
|
29 typedef struct __struct_Options |
|
30 /* |
|
31 ** Options to control how we perform. |
|
32 ** |
|
33 ** mProgramName Used in help text. |
|
34 ** mInputName Name of the file. |
|
35 ** mOutput Output file, append. |
|
36 ** Default is stdout. |
|
37 ** mOutputName Name of the file. |
|
38 ** mHelp Whether or not help should be shown. |
|
39 ** mOverhead How much overhead an allocation will have. |
|
40 ** mAlignment What boundry will the end of an allocation line up on. |
|
41 ** mPageSize Controls the page size. A page containing only fragments |
|
42 ** is not fragmented. A page containing any life memory |
|
43 ** costs mPageSize in bytes. |
|
44 */ |
|
45 { |
|
46 const char* mProgramName; |
|
47 char* mInputName; |
|
48 FILE* mOutput; |
|
49 char* mOutputName; |
|
50 int mHelp; |
|
51 unsigned mOverhead; |
|
52 unsigned mAlignment; |
|
53 unsigned mPageSize; |
|
54 } |
|
55 Options; |
|
56 |
|
57 |
|
58 typedef struct __struct_Switch |
|
59 /* |
|
60 ** Command line options. |
|
61 */ |
|
62 { |
|
63 const char* mLongName; |
|
64 const char* mShortName; |
|
65 int mHasValue; |
|
66 const char* mValue; |
|
67 const char* mDescription; |
|
68 } |
|
69 Switch; |
|
70 |
|
71 #define DESC_NEWLINE "\n\t\t" |
|
72 |
|
73 static Switch gInputSwitch = {"--input", "-i", 1, NULL, "Specify input file." DESC_NEWLINE "stdin is default."}; |
|
74 static Switch gOutputSwitch = {"--output", "-o", 1, NULL, "Specify output file." DESC_NEWLINE "Appends if file exists." DESC_NEWLINE "stdout is default."}; |
|
75 static Switch gHelpSwitch = {"--help", "-h", 0, NULL, "Information on usage."}; |
|
76 static Switch gAlignmentSwitch = {"--alignment", "-al", 1, NULL, "All allocation sizes are made to be a multiple of this number." DESC_NEWLINE "Closer to actual heap conditions; set to 1 for true sizes." DESC_NEWLINE "Default value is 16."}; |
|
77 static Switch gOverheadSwitch = {"--overhead", "-ov", 1, NULL, "After alignment, all allocations are made to increase by this number." DESC_NEWLINE "Closer to actual heap conditions; set to 0 for true sizes." DESC_NEWLINE "Default value is 8."}; |
|
78 static Switch gPageSizeSwitch = {"--page-size", "-ps", 1, NULL, "Sets the page size which aids the identification of fragmentation." DESC_NEWLINE "Closer to actual heap conditions; set to 4294967295 for true sizes." DESC_NEWLINE "Default value is 4096."}; |
|
79 |
|
80 static Switch* gSwitches[] = { |
|
81 &gInputSwitch, |
|
82 &gOutputSwitch, |
|
83 &gAlignmentSwitch, |
|
84 &gOverheadSwitch, |
|
85 &gPageSizeSwitch, |
|
86 &gHelpSwitch |
|
87 }; |
|
88 |
|
89 |
|
90 typedef struct __struct_AnyArray |
|
91 /* |
|
92 ** Variable sized item array. |
|
93 ** |
|
94 ** mItems The void pointer items. |
|
95 ** mItemSize Size of each different item. |
|
96 ** mCount The number of items in the array. |
|
97 ** mCapacity How many more items we can hold before reallocing. |
|
98 ** mGrowBy How many items we allocate when we grow. |
|
99 */ |
|
100 { |
|
101 void* mItems; |
|
102 unsigned mItemSize; |
|
103 unsigned mCount; |
|
104 unsigned mCapacity; |
|
105 unsigned mGrowBy; |
|
106 } |
|
107 AnyArray; |
|
108 |
|
109 |
|
110 typedef int (*arrayMatchFunc)(void* inContext, AnyArray* inArray, void* inItem, unsigned inItemIndex) |
|
111 /* |
|
112 ** Callback function for the arrayIndexFn function. |
|
113 ** Used to determine an item match by customizable criteria. |
|
114 ** |
|
