tools/trace-malloc/tmfrags.c

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/tools/trace-malloc/tmfrags.c	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,950 @@
     1.4 +/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
     1.5 + *
     1.6 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#include <stdio.h>
    1.11 +#include <stdlib.h>
    1.12 +#include <string.h>
    1.13 +#include <time.h>
    1.14 +#include <ctype.h>
    1.15 +#include <errno.h>
    1.16 +#include <math.h>
    1.17 +
    1.18 +#include "nspr.h"
    1.19 +#include "tmreader.h"
    1.20 +
    1.21 +
    1.22 +#define ERROR_REPORT(num, val, msg)   fprintf(stderr, "error(%d):\t\"%s\"\t%s\n", (num), (val), (msg));
    1.23 +#define CLEANUP(ptr)    do { if(NULL != ptr) { free(ptr); ptr = NULL; } } while(0)
    1.24 +
    1.25 +
    1.26 +#define ticks2msec(reader, ticks) ticks2xsec((reader), (ticks), 1000)
    1.27 +#define ticks2usec(reader, ticks) ticks2xsec((reader), (ticks), 1000000)
    1.28 +#define TICK_RESOLUTION 1000
    1.29 +#define TICK_PRINTABLE(timeval) ((double)(timeval) / (double)ST_TIMEVAL_RESOLUTION)
    1.30 +
    1.31 +
    1.32 +typedef struct __struct_Options
    1.33 +/*
    1.34 +**  Options to control how we perform.
    1.35 +**
    1.36 +**  mProgramName    Used in help text.
    1.37 +**  mInputName      Name of the file.
    1.38 +**  mOutput         Output file, append.
    1.39 +**                  Default is stdout.
    1.40 +**  mOutputName     Name of the file.
    1.41 +**  mHelp           Whether or not help should be shown.
    1.42 +**  mOverhead       How much overhead an allocation will have.
    1.43 +**  mAlignment      What boundry will the end of an allocation line up on.
    1.44 +**  mPageSize       Controls the page size.  A page containing only fragments
    1.45 +**                      is not fragmented.  A page containing any life memory
    1.46 +**                      costs mPageSize in bytes.
    1.47 +*/
    1.48 +{
    1.49 +    const char* mProgramName;
    1.50 +    char* mInputName;
    1.51 +    FILE* mOutput;
    1.52 +    char* mOutputName;
    1.53 +    int mHelp;
    1.54 +    unsigned mOverhead;
    1.55 +    unsigned mAlignment;
    1.56 +    unsigned mPageSize;
    1.57 +}
    1.58 +Options;
    1.59 +
    1.60 +
    1.61 +typedef struct __struct_Switch
    1.62 +/*
    1.63 +**  Command line options.
    1.64 +*/
    1.65 +{
    1.66 +    const char* mLongName;
    1.67 +    const char* mShortName;
    1.68 +    int mHasValue;
    1.69 +    const char* mValue;
    1.70 +    const char* mDescription;
    1.71 +}
    1.72 +Switch;
    1.73 +
    1.74 +#define DESC_NEWLINE "\n\t\t"
    1.75 +
    1.76 +static Switch gInputSwitch = {"--input", "-i", 1, NULL, "Specify input file." DESC_NEWLINE "stdin is default."};
    1.77 +static Switch gOutputSwitch = {"--output", "-o", 1, NULL, "Specify output file." DESC_NEWLINE "Appends if file exists." DESC_NEWLINE "stdout is default."};
    1.78 +static Switch gHelpSwitch = {"--help", "-h", 0, NULL, "Information on usage."};
    1.79 +static Switch gAlignmentSwitch = {"--alignment", "-al", 1, NULL, "All allocation sizes are made to be a multiple of this number." DESC_NEWLINE "Closer to actual heap conditions; set to 1 for true sizes." DESC_NEWLINE "Default value is 16."};
    1.80 +static Switch gOverheadSwitch = {"--overhead", "-ov", 1, NULL, "After alignment, all allocations are made to increase by this number." DESC_NEWLINE "Closer to actual heap conditions; set to 0 for true sizes." DESC_NEWLINE "Default value is 8."};
    1.81 +static Switch gPageSizeSwitch = {"--page-size", "-ps", 1, NULL, "Sets the page size which aids the identification of fragmentation." DESC_NEWLINE "Closer to actual heap conditions; set to 4294967295 for true sizes."  DESC_NEWLINE "Default value is 4096."};
    1.82 +
    1.83 +static Switch* gSwitches[] = {
    1.84 +        &gInputSwitch,
    1.85 +        &gOutputSwitch,
    1.86 +        &gAlignmentSwitch,
    1.87 +        &gOverheadSwitch,
    1.88 +        &gPageSizeSwitch,
    1.89 +        &gHelpSwitch
    1.90 +};
    1.91 +
    1.92 +
    1.93 +typedef struct __struct_AnyArray
    1.94 +/*
    1.95 +**  Variable sized item array.
    1.96 +**
    1.97 +**  mItems      The void pointer items.
