gfx/2d/image_operations.cpp

branch
TOR_BUG_9701
changeset 8
97036ab72558
equal deleted inserted replaced
-1:000000000000 0:200948f53310
1 // Copyright (c) 2006-2012 The Chromium Authors. All rights reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions
5 // are met:
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above copyright
9 // notice, this list of conditions and the following disclaimer in
10 // the documentation and/or other materials provided with the
11 // distribution.
12 // * Neither the name of Google, Inc. nor the names of its contributors
13 // may be used to endorse or promote products derived from this
14 // software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
19 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
20 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
21 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
22 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
23 // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
24 // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 // SUCH DAMAGE.
28
29 #include "base/basictypes.h"
30
31 #define _USE_MATH_DEFINES
32 #include <algorithm>
33 #include <cmath>
34 #include <limits>
35
36 #include "image_operations.h"
37
38 #include "base/stack_container.h"
39 #include "convolver.h"
40 #include "skia/SkColorPriv.h"
41 #include "skia/SkBitmap.h"
42 #include "skia/SkRect.h"
43 #include "skia/SkFontHost.h"
44
45 namespace skia {
46
47 namespace {
48
49 // Returns the ceiling/floor as an integer.
50 inline int CeilInt(float val) {
51 return static_cast<int>(ceil(val));
52 }
53 inline int FloorInt(float val) {
54 return static_cast<int>(floor(val));
55 }
56
57 // Filter function computation -------------------------------------------------
58
59 // Evaluates the box filter, which goes from -0.5 to +0.5.
60 float EvalBox(float x) {
61 return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f;
62 }
63
64 // Evaluates the Lanczos filter of the given filter size window for the given
65 // position.
66 //
67 // |filter_size| is the width of the filter (the "window"), outside of which
68 // the value of the function is 0. Inside of the window, the value is the
69 // normalized sinc function:
70 // lanczos(x) = sinc(x) * sinc(x / filter_size);
71 // where
72 // sinc(x) = sin(pi*x) / (pi*x);
73 float EvalLanczos(int filter_size, float x) {
74 if (x <= -filter_size || x >= filter_size)
75 return 0.0f; // Outside of the window.
76 if (x > -std::numeric_limits<float>::epsilon() &&
77 x < std::numeric_limits<float>::epsilon())
78 return 1.0f; // Special case the discontinuity at the origin.
79 float xpi = x * static_cast<float>(M_PI);
80 return (sin(xpi) / xpi) * // sinc(x)
81 sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size)
82 }
83
84 // Evaluates the Hamming filter of the given filter size window for the given
85 // position.
86 //
87 // The filter covers [-filter_size, +filter_size]. Outside of this window
88 // the value of the function is 0. Inside of the window, the value is sinus
89 // cardinal multiplied by a recentered Hamming function. The traditional
90 // Hamming formula for a window of size N and n ranging in [0, N-1] is:
91 // hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1)))
92 // In our case we want the function centered for x == 0 and at its minimum
93 // on both ends of the window (x == +/- filter_size), hence the adjusted
94 // formula:
95 // hamming(x) = (0.54 -
96 // 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size)))
97 // = 0.54 - 0.46 * cos(pi * x / filter_size - pi)
98 // = 0.54 + 0.46 * cos(pi * x / filter_size)
99 float EvalHamming(int filter_size, float x) {
100 if (x <= -filter_size || x >= filter_size)
101 return 0.0f; // Outside of the window.
102 if (x > -std::numeric_limits<float>::epsilon() &&
103 x < std::numeric_limits<float>::epsilon())
104 return 1.0f; // Special case the sinc discontinuity at the origin.
105 const float xpi = x * static_cast<float>(M_PI);
106
107 return ((sin(xpi) / xpi) * // sinc(x)
108 (0.54f + 0.46f * cos(xpi / filter_size))); // hamming(x)
109 }
110
111 // ResizeFilter ----------------------------------------------------------------
112
113 // Encapsulates computation and storage of the filters required for one complete
114 // resize operation.
115 class ResizeFilter {
116 public:
117 ResizeFilter(ImageOperations::ResizeMethod method,
118 int src_full_width, int src_full_height,
119 int dest_width, int dest_height,
120 const SkIRect& dest_subset);
121
122 // Returns the filled filter values.
123 const ConvolutionFilter1D& x_filter() { return x_filter_; }
124 const ConvolutionFilter1D& y_filter() { return y_filter_; }
125
126 private:
127 // Returns the number of pixels that the filer spans, in filter space (the
128 // destination image).
129 float GetFilterSupport(float scale) {
130 switch (method_) {
131 case ImageOperations::RESIZE_BOX:
132 // The box filter just scales with the image scaling.
133 return 0.5f; // Only want one side of the filter = /2.
134 case ImageOperations::RESIZE_HAMMING1:
135 // The Hamming filter takes as much space in the source image in
136 // each direction as the size of the window = 1 for Hamming1.
137 return 1.0f;
138 case ImageOperations::RESIZE_LANCZOS2:
139 // The Lanczos filter takes as much space in the source image in
140 // each direction as the size of the window = 2 for Lanczos2.
141 return 2.0f;
142 case ImageOperations::RESIZE_LANCZOS3:
143 // The Lanczos filter takes as much space in the source image in
144 // each direction as the size of the window = 3 for Lanczos3.
145 return 3.0f;
146 default:
147 return 1.0f;
148 }
149 }
150
151 // Computes one set of filters either horizontally or vertically. The caller
152 // will specify the "min" and "max" rather than the bottom/top and
153 // right/bottom so that the same code can be re-used in each dimension.
154 //
155 // |src_depend_lo| and |src_depend_size| gives the range for the source
156 // depend rectangle (horizontally or vertically at the caller's discretion
157 // -- see above for what this means).
158 //
159 // Likewise, the range of destination values to compute and the scale factor
160 // for the transform is also specified.
161 void ComputeFilters(int src_size,
162 int dest_subset_lo, int dest_subset_size,
163 float scale, float src_support,
164 ConvolutionFilter1D* output);
165
166 // Computes the filter value given the coordinate in filter space.
167 inline float ComputeFilter(float pos) {
168 switch (method_) {
169 case ImageOperations::RESIZE_BOX:
170 return EvalBox(pos);
171 case ImageOperations::RESIZE_HAMMING1:
172 return EvalHamming(1, pos);
173 case ImageOperations::RESIZE_LANCZOS2:
174 return EvalLanczos(2, pos);
175 case ImageOperations::RESIZE_LANCZOS3:
176 return EvalLanczos(3, pos);
177 default:
178 return 0;
179 }
180 }
181
182 ImageOperations::ResizeMethod method_;
183
184 // Size of the filter support on one side only in the destination space.
185 // See GetFilterSupport.
186 float x_filter_support_;
187 float y_filter_support_;
188
189 // Subset