115 ** inContext The criteria and state of the search. |
|
116 ** User specified/created. |
|
117 ** inArray The array the item is in. |
|
118 ** inItem The item to evaluate for match. |
|
119 ** inItemIndex The index of this particular item in the array. |
|
120 ** |
|
121 ** return int 0 to specify a match. |
|
122 ** !0 to continue the search performed by arrayIndexFn. |
|
123 */ |
|
124 ; |
|
125 |
|
126 |
|
127 typedef enum __enum_HeapEventType |
|
128 /* |
|
129 ** Simple heap events are really one of two things. |
|
130 */ |
|
131 { |
|
132 FREE, |
|
133 ALLOC |
|
134 } |
|
135 HeapEventType; |
|
136 |
|
137 |
|
138 typedef enum __enum_HeapObjectType |
|
139 /* |
|
140 ** The various types of heap objects we track. |
|
141 */ |
|
142 { |
|
143 ALLOCATION, |
|
144 FRAGMENT |
|
145 } |
|
146 HeapObjectType; |
|
147 |
|
148 |
|
149 typedef struct __struct_HeapObject HeapObject; |
|
150 typedef struct __struct_HeapHistory |
|
151 /* |
|
152 ** A marker as to what has happened. |
|
153 ** |
|
154 ** mTimestamp When history occurred. |
|
155 ** mTMRSerial The historical state as known to the tmreader. |
|
156 ** mObjectIndex Index to the object that was before or after this event. |
|
157 ** The index as in the index according to all heap objects |
|
158 ** kept in the TMState structure. |
|
159 ** We use an index instead of a pointer as the array of |
|
160 ** objects can change location in the heap. |
|
161 */ |
|
162 { |
|
163 unsigned mTimestamp; |
|
164 unsigned mTMRSerial; |
|
165 unsigned mObjectIndex; |
|
166 } |
|
167 HeapHistory; |
|
168 |
|
169 |
|
170 struct __struct_HeapObject |
|
171 /* |
|
172 ** An object in the heap. |
|
173 ** |
|
174 ** A special case should be noted here. If either the birth or death |
|
175 ** history leads to an object of the same type, then this object |
|
176 ** is the same as that object, but was modified somehow. |
|
177 ** Also note that multiple objects may have the same birth object, |
|
178 ** as well as the same death object. |
|
179 ** |
|
180 ** mUniqueID Each object is unique. |
|
181 ** mType Either allocation or fragment. |
|
182 ** mHeapOffset Where in the heap the object is. |
|
183 ** mSize How much of the heap the object takes. |
|
184 ** mBirth History about the birth event. |
|
185 ** mDeath History about the death event. |
|
186 */ |
|
187 { |
|
188 unsigned mUniqueID; |
|
189 |
|
190 HeapObjectType mType; |
|
191 unsigned mHeapOffset; |
|
192 unsigned mSize; |
|
193 |
|
194 HeapHistory mBirth; |
|
195 HeapHistory mDeath; |
|
196 }; |
|
197 |
|
198 |
|
199 typedef struct __struct_TMState |
|
200 /* |
|
201 ** State of our current operation. |
|
202 ** Stats we are trying to calculate. |
|
203 ** |
|
204 ** mOptions Obilgatory options pointer. |
|
205 ** mTMR The tmreader, used in tmreader API calls. |
|
206 ** mLoopExitTMR Set to non zero in order to quickly exit from tmreader |
|
207 ** input loop. This will also result in an error. |
|
208 ** uMinTicks Start of run, milliseconds. |
|
209 ** uMaxTicks End of run, milliseconds. |
|
210 */ |
|
211 { |
|
212 Options* mOptions; |
|
213 tmreader* mTMR; |
|
214 |
|
215 int mLoopExitTMR; |
|
216 |
|
217 unsigned uMinTicks; |
|
218 unsigned uMaxTicks; |
|
219 } |
|
220 TMState; |
|
221 |
|
222 |
|
223 int initOptions(Options* outOptions, int inArgc, char** inArgv) |
|
224 /* |
|
225 ** returns int 0 if successful. |
|
226 */ |
|
227 { |
|
228 int retval = 0; |
|