    1.98 +**  mItemSize   Size of each different item.
    1.99 +**  mCount      The number of items in the array.
   1.100 +**  mCapacity   How many more items we can hold before reallocing.
   1.101 +**  mGrowBy     How many items we allocate when we grow.
   1.102 +*/
   1.103 +{
   1.104 +    void* mItems;
   1.105 +    unsigned mItemSize;
   1.106 +    unsigned mCount;
   1.107 +    unsigned mCapacity;
   1.108 +    unsigned mGrowBy;
   1.109 +}
   1.110 +AnyArray;
   1.111 +
   1.112 +
   1.113 +typedef int (*arrayMatchFunc)(void* inContext, AnyArray* inArray, void* inItem, unsigned inItemIndex)
   1.114 +/*
   1.115 +**  Callback function for the arrayIndexFn function.
   1.116 +**  Used to determine an item match by customizable criteria.
   1.117 +**
   1.118 +**  inContext       The criteria and state of the search.
   1.119 +**                  User specified/created.
   1.120 +**  inArray         The array the item is in.
   1.121 +**  inItem          The item to evaluate for match.
   1.122 +**  inItemIndex     The index of this particular item in the array.
   1.123 +**
   1.124 +**  return int      0 to specify a match.
   1.125 +**                  !0 to continue the search performed by arrayIndexFn.
   1.126 +*/
   1.127 +;
   1.128 +
   1.129 +
   1.130 +typedef enum __enum_HeapEventType
   1.131 +/*
   1.132 +**  Simple heap events are really one of two things.
   1.133 +*/
   1.134 +{
   1.135 +    FREE,
   1.136 +    ALLOC
   1.137 +}
   1.138 +HeapEventType;
   1.139 +
   1.140 +
   1.141 +typedef enum __enum_HeapObjectType
   1.142 +/*
   1.143 +**  The various types of heap objects we track.
   1.144 +*/
   1.145 +{
   1.146 +    ALLOCATION,
   1.147 +    FRAGMENT
   1.148 +}
   1.149 +HeapObjectType;
   1.150 +
   1.151 +
   1.152 +typedef struct __struct_HeapObject HeapObject;
   1.153 +typedef struct __struct_HeapHistory
   1.154 +/*
   1.155 +**  A marker as to what has happened.
   1.156 +**
   1.157 +**  mTimestamp      When history occurred.
   1.158 +**  mTMRSerial      The historical state as known to the tmreader.
   1.159 +**  mObjectIndex    Index to the object that was before or after this event.
   1.160 +**                  The index as in the index according to all heap objects
   1.161 +**                      kept in the TMState structure.
   1.162 +**                  We use an index instead of a pointer as the array of
   1.163 +**                      objects can change location in the heap.
   1.164 +*/
   1.165 +{
   1.166 +    unsigned mTimestamp;
   1.167 +    unsigned mTMRSerial;
   1.168 +    unsigned mObjectIndex;
   1.169 +}
   1.170 +HeapHistory;
   1.171 +
   1.172 +
   1.173 +struct __struct_HeapObject
   1.174 +/*
   1.175 +**  An object in the heap.
   1.176 +**
   1.177 +**  A special case should be noted here.  If either the birth or death
   1.178 +**      history leads to an object of the same type, then this object
   1.179 +**      is the same as that object, but was modified somehow.
   1.180 +**  Also note that multiple objects may have the same birth object,
   1.181 +**      as well as the same death object.
   1.182 +**
   1.183 +**  mUniqueID           Each object is unique.
   1.184 +**  mType               Either allocation or fragment.
   1.185 +**  mHeapOffset         Where in the heap the object is.
   1.186 +**  mSize               How much of the heap the object takes.
   1.187 +**  mBirth              History about the birth event.
   1.188 +**  mDeath              History about the death event.
   1.189 +*/
   1.190 +{
   1.191 +    unsigned mUniqueID;
   1.192 +
   1.193 +    HeapObjectType mType;
   1.194 +    unsigned mHeapOffset;
   1.195 +    unsigned mSize;
   1.196 +
   1.197 +    HeapHistory mBirth;
   1.198 +    HeapHistory mDeath;
   1.199 +};
   1.200 +
   1.201 +
   1.202 +typedef struct __struct_TMState
   1.203 +/*
   1.204 +**  State of our current operation.
   1.205 +**  Stats we are trying to calculate.
   1.206 +**
   1.207 +**  mOptions        Obilgatory options pointer.
   1.208 +**  mTMR            The tmreader, used in tmreader API calls.
   1.209 +**  mLoopExitTMR    Set to non zero in order to quickly exit from tmreader
   1.210 +**                      input loop.  This will also result in an error.
   1.211 +**  uMinTicks       Start of run, milliseconds.
   1.212 +**  uMaxTicks       End of run, milliseconds.