229 int loop = 0; |
|
230 int switchLoop = 0; |
|
231 int match = 0; |
|
232 const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]); |
|
233 Switch* current = NULL; |
|
234 |
|
235 /* |
|
236 ** Set any defaults. |
|
237 */ |
|
238 memset(outOptions, 0, sizeof(Options)); |
|
239 outOptions->mProgramName = inArgv[0]; |
|
240 outOptions->mInputName = strdup("-"); |
|
241 outOptions->mOutput = stdout; |
|
242 outOptions->mOutputName = strdup("stdout"); |
|
243 outOptions->mAlignment = 16; |
|
244 outOptions->mOverhead = 8; |
|
245 |
|
246 if(NULL == outOptions->mOutputName || NULL == outOptions->mInputName) |
|
247 { |
|
248 retval = __LINE__; |
|
249 ERROR_REPORT(retval, "stdin/stdout", "Unable to strdup."); |
|
250 } |
|
251 |
|
252 /* |
|
253 ** Go through and attempt to do the right thing. |
|
254 */ |
|
255 for(loop = 1; loop < inArgc && 0 == retval; loop++) |
|
256 { |
|
257 match = 0; |
|
258 current = NULL; |
|
259 |
|
260 for(switchLoop = 0; switchLoop < switchCount && 0 == retval; switchLoop++) |
|
261 { |
|
262 if(0 == strcmp(gSwitches[switchLoop]->mLongName, inArgv[loop])) |
|
263 { |
|
264 match = __LINE__; |
|
265 } |
|
266 else if(0 == strcmp(gSwitches[switchLoop]->mShortName, inArgv[loop])) |
|
267 { |
|
268 match = __LINE__; |
|
269 } |
|
270 |
|
271 if(match) |
|
272 { |
|
273 if(gSwitches[switchLoop]->mHasValue) |
|
274 { |
|
275 /* |
|
276 ** Attempt to absorb next option to fullfill value. |
|
277 */ |
|
278 if(loop + 1 < inArgc) |
|
279 { |
|
280 loop++; |
|
281 |
|
282 current = gSwitches[switchLoop]; |
|
283 current->mValue = inArgv[loop]; |
|
284 } |
|
285 } |
|
286 else |
|
287 { |
|
288 current = gSwitches[switchLoop]; |
|
289 } |
|
290 |
|
291 break; |
|
292 } |
|
293 } |
|
294 |
|
295 if(0 == match) |
|
296 { |
|
297 outOptions->mHelp = __LINE__; |
|
298 retval = __LINE__; |
|
299 ERROR_REPORT(retval, inArgv[loop], "Unknown command line switch."); |
|
300 } |
|
301 else if(NULL == current) |
|
302 { |
|
303 outOptions->mHelp = __LINE__; |
|
304 retval = __LINE__; |
|
305 ERROR_REPORT(retval, inArgv[loop], "Command line switch requires a value."); |
|
306 } |
|
307 else |
|
308 { |
|
309 /* |
|
310 ** Do something based on address/swtich. |
|
311 */ |
|
312 if(current == &gInputSwitch) |
|
313 { |
|
314 CLEANUP(outOptions->mInputName); |
|
315 outOptions->mInputName = strdup(current->mValue); |
|
316 if(NULL == outOptions->mInputName) |
|
317 { |
|
318 retval = __LINE__; |
|
319 ERROR_REPORT(retval, current->mValue, "Unable to strdup."); |
|
320 } |
|
321 } |
|
322 else if(current == &gOutputSwitch) |
|
323 { |
|
324 CLEANUP(outOptions->mOutputName); |
|
325 if(NULL != outOptions->mOutput && stdout != outOptions->mOutput) |
|
326 { |
|
327 fclose(outOptions->mOutput); |
|
328 outOptions->mOutput = NULL; |
|
329 } |
|
330 |
|
331 outOptions->mOutput = fopen(current->mValue, "a"); |
|
332 if(NULL == outOptions->mOutput) |
|
333 { |
|
334 retval = __LINE__; |
|
335 ERROR_REPORT(retval, current->mValue, "Unable to open output file."); |
|
336 } |
|
337 else |
|
338 { |
|
339 outOptions->mOutputName = strdup(current->mValue); |
|
340 if(NULL == outOptions->mOutputName) |
|
341 { |
|
342 retval = __LINE__; |
|
343 ERROR_REPORT(retval, current->mValue, "Unable to strdup."); |
|
344 } |
|
345 } |
|
346 } |
|
347 else if(current == &gHelpSwitch) |
|
348 { |
|
349 outOptions->mHelp = __LINE__; |
|
350 } |
|
351 else if(current == &gAlignmentSwitch) |
|
352 { |
|
353 unsigned arg = 0; |
|
354 char* endScan = NULL; |
|
355 |
|
356 errno = 0; |
|
357 arg = strtoul(current->mValue, &endScan, 0); |
|
358 if(0 == errno && endScan != current->mValue) |
|
359 { |
|
360 outOptions->mAlignment = arg; |
|
361 } |
|
362 else |
|
363 { |
|
364 retval = __LINE__; |
|
365 ERROR_REPORT(retval, current->mValue, "Unable to convert to a number."); |
|
366 } |
|
367 } |
|
368 else if(current == &gOverheadSwitch) |
|
369 { |
|
370 unsigned arg = 0; |
|
371 char* endScan = NULL; |
|
372 |
|
373 errno = 0; |
|
374 arg = strtoul(current->mValue, &endScan, 0); |
|
375 if(0 == errno && endScan != current->mValue) |
|
376 { |
|
377 outOptions->mOverhead = arg; |
|
378 } |
|
379 else |
|
380 { |
|
381 retval = __LINE__; |
|
382 ERROR_REPORT(retval, current->mValue, "Unable to convert to a number."); |
|
383 } |
|
384 } |
|
385 else if(current == &gPageSizeSwitch) |
|
386 { |
|
387 unsigned arg = 0; |
|
388 char* endScan = NULL; |
|
389 |
|
390 errno = 0; |
|
391 arg = strtoul(current->mValue, &endScan, 0); |
|
392 if(0 == errno && endScan != current->mValue) |
|
393 { |
|
394 outOptions->mPageSize = arg; |
|
395 } |
|
396 else |
|
397 { |
|
398 retval = __LINE__; |
|
399 ERROR_REPORT(retval, current->mValue, "Unable to convert to a number."); |
|
400 } |
|
401 } |
|
402 else |
|
403 { |
|
404 retval = __LINE__; |
|
405 ERROR_REPORT(retval, current->mLongName, "No handler for command line switch."); |
|
406 } |
|
407 } |
|
408 } |
|
409 |
|
410 return retval; |
|
411 } |
|
412 |
|
413 |
|
414 uint32_t ticks2xsec(tmreader* aReader, uint32_t aTicks, uint32_t aResolution) |
|
415 /* |
|
416 ** Convert platform specific ticks to second units |
|
417 */ |
|
418 { |
|
419 return (uint32)((aResolution * aTicks) / aReader->ticksPerSec); |
|
420 } |
|
421 |
|
422 |
|
423 void cleanOptions(Options* inOptions) |
|
424 /* |
|
425 ** Clean up any open handles. |
|
426 */ |
|
427 { |
|
428 unsigned loop = 0; |
|
429 |
|
430 CLEANUP(inOptions->mInputName); |
|
431 CLEANUP(inOptions->mOutputName); |
|
432 if(NULL != inOptions->mOutput && stdout != inOptions->mOutput) |
|
433 { |
|
434 fclose(inOptions->mOutput); |
|
435 } |
|
436 |
|
437 memset(inOptions, 0, sizeof(Options)); |
|
438 } |
|
439 |
|
440 |
|
441 void showHelp(Options* inOptions) |
|
442 /* |
|
443 ** Show some simple help text on usage. |
|
444 */ |
|
445 { |
|
446 int loop = 0; |
|
447 const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]); |
|
448 const char* valueText = NULL; |
|
449 |
|
450 printf("usage:\t%s [arguments]\n", inOptions->mProgramName); |
|
451 printf("\n"); |
|
452 printf("arguments:\n"); |
|
453 |
|
454 for(loop = 0; loop < switchCount; loop++) |
|
455 { |
|
456 if(gSwitches[loop]->mHasValue) |
|
457 { |
|
458 valueText = " <value>"; |
|
459 } |
|
460 else |
|
461 { |
|
462 valueText = ""; |
|
463 } |
|
464 |
|
465 printf("\t%s%s\n", gSwitches[loop]->mLongName, valueText); |
|
466 printf("\t %s%s", gSwitches[loop]->mShortName, valueText); |
|
467 printf(DESC_NEWLINE "%s\n\n", gSwitches[loop]->mDescription); |
|
468 } |
|
469 |
|
470 printf("This tool reports heap fragmentation stats from a trace-malloc log.\n"); |
|
471 } |
|
472 |
|
473 |
|
474 AnyArray* arrayCreate(unsigned inItemSize, unsigned inGrowBy) |
|
475 /* |
|
476 ** Create an array container object. |
|
477 */ |
|
478 { |
|
479 AnyArray* retval = NULL; |
|
480 |
|
481 if(0 != inGrowBy && 0 != inItemSize) |