   1.213 +*/
   1.214 +{
   1.215 +    Options* mOptions;
   1.216 +    tmreader* mTMR;
   1.217 +
   1.218 +    int mLoopExitTMR;
   1.219 +
   1.220 +    unsigned uMinTicks;
   1.221 +    unsigned uMaxTicks;
   1.222 +}
   1.223 +TMState;
   1.224 +
   1.225 +
   1.226 +int initOptions(Options* outOptions, int inArgc, char** inArgv)
   1.227 +/*
   1.228 +**  returns int     0 if successful.
   1.229 +*/
   1.230 +{
   1.231 +    int retval = 0;
   1.232 +    int loop = 0;
   1.233 +    int switchLoop = 0;
   1.234 +    int match = 0;
   1.235 +    const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
   1.236 +    Switch* current = NULL;
   1.237 +
   1.238 +    /*
   1.239 +    **  Set any defaults.
   1.240 +    */
   1.241 +    memset(outOptions, 0, sizeof(Options));
   1.242 +    outOptions->mProgramName = inArgv[0];
   1.243 +    outOptions->mInputName = strdup("-");
   1.244 +    outOptions->mOutput = stdout;
   1.245 +    outOptions->mOutputName = strdup("stdout");
   1.246 +    outOptions->mAlignment = 16;
   1.247 +    outOptions->mOverhead = 8;
   1.248 +
   1.249 +    if(NULL == outOptions->mOutputName || NULL == outOptions->mInputName)
   1.250 +    {
   1.251 +        retval = __LINE__;
   1.252 +        ERROR_REPORT(retval, "stdin/stdout", "Unable to strdup.");
   1.253 +    }
   1.254 +
   1.255 +    /*
   1.256 +    **  Go through and attempt to do the right thing.
   1.257 +    */
   1.258 +    for(loop = 1; loop < inArgc && 0 == retval; loop++)
   1.259 +    {
   1.260 +        match = 0;
   1.261 +        current = NULL;
   1.262 +
   1.263 +        for(switchLoop = 0; switchLoop < switchCount && 0 == retval; switchLoop++)
   1.264 +        {
   1.265 +            if(0 == strcmp(gSwitches[switchLoop]->mLongName, inArgv[loop]))
   1.266 +            {
   1.267 +                match = __LINE__;
   1.268 +            }
   1.269 +            else if(0 == strcmp(gSwitches[switchLoop]->mShortName, inArgv[loop]))
   1.270 +            {
   1.271 +                match = __LINE__;
   1.272 +            }
   1.273 +
   1.274 +            if(match)
   1.275 +            {
   1.276 +                if(gSwitches[switchLoop]->mHasValue)
   1.277 +                {
   1.278 +                    /*
   1.279 +                    **  Attempt to absorb next option to fullfill value.
   1.280 +                    */
   1.281 +                    if(loop + 1 < inArgc)
   1.282 +                    {
   1.283 +                        loop++;
   1.284 +
   1.285 +                        current = gSwitches[switchLoop];
   1.286 +                        current->mValue = inArgv[loop];
   1.287 +                    }
   1.288 +                }
   1.289 +                else
   1.290 +                {
   1.291 +                    current = gSwitches[switchLoop];
   1.292 +                }
   1.293 +
   1.294 +                break;
   1.295 +            }
   1.296 +        }
   1.297 +
   1.298 +        if(0 == match)
   1.299 +        {
   1.300 +            outOptions->mHelp = __LINE__;
   1.301 +            retval = __LINE__;
   1.302 +            ERROR_REPORT(retval, inArgv[loop], "Unknown command line switch.");
   1.303 +        }
   1.304 +        else if(NULL == current)
   1.305 +        {
   1.306 +            outOptions->mHelp = __LINE__;
   1.307 +            retval = __LINE__;
   1.308 +            ERROR_REPORT(retval, inArgv[loop], "Command line switch requires a value.");
   1.309 +        }
   1.310 +        else
   1.311 +        {
   1.312 +            /*
   1.313 +            ** Do something based on address/swtich.