|
482 { |
|
483 retval = (AnyArray*)calloc(1, sizeof(AnyArray)); |
|
484 retval->mItemSize = inItemSize; |
|
485 retval->mGrowBy = inGrowBy; |
|
486 } |
|
487 |
|
488 return retval; |
|
489 } |
|
490 |
|
491 |
|
492 void arrayDestroy(AnyArray* inArray) |
|
493 /* |
|
494 ** Release the memory the array contains. |
|
495 ** This will release the items as well. |
|
496 */ |
|
497 { |
|
498 if(NULL != inArray) |
|
499 { |
|
500 if(NULL != inArray->mItems) |
|
501 { |
|
502 free(inArray->mItems); |
|
503 } |
|
504 free(inArray); |
|
505 } |
|
506 } |
|
507 |
|
508 |
|
509 unsigned arrayAlloc(AnyArray* inArray, unsigned inItems) |
|
510 /* |
|
511 ** Resize the item array capcity to a specific number of items. |
|
512 ** This could possibly truncate the array, so handle that as well. |
|
513 ** |
|
514 ** returns unsigned <= inArray->mCapacity on success. |
|
515 */ |
|
516 { |
|
517 unsigned retval = (unsigned)-1; |
|
518 |
|
519 if(NULL != inArray) |
|
520 { |
|
521 void* moved = NULL; |
|
522 |
|
523 moved = realloc(inArray->mItems, inItems * inArray->mItemSize); |
|
524 if(NULL != moved) |
|
525 { |
|
526 inArray->mItems = moved; |
|
527 inArray->mCapacity = inItems; |
|
528 if(inArray->mCount > inItems) |
|
529 { |
|
530 inArray->mCount = inItems; |
|
531 } |
|
532 |
|
533 retval = inItems; |
|
534 } |
|
535 } |
|
536 |
|
537 return retval; |
|
538 } |
|
539 |
|
540 |
|
541 void* arrayItem(AnyArray* inArray, unsigned inIndex) |
|
542 /* |
|
543 ** Return the array item at said index. |
|
544 ** Zero based index. |
|
545 ** |
|
546 ** returns void* NULL on failure. |
|
547 */ |
|
548 { |
|
549 void* retval = NULL; |
|
550 |
|
551 if(NULL != inArray && inIndex < inArray->mCount) |
|
552 { |
|
553 retval = (void*)((char*)inArray->mItems + (inArray->mItemSize * inIndex)); |
|
554 } |
|
555 |
|
556 return retval; |
|
557 } |
|
558 |
|
559 |
|
560 unsigned arrayIndex(AnyArray* inArray, void* inItem, unsigned inStartIndex) |
|
561 /* |
|
562 ** Go through the array from the index specified looking for an item |
|
563 ** match based on byte for byte comparison. |
|
564 ** We allow specifying the start index in order to handle arrays with |
|
565 ** duplicate items. |
|
566 ** |
|
567 ** returns unsigned >= inArray->mCount on failure. |
|
568 */ |
|
569 { |
|
570 unsigned retval = (unsigned)-1; |
|
571 |
|
572 if(NULL != inArray && NULL != inItem && inStartIndex < inArray->mCount) |
|
573 { |
|
574 void* curItem = NULL; |
|
575 |
|
576 for(retval = inStartIndex; retval < inArray->mCount; retval++) |
|
577 { |
|
578 curItem = arrayItem(inArray, retval); |
|
579 if(0 == memcmp(inItem, curItem, inArray->mItemSize)) |
|
580 { |
|
581 break; |
|
582 } |
|
583 } |
|
584 } |
|
585 |
|
586 |
|
587 return retval; |
|
588 } |
|
589 |
|
590 |
|
591 unsigned arrayIndexFn(AnyArray* inArray, arrayMatchFunc inFunc, void* inFuncContext, unsigned inStartIndex) |
|
592 /* |
|
593 ** Go through the array from the index specified looking for an item |
|
594 ** match based upon the return value of inFunc (0, Zero, is a match). |
|
595 ** We allow specifying the start index in order to facilitate looping over |
|
596 ** the array which could have multiple matches. |
|
597 ** |
|
598 ** returns unsigned >= inArray->mCount on failure. |
|
599 */ |
|
600 { |
|
601 unsigned retval = (unsigned)-1; |
|
602 |
|
603 if(NULL != inArray && NULL != inFunc && inStartIndex < inArray->mCount) |
|