   1.314 +            */
   1.315 +            if(current == &gInputSwitch)
   1.316 +            {
   1.317 +                CLEANUP(outOptions->mInputName);
   1.318 +                outOptions->mInputName = strdup(current->mValue);
   1.319 +                if(NULL == outOptions->mInputName)
   1.320 +                {
   1.321 +                    retval = __LINE__;
   1.322 +                    ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
   1.323 +                }
   1.324 +            }
   1.325 +            else if(current == &gOutputSwitch)
   1.326 +            {
   1.327 +                CLEANUP(outOptions->mOutputName);
   1.328 +                if(NULL != outOptions->mOutput && stdout != outOptions->mOutput)
   1.329 +                {
   1.330 +                    fclose(outOptions->mOutput);
   1.331 +                    outOptions->mOutput = NULL;
   1.332 +                }
   1.333 +
   1.334 +                outOptions->mOutput = fopen(current->mValue, "a");
   1.335 +                if(NULL == outOptions->mOutput)
   1.336 +                {
   1.337 +                    retval = __LINE__;
   1.338 +                    ERROR_REPORT(retval, current->mValue, "Unable to open output file.");
   1.339 +                }
   1.340 +                else
   1.341 +                {
   1.342 +                    outOptions->mOutputName = strdup(current->mValue);
   1.343 +                    if(NULL == outOptions->mOutputName)
   1.344 +                    {
   1.345 +                        retval = __LINE__;
   1.346 +                        ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
   1.347 +                    }
   1.348 +                }
   1.349 +            }
   1.350 +            else if(current == &gHelpSwitch)
   1.351 +            {
   1.352 +                outOptions->mHelp = __LINE__;
   1.353 +            }
   1.354 +            else if(current == &gAlignmentSwitch)
   1.355 +            {
   1.356 +                unsigned arg = 0;
   1.357 +                char* endScan = NULL;
   1.358 +
   1.359 +                errno = 0;
   1.360 +                arg = strtoul(current->mValue, &endScan, 0);
   1.361 +                if(0 == errno && endScan != current->mValue)
   1.362 +                {
   1.363 +                    outOptions->mAlignment = arg;
   1.364 +                }
   1.365 +                else
   1.366 +                {
   1.367 +                    retval = __LINE__;
   1.368 +                    ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
   1.369 +                }
   1.370 +            }
   1.371 +            else if(current == &gOverheadSwitch)
   1.372 +            {
   1.373 +                unsigned arg = 0;
   1.374 +                char* endScan = NULL;
   1.375 +
   1.376 +                errno = 0;
   1.377 +                arg = strtoul(current->mValue, &endScan, 0);
   1.378 +                if(0 == errno && endScan != current->mValue)
   1.379 +                {
   1.380 +                    outOptions->mOverhead = arg;
   1.381 +                }
   1.382 +                else
   1.383 +                {
   1.384 +                    retval = __LINE__;
   1.385 +                    ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
   1.386 +                }
   1.387 +            }
   1.388 +            else if(current == &gPageSizeSwitch)
   1.389 +            {
   1.390 +                unsigned arg = 0;
   1.391 +                char* endScan = NULL;
   1.392 +
   1.393 +                errno = 0;
   1.394 +                arg = strtoul(current->mValue, &endScan, 0);
   1.395 +                if(0 == errno && endScan != current->mValue)
   1.396 +                {
   1.397 +                    outOptions->mPageSize = arg;
   1.398 +                }
   1.399 +                else
   1.400 +                {
   1.401 +                    retval = __LINE__;
   1.402 +                    ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
   1.403 +                }
   1.404 +            }
   1.405 +            else
   1.406 +            {
   1.407 +                retval = __LINE__;
   1.408 +                ERROR_REPORT(retval, current->mLongName, "No handler for command line switch.");
   1.409 +            }
   1.410 +        }
   1.411 +    }
   1.412 +
   1.413 +    return retval;
   1.414 +}
   1.415 +
   1.416 +
   1.417 +uint32_t ticks2xsec(tmreader* aReader, uint32_t aTicks, uint32_t aResolution)
   1.418 +/*
   1.419 +** Convert platform specific ticks to second units
   1.420 +*/
   1.421 +{
   1.422 +    return (uint32)((aResolution * aTicks) / aReader->ticksPerSec);
   1.423 +}
   1.424 +
   1.425 +
   1.426 +void cleanOptions(Options* inOptions)
   1.427 +/*
   1.428 +**  Clean up any open handles.
   1.429 +*/
   1.430 +{
   1.431 +    unsigned loop = 0;
   1.432 +
   1.433 +    CLEANUP(inOptions->mInputName);
   1.434 +    CLEANUP(inOptions->mOutputName);
   1.435 +    if(NULL != inOptions->mOutput && stdout != inOptions->mOutput)
   1.436 +    {
   1.437 +        fclose(inOptions->mOutput);
   1.438 +    }
   1.439 +
   1.440 +    memset(inOptions, 0, sizeof(Options));
   1.441 +}
   1.442 +
   1.443 +
   1.444 +void showHelp(Options* inOptions)
   1.445 +/*
   1.446 +**  Show some simple help text on usage.
   1.447 +*/
   1.448 +{
   1.449 +    int loop = 0;
   1.450 +    const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
   1.451 +    const char* valueText = NULL;
   1.452 +
   1.453 +    printf("usage:\t%s [arguments]\n", inOptions->mProgramName);
   1.454 +    printf("\n");
   1.455 +    printf("arguments:\n");
   1.456 +
   1.457 +    for(loop = 0; loop < switchCount; loop++)
   1.458 +    {
   1.459 +        if(gSwitches[loop]->mHasValue)
   1.460 +        {
   1.461 +            valueText = " <value>";
   1.462 +        }
   1.463 +        else
   1.464 +        {
   1.465 +            valueText = "";
   1.466 +        }
   1.467 +
   1.468 +        printf("\t%s%s\n", gSwitches[loop]->mLongName, valueText);
   1.469 +        printf("\t %s%s", gSwitches[loop]->mShortName, valueText);
   1.470 +        printf(DESC_NEWLINE "%s\n\n", gSwitches[loop]->mDescription);
   1.471 +    }
   1.472 +
   1.473 +    printf("This tool reports heap fragmentation stats from a trace-malloc log.\n");
   1.474 +}
   1.475 +
   1.476 +
   1.477 +AnyArray* arrayCreate(unsigned inItemSize, unsigned inGrowBy)
   1.478 +/*
   1.479 +**  Create an array container object.