604 { |
|
605 void* curItem = NULL; |
|
606 |
|
607 for(retval = inStartIndex; retval < inArray->mCount; retval++) |
|
608 { |
|
609 curItem = arrayItem(inArray, retval); |
|
610 if(0 == inFunc(inFuncContext, inArray, curItem, retval)) |
|
611 { |
|
612 break; |
|
613 } |
|
614 } |
|
615 } |
|
616 |
|
617 return retval; |
|
618 } |
|
619 |
|
620 |
|
621 unsigned arrayAddItem(AnyArray* inArray, void* inItem) |
|
622 /* |
|
623 ** Add a new item to the array. |
|
624 ** This is done by copying the item. |
|
625 ** |
|
626 ** returns unsigned < inArray->mCount on success. |
|
627 */ |
|
628 { |
|
629 unsigned retval = (unsigned)-1; |
|
630 |
|
631 if(NULL != inArray && NULL != inItem) |
|
632 { |
|
633 int noCopy = 0; |
|
634 |
|
635 /* |
|
636 ** See if the array should grow. |
|
637 */ |
|
638 if(inArray->mCount == inArray->mCapacity) |
|
639 { |
|
640 unsigned allocRes = 0; |
|
641 |
|
642 allocRes = arrayAlloc(inArray, inArray->mCapacity + inArray->mGrowBy); |
|
643 if(allocRes > inArray->mCapacity) |
|
644 { |
|
645 noCopy = __LINE__; |
|
646 } |
|
647 } |
|
648 |
|
649 if(0 == noCopy) |
|
650 { |
|
651 retval = inArray->mCount; |
|
652 |
|
653 inArray->mCount++; |
|
654 memcpy(arrayItem(inArray, retval), inItem, inArray->mItemSize); |
|
655 } |
|
656 } |
|
657 |
|
658 return retval; |
|
659 } |
|
660 |
|
661 |
|
662 HeapObject* initHeapObject(HeapObject* inObject) |
|
663 /* |
|
664 ** Function to init the heap object just right. |
|
665 ** Sets the unique ID to something unique. |
|
666 */ |
|
667 { |
|
668 HeapObject* retval = inObject; |
|
669 |
|
670 if(NULL != inObject) |
|
671 { |
|
672 static unsigned uniqueGenerator = 0; |
|
673 |
|
674 memset(inObject, -1, sizeof(HeapObject)); |
|
675 |
|
676 inObject->mUniqueID = uniqueGenerator; |
|
677 uniqueGenerator++; |
|
678 } |
|
679 |
|
680 return retval; |
|
681 } |
|
682 |
|
683 |
|
684 int simpleHeapEvent(TMState* inStats, HeapEventType inType, unsigned mTimestamp, unsigned inSerial, unsigned inHeapID, unsigned inSize) |
|
685 /* |
|
686 ** A new heap event will cause the creation of a new heap object. |
|
687 ** The new heap object will displace, or replace, a heap object of a different type. |
|
688 */ |
|
689 { |
|
690 int retval = 0; |
|
691 HeapObject newObject; |
|
692 |
|
693 /* |
|
694 ** Set the most basic object details. |
|
695 */ |
|
696 initHeapObject(&newObject); |
|
697 newObject.mHeapOffset = inHeapID; |
|
698 newObject.mSize = inSize; |
|
699 if(FREE == inType) |
|
700 { |
|
701 newObject.mType = FRAGMENT; |
|
702 } |
|
703 else if(ALLOC == inType) |
|
704 { |
|
705 newObject.mType = ALLOCATION; |
|
706 } |
|
707 |
|
708 /* |
|
709 ** Add it to the heap object array. |
|
710 */ |
|
711 |
|
712 /* |
|
713 ** TODO GAB |
|
714 ** |
|
715 ** First thing to do is to add the new object to the heap in order to |
|
716 ** obtain a valid index. |
|
717 ** |
|
718 ** Next, find all matches to this range of heap memory that this event |
|
719 ** refers to, that are alive during this timestamp (no death yet). |
|
720 ** Fill in the death event of those objects. |
|
721 ** If the objects contain some portions outside of the range, then |
|
722 ** new objects for those ranges need to be created that carry on |
|
723 ** the same object type, have the index of the old object for birth, |
|
724 ** and the serial of the old object, new timestamp of course. |
|
725 ** The old object's death points to the new object, which tells why the |