   1.480 +*/
   1.481 +{
   1.482 +    AnyArray* retval = NULL;
   1.483 +
   1.484 +    if(0 != inGrowBy && 0 != inItemSize)
   1.485 +    {
   1.486 +        retval = (AnyArray*)calloc(1, sizeof(AnyArray));
   1.487 +        retval->mItemSize = inItemSize;
   1.488 +        retval->mGrowBy = inGrowBy;
   1.489 +    }
   1.490 +
   1.491 +    return retval;
   1.492 +}
   1.493 +
   1.494 +
   1.495 +void arrayDestroy(AnyArray* inArray)
   1.496 +/*
   1.497 +**  Release the memory the array contains.
   1.498 +**  This will release the items as well.
   1.499 +*/
   1.500 +{
   1.501 +    if(NULL != inArray)
   1.502 +    {
   1.503 +        if(NULL != inArray->mItems)
   1.504 +        {
   1.505 +            free(inArray->mItems);
   1.506 +        }
   1.507 +        free(inArray);
   1.508 +    }
   1.509 +}
   1.510 +
   1.511 +
   1.512 +unsigned arrayAlloc(AnyArray* inArray, unsigned inItems)
   1.513 +/*
   1.514 +**  Resize the item array capcity to a specific number of items.
   1.515 +**  This could possibly truncate the array, so handle that as well.
   1.516 +**
   1.517 +**  returns unsigned        <= inArray->mCapacity on success.
   1.518 +*/
   1.519 +{
   1.520 +    unsigned retval = (unsigned)-1;
   1.521 +
   1.522 +    if(NULL != inArray)
   1.523 +    {
   1.524 +        void* moved = NULL;
   1.525 +
   1.526 +        moved = realloc(inArray->mItems, inItems * inArray->mItemSize);
   1.527 +        if(NULL != moved)
   1.528 +        {
   1.529 +            inArray->mItems = moved;
   1.530 +            inArray->mCapacity = inItems;
   1.531 +            if(inArray->mCount > inItems)
   1.532 +            {
   1.533 +                inArray->mCount = inItems;
   1.534 +            }
   1.535 +
   1.536 +            retval = inItems;
   1.537 +        }
   1.538 +    }
   1.539 +
   1.540 +    return retval;
   1.541 +}
   1.542 +
   1.543 +
   1.544 +void* arrayItem(AnyArray* inArray, unsigned inIndex)
   1.545 +/*
   1.546 +**  Return the array item at said index.
   1.547 +**  Zero based index.
   1.548 +**
   1.549 +**  returns void*       NULL on failure.
   1.550 +*/
   1.551 +{
   1.552 +    void* retval = NULL;
   1.553 +
   1.554 +    if(NULL != inArray && inIndex < inArray->mCount)
   1.555 +    {
   1.556 +        retval = (void*)((char*)inArray->mItems + (inArray->mItemSize * inIndex));
   1.557 +    }
   1.558 +
   1.559 +    return retval;
   1.560 +}
   1.561 +
   1.562 +
   1.563 +unsigned arrayIndex(AnyArray* inArray, void* inItem, unsigned inStartIndex)
   1.564 +/*
   1.565 +**  Go through the array from the index specified looking for an item
   1.566 +**      match based on byte for byte comparison.
   1.567 +**  We allow specifying the start index in order to handle arrays with
   1.568 +**      duplicate items.
   1.569 +**
   1.570 +**  returns unsigned        >= inArray->mCount on failure.
   1.571 +*/
   1.572 +{
   1.573 +    unsigned retval = (unsigned)-1;
   1.574 +
   1.575 +    if(NULL != inArray && NULL != inItem && inStartIndex < inArray->mCount)
   1.576 +    {
   1.577 +        void* curItem = NULL;
   1.578 +
   1.579 +        for(retval = inStartIndex; retval < inArray->mCount; retval++)
   1.580 +        {
   1.581 +            curItem = arrayItem(inArray, retval);
   1.582 +            if(0 == memcmp(inItem, curItem, inArray->mItemSize))
   1.583 +            {
   1.584 +                break;
   1.585 +            }
   1.586 +        }
   1.587 +    }
   1.588 +
   1.589 +
   1.590 +    return retval;
   1.591 +}
   1.592 +
   1.593 +
   1.594 +unsigned arrayIndexFn(AnyArray* inArray, arrayMatchFunc inFunc, void* inFuncContext, unsigned inStartIndex)
   1.595 +/*
   1.596 +**  Go through the array from the index specified looking for an item
   1.597 +**      match based upon the return value of inFunc (0, Zero, is a match).
   1.598 +**  We allow specifying the start index in order to facilitate looping over
   1.599 +**      the array which could have multiple matches.
   1.600 +**
   1.601 +**  returns unsigned        >= inArray->mCount on failure.
   1.602 +*/
   1.603 +{
   1.604 +    unsigned retval = (unsigned)-1;
   1.605 +
   1.606 +    if(NULL != inArray && NULL != inFunc && inStartIndex < inArray->mCount)
   1.607 +    {
   1.608 +        void* curItem = NULL;
   1.609 +
   1.610 +        for(retval = inStartIndex; retval < inArray->mCount; retval++)
   1.611 +        {
   1.612 +            curItem = arrayItem(inArray, retval);
   1.613 +            if(0 == inFunc(inFuncContext, inArray, curItem, retval))
   1.614 +            {
   1.615 +                break;
   1.616 +            }
   1.617 +        }
   1.618 +    }
   1.619 +
   1.620 +    return retval;
   1.621 +}
   1.622 +
   1.623 +
   1.624 +unsigned arrayAddItem(AnyArray* inArray, void* inItem)
   1.625 +/*
   1.626 +**  Add a new item to the array.
   1.627 +**  This is done by copying the item.
   1.628 +**
   1.629 +**  returns unsigned        < inArray->mCount on success.
   1.630 +*/
   1.631 +{
   1.632 +    unsigned retval = (unsigned)-1;
   1.633 +
   1.634 +    if(NULL != inArray && NULL != inItem)
   1.635 +    {
   1.636 +        int noCopy = 0;
   1.637 +
   1.638 +        /*
   1.639 +        **  See if the array should grow.
   1.640 +        */
   1.641 +        if(inArray->mCount == inArray->mCapacity)
   1.642 +        {
   1.643 +            unsigned allocRes = 0;
   1.644 +
   1.645 +            allocRes = arrayAlloc(inArray, inArray->mCapacity + inArray->mGrowBy);
   1.646 +            if(allocRes > inArray->mCapacity)
   1.647 +            {
   1.648 +                noCopy = __LINE__;
   1.649 +            }
   1.650 +        }
   1.651 +
   1.652 +        if(0 == noCopy)
   1.653 +        {
   1.654 +            retval = inArray->mCount;
   1.655 +
   1.656 +            inArray->mCount++;
   1.657 +            memcpy(arrayItem(inArray, retval), inItem, inArray->mItemSize);
   1.658 +        }
   1.659 +    }
   1.660 +
   1.661 +    return retval;
   1.662 +}
   1.663 +
   1.664 +
   1.665 +HeapObject* initHeapObject(HeapObject* inObject)
   1.666 +/*
   1.667 +**  Function to init the heap object just right.
   1.668 +**  Sets the unique ID to something unique.
   1.669 +*/
   1.670 +{
   1.671 +    HeapObject* retval = inObject;
   1.672 +
   1.673 +    if(NULL != inObject)
   1.674 +    {
   1.675 +        static unsigned uniqueGenerator = 0;
   1.676 +
   1.677 +        memset(inObject, -1, sizeof(HeapObject));
   1.678 +
   1.679 +        inObject->mUniqueID = uniqueGenerator;
   1.680 +        uniqueGenerator++;
   1.681 +    }
   1.682 +
   1.683 +    return retval;
   1.684 +}
   1.685 +
   1.686 +
   1.687 +int simpleHeapEvent(TMState* inStats, HeapEventType inType, unsigned mTimestamp, unsigned inSerial, unsigned inHeapID, unsigned inSize)
   1.688 +/*
   1.689 +**  A new heap event will cause the creation of a new heap object.
   1.690 +**  The new heap object will displace, or replace, a heap object of a different type.
   1.691 +*/
   1.692 +{
   1.693 +    int retval = 0;
   1.694 +    HeapObject newObject;
   1.695 +
   1.696 +    /*
   1.697 +    **  Set the most basic object details.
   1.698 +    */
   1.699 +    initHeapObject(&newObject);
   1.700 +    newObject.mHeapOffset = inHeapID;
   1.701 +    newObject.mSize = inSize;
   1.702 +    if(FREE == inType)
   1.703 +    {
   1.704 +        newObject.mType = FRAGMENT;
   1.705 +    }
   1.706 +    else if(ALLOC == inType)
   1.707 +    {
   1.708 +        newObject.mType = ALLOCATION;
   1.709 +    }
   1.710 +
   1.711 +    /*
   1.712 +    **  Add it to the heap object array.
   1.713 +    */
   1.714 +
   1.715 +    /*
   1.716 +    **  TODO GAB
   1.717 +    **
   1.718 +    **  First thing to do is to add the new object to the heap in order to
   1.719 +    **      obtain a valid index.
   1.720 +    **
   1.721 +    **  Next, find all matches to this range of heap memory that this event
   1.722 +    **      refers to, that are alive during this timestamp (no death yet).
   1.723 +    **  Fill in the death event of those objects.
   1.724 +    **  If the objects contain some portions outside of the range, then
   1.725 +    **      new objects for those ranges need to be created that carry on
   1.726 +    **      the same object type, have the index of the old object for birth,
   1.727 +    **      and the serial of the old object, new timestamp of course.
   1.728 +    **  The old object's death points to the new object, which tells why the
   1.729 +    **      fragmentation took place.
   1.730 +    **  The new object birth points to the old object only if a fragment.
   1.731 +    **  An allocation only has a birth object when it is a realloc (complex)
   1.732 +    **      heap event.
   1.733 +    **
   1.734 +    **  I believe this give us enough information to look up particular
   1.735 +    **      details of the heap at any given time.
   1.736 +    */
   1.737 +
   1.738 +    return retval;
   1.739 +}
   1.740 +
   1.741 +
   1.742 +int complexHeapEvent(TMState* inStats, unsigned mTimestamp, unsigned inOldSerial, unsigned inOldHeapID, unsigned inOSize, unsigned inNewSerial, unsigned inNewHeapID, unsigned inNewSize)
   1.743 +/*
   1.744 +**  Generally, this event intends to chain one old heap object to a newer heap object.
   1.745 +**  Otherwise, the functionality should recognizable ala simpleHeapEvent.
   1.746 +*/
   1.747 +{
   1.748 +    int retval = 0;
   1.749 +
   1.750 +    /*
   1.751 +    **  TODO GAB
   1.752 +    */
   1.753 +
   1.754 +    return retval;
   1.755 +}
   1.756 +
   1.757 +
   1.758 +unsigned actualByteSize(Options* inOptions, unsigned retval)
   1.759 +/*
   1.760 +**  Apply alignment and overhead to size to figure out actual byte size.
   1.761 +**  This by default mimics spacetrace with default options (msvc crt heap).
   1.762 +*/
   1.763 +{
   1.764 +    if(0 != retval)
   1.765 +    {
   1.766 +        unsigned eval = 0;
   1.767 +        unsigned over = 0;
   1.768 +
   1.769 +        eval = retval - 1;
   1.770 +        if(0 != inOptions->mAlignment)
   1.771 +        {
   1.772 +            over = eval % inOptions->mAlignment;
   1.773 +        }
   1.774 +        retval = eval + inOptions->mOverhead + inOptions->mAlignment - over;
   1.775 +    }
   1.776 +
   1.777 +    return retval;
   1.778 +}
   1.779 +
   1.780 +
   1.781 +void tmEventHandler(tmreader* inReader, tmevent* inEvent)
   1.782 +/*
   1.783 +**  Callback from the tmreader_eventloop.
   1.784 +**  Build up our fragmentation information herein.
   1.785 +*/
   1.786 +{
   1.787 +    char type = inEvent->type;
   1.788 +    TMState* stats = (TMState*)inReader->data;
   1.789 +
   1.790 +    /*
   1.791 +    **  Only intersted in handling events of a particular type.
   1.792 +    */
   1.793 +    switch(type)
   1.794 +    {
   1.795 +    default:
   1.796 +        return;
   1.797 +
   1.798 +    case TM_EVENT_MALLOC:
   1.799 +    case TM_EVENT_CALLOC:
   1.800 +    case TM_EVENT_REALLOC:
   1.801 +    case TM_EVENT_FREE:
   1.802 +        break;
   1.803 +    }
   1.804 +
   1.805 +    /*
   1.806 +    **  Should we even try to look?
   1.807 +    **  Set mLoopExitTMR to non-zero to abort the read loop faster.
   1.808 +    */
   1.809 +    if(0 == stats->mLoopExitTMR)
   1.810 +    {
   1.811 +        Options* options = (Options*)stats->mOptions;
   1.812 +        unsigned timestamp = ticks2msec(stats->mTMR, inEvent->u.alloc.interval);
   1.813 +        unsigned actualSize = actualByteSize(options, inEvent->u.alloc.size);
   1.814 +        unsigned heapID = inEvent->u.alloc.ptr;
   1.815 +        unsigned serial = inEvent->serial;
   1.816 +        
   1.817 +        /*
   1.818 +        **  Check the timestamp range of our overall state.
   1.819 +        */
   1.820 +        if(stats->uMinTicks > timestamp)
   1.821 +        {
   1.822 +            stats->uMinTicks = timestamp;
   1.823 +        }
   1.824 +        if(stats->uMaxTicks < timestamp)
   1.825 +        {
   1.826 +            stats->uMaxTicks = timestamp;
   1.827 +        }
   1.828 +        
   1.829 +        /*
   1.830 +        **  Realloc in general deserves some special attention if dealing
   1.831 +        **      with an old allocation (not new memory).
   1.832 +        */
   1.833 +        if(TM_EVENT_REALLOC == type && 0 != inEvent->u.alloc.oldserial)
   1.834 +        {
   1.835 +            unsigned oldActualSize = actualByteSize(options, inEvent->u.alloc.oldsize);
   1.836 +            unsigned oldHeapID = inEvent->u.alloc.oldptr;
   1.837 +            unsigned oldSerial = inEvent->u.alloc.oldserial;
   1.838 +
   1.839 +            if(0 == actualSize)
   1.840 +            {
   1.841 +                /*
   1.842 +                **  Reallocs of size zero are to become free events.
   1.843 +                */
   1.844 +                stats->mLoopExitTMR = simpleHeapEvent(stats, FREE, timestamp, serial, oldHeapID, oldActualSize);
   1.845 +            }
   1.846 +            else if(heapID != oldHeapID || actualSize != oldActualSize)
   1.847 +            {
   1.848 +                /*
   1.849 +                **  Reallocs which moved generate two events.
   1.850 +                **  Reallocs which changed size generate two events.
   1.851 +                **
   1.852 +                **  One event to free the old memory area.
   1.853 +                **  Another event to allocate the new memory area.
   1.854 +                **  They are to be linked to one another, so the history
   1.855 +                **      and true origin can be tracked.
   1.856 +                */
   1.857 +                stats->mLoopExitTMR = complexHeapEvent(stats, timestamp, oldSerial, oldHeapID, oldActualSize, serial, heapID, actualSize);
   1.858 +            }
   1.859 +            else
   1.860 +            {
   1.861 +                /*
   1.862 +                **  The realloc is not considered an operation and is skipped.
   1.863 +                **  It is not an operation, because it did not move or change
   1.864 +                **      size; this can happen if a realloc falls within the
   1.865 +                **      alignment of an allocation.
   1.866 +                **  Say if you realloc a 1 byte allocation to 2 bytes, it will
   1.867 +                **      not really change heap impact unless you have 1 set as
   1.868 +                **      the alignment of your allocations.
   1.869 +                */
   1.870 +            }
   1.871 +        }
   1.872 +        else if(TM_EVENT_FREE == type)
   1.873 +        {
   1.874 +            /*
   1.875 +            **  Generate a free event to create a fragment.
   1.876 +            */
   1.877 +            stats->mLoopExitTMR = simpleHeapEvent(stats, FREE, timestamp, serial, heapID, actualSize);
   1.878 +        }
   1.879 +        else
   1.880 +        {
   1.881 +            /*
   1.882 +            **  Generate an allocation event to clear fragments.
   1.883 +            */
   1.884 +            stats->mLoopExitTMR = simpleHeapEvent(stats, ALLOC, timestamp, serial, heapID, actualSize);
   1.885 +        }
   1.886 +    }
   1.887 +}
   1.888 +
   1.889 +
   1.890 +int tmfrags(Options* inOptions)
   1.891 +/*
   1.892 +**  Load the input file and report stats.
   1.893 +*/
   1.894 +{
   1.895 +    int retval = 0;
   1.896 +    TMState stats;
   1.897 +
   1.898 +    memset(&stats, 0, sizeof(stats));
   1.899 +    stats.mOptions = inOptions;
   1.900 +    stats.uMinTicks = 0xFFFFFFFFU;
   1.901 +
   1.902 +    /*
   1.903 +    **  Need a tmreader.
   1.904 +    */
   1.905 +    stats.mTMR = tmreader_new(inOptions->mProgramName, &stats);
   1.906 +    if(NULL != stats.mTMR)
   1.907 +    {
   1.908 +        int tmResult = 0;
   1.909 +
   1.910 +        tmResult = tmreader_eventloop(stats.mTMR, inOptions->mInputName, tmEventHandler);
   1.911 +        if(0 == tmResult)
   1.912 +        {
   1.913 +            retval = __LINE__;
   1.914 +            ERROR_REPORT(retval, inOptions->mInputName, "Problem reading trace-malloc data.");
   1.915 +        }
   1.916 +        if(0 != stats.mLoopExitTMR)
   1.917 +        {
   1.918 +            retval = stats.mLoopExitTMR;
   1.919 +            ERROR_REPORT(retval, inOptions->mInputName, "Aborted trace-malloc input loop.");
   1.920 +        }
   1.921 +
   1.922 +        tmreader_destroy(stats.mTMR);
   1.923 +        stats.mTMR = NULL;
   1.924 +    }
   1.925 +    else
   1.926 +    {
   1.927 +        retval = __LINE__;
   1.928 +        ERROR_REPORT(retval, inOptions->mProgramName, "Unable to obtain tmreader.");
   1.929 +    }
   1.930 +
   1.931 +    return retval;
   1.932 +}
   1.933 +
   1.934 +
   1.935 +int main(int inArgc, char** inArgv)
   1.936 +{
   1.937 +    int retval = 0;
   1.938 +    Options options;
   1.939 +
   1.940 +    retval = initOptions(&options, inArgc, inArgv);
   1.941 +    if(options.mHelp)
   1.942 +    {
   1.943 +        showHelp(&options);
   1.944 +    }
   1.945 +    else if(0 == retval)
   1.946 +    {
   1.947 +        retval = tmfrags(&options);
   1.948 +    }
   1.949 +
   1.950 +    cleanOptions(&options);
   1.951 +    return retval;
   1.952 +}
   1.953 +

mercurial