|
726 ** fragmentation took place. |
|
727 ** The new object birth points to the old object only if a fragment. |
|
728 ** An allocation only has a birth object when it is a realloc (complex) |
|
729 ** heap event. |
|
730 ** |
|
731 ** I believe this give us enough information to look up particular |
|
732 ** details of the heap at any given time. |
|
733 */ |
|
734 |
|
735 return retval; |
|
736 } |
|
737 |
|
738 |
|
739 int complexHeapEvent(TMState* inStats, unsigned mTimestamp, unsigned inOldSerial, unsigned inOldHeapID, unsigned inOSize, unsigned inNewSerial, unsigned inNewHeapID, unsigned inNewSize) |
|
740 /* |
|
741 ** Generally, this event intends to chain one old heap object to a newer heap object. |
|
742 ** Otherwise, the functionality should recognizable ala simpleHeapEvent. |
|
743 */ |
|
744 { |
|
745 int retval = 0; |
|
746 |
|
747 /* |
|
748 ** TODO GAB |
|
749 */ |
|
750 |
|
751 return retval; |
|
752 } |
|
753 |
|
754 |
|
755 unsigned actualByteSize(Options* inOptions, unsigned retval) |
|
756 /* |
|
757 ** Apply alignment and overhead to size to figure out actual byte size. |
|
758 ** This by default mimics spacetrace with default options (msvc crt heap). |
|
759 */ |
|
760 { |
|
761 if(0 != retval) |
|
762 { |
|
763 unsigned eval = 0; |
|
764 unsigned over = 0; |
|
765 |
|
766 eval = retval - 1; |
|
767 if(0 != inOptions->mAlignment) |
|
768 { |
|
769 over = eval % inOptions->mAlignment; |
|
770 } |
|
771 retval = eval + inOptions->mOverhead + inOptions->mAlignment - over; |
|
772 } |
|
773 |
|
774 return retval; |
|
775 } |
|
776 |
|
777 |
|
778 void tmEventHandler(tmreader* inReader, tmevent* inEvent) |
|
779 /* |
|
780 ** Callback from the tmreader_eventloop. |
|
781 ** Build up our fragmentation information herein. |
|
782 */ |
|
783 { |
|
784 char type = inEvent->type; |
|
785 TMState* stats = (TMState*)inReader->data; |
|
786 |
|
787 /* |
|
788 ** Only intersted in handling events of a particular type. |
|
789 */ |
|
790 switch(type) |
|
791 { |
|
792 default: |
|
793 return; |
|
794 |
|
795 case TM_EVENT_MALLOC: |
|
796 case TM_EVENT_CALLOC: |
|
797 case TM_EVENT_REALLOC: |
|
798 case TM_EVENT_FREE: |
|
799 break; |
|
800 } |
|
801 |
|
802 /* |
|
803 ** Should we even try to look? |
|
804 ** Set mLoopExitTMR to non-zero to abort the read loop faster. |
|
805 */ |
|
806 if(0 == stats->mLoopExitTMR) |
|
807 { |
|
808 Options* options = (Options*)stats->mOptions; |
|
809 unsigned timestamp = ticks2msec(stats->mTMR, inEvent->u.alloc.interval); |
|
810 unsigned actualSize = actualByteSize(options, inEvent->u.alloc.size); |
|
811 unsigned heapID = inEvent->u.alloc.ptr; |
|
812 unsigned serial = inEvent->serial; |
|
813 |
|
814 /* |
|
815 ** Check the timestamp range of our overall state. |
|
816 */ |
|
817 if(stats->uMinTicks > timestamp) |
|
818 { |
|
819 stats->uMinTicks = timestamp; |
|
820 } |
|
821 if(stats->uMaxTicks < timestamp) |
|
822 { |
|
823 stats->uMaxTicks = timestamp; |
|
824 } |
|
825 |
|
826 /* |
|
827 ** Realloc in general deserves some special attention if dealing |
|
828 ** with an old allocation (not new memory). |
|
829 */ |
|
830 if(TM_EVENT_REALLOC == type && 0 != inEvent->u.alloc.oldserial) |
|
831 { |
|
832 unsigned oldActualSize = actualByteSize(options, inEvent->u.alloc.oldsize); |
|
833 unsigned oldHeapID = inEvent->u.alloc.oldptr; |
|
834 unsigned oldSerial = inEvent->u.alloc.oldserial; |
|
835 |
|
836 if(0 == actualSize) |
|
837 { |
|
838 /* |
|
839 ** Reallocs of size zero are to become free events. |
|
840 */ |
|
841 stats->mLoopExitTMR = simpleHeapEvent(stats, FREE, timestamp, serial, oldHeapID, oldActualSize); |
|
842 } |
|
843 else if(heapID != oldHeapID || actualSize != oldActualSize) |
|
844 { |
|
845 /* |
|
846 ** Reallocs which moved generate two events. |
|
847 ** Reallocs which changed size generate two events. |
|
848 ** |
|
849 ** One event to free the old memory area. |
|
850 ** Another event to allocate the new memory area. |
|
851 ** They are to be linked to one another, so the history |
|
852 ** and true origin can be tracked. |
|
853 */ |
|
854 stats->mLoopExitTMR = complexHeapEvent(stats, timestamp, oldSerial, oldHeapID, oldActualSize, serial, heapID, actualSize); |
|
855 } |
|
856 else |
|
857 { |
|
858 /* |
|
859 ** The realloc is not considered an operation and is skipped. |
|
860 ** It is not an operation, because it did not move or change |
|
861 ** size; this can happen if a realloc falls within the |
|
862 ** alignment of an allocation. |
|
863 ** Say if you realloc a 1 byte allocation to 2 bytes, it will |
|
864 ** not really change heap impact unless you have 1 set as |
|
865 ** the alignment of your allocations. |
|
866 */ |
|
867 } |
|
868 } |
|
869 else if(TM_EVENT_FREE == type) |
|
870 { |
|
871 /* |
|
872 ** Generate a free event to create a fragment. |
|
873 */ |
|
874 stats->mLoopExitTMR = simpleHeapEvent(stats, FREE, timestamp, serial, heapID, actualSize); |
|
875 } |
|
876 else |
|
877 { |
|
878 /* |
|
879 ** Generate an allocation event to clear fragments. |
|
880 */ |
|
881 stats->mLoopExitTMR = simpleHeapEvent(stats, ALLOC, timestamp, serial, heapID, actualSize); |
|
882 } |
|
883 } |
|
884 } |
|
885 |
|
886 |
|
887 int tmfrags(Options* inOptions) |
|
888 /* |
|
889 ** Load the input file and report stats. |
|
890 */ |
|
891 { |
|
892 int retval = 0; |
|
893 TMState stats; |
|
894 |
|
895 memset(&stats, 0, sizeof(stats)); |
|
896 stats.mOptions = inOptions; |
|
897 stats.uMinTicks = 0xFFFFFFFFU; |
|
898 |
|
899 /* |
|
900 ** Need a tmreader. |
|
901 */ |
|
902 stats.mTMR = tmreader_new(inOptions->mProgramName, &stats); |
|
903 if(NULL != stats.mTMR) |
|
904 { |
|
905 int tmResult = 0; |
|
906 |
|
907 tmResult = tmreader_eventloop(stats.mTMR, inOptions->mInputName, tmEventHandler); |
|
908 if(0 == tmResult) |
|
909 { |
|
910 retval = __LINE__; |
|
911 ERROR_REPORT(retval, inOptions->mInputName, "Problem reading trace-malloc data."); |
|
912 } |
|
913 if(0 != stats.mLoopExitTMR) |
|
914 { |
|
915 retval = stats.mLoopExitTMR; |
|
916 ERROR_REPORT(retval, inOptions->mInputName, "Aborted trace-malloc input loop."); |
|
917 } |
|
918 |
|
919 tmreader_destroy(stats.mTMR); |
|
920 stats.mTMR = NULL; |
|
921 } |
|
922 else |
|
923 { |
|
924 retval = __LINE__; |
|
925 ERROR_REPORT(retval, inOptions->mProgramName, "Unable to obtain tmreader."); |
|
926 } |
|
927 |
|
928 return retval; |
|
929 } |
|
930 |
|
931 |
|
932 int main(int inArgc, char** inArgv) |
|
933 { |
|
934 int retval = 0; |
|
935 Options options; |
|
936 |
|
937 retval = initOptions(&options, inArgc, inArgv); |
|
938 if(options.mHelp) |
|
939 { |
|
940 showHelp(&options); |
|
941 } |
|
942 else if(0 == retval) |
|
943 { |
|
944 retval = tmfrags(&options); |
|
945 } |
|
946 |
|
947 cleanOptions(&options); |
|
948 return retval; |
|
949 } |
|
950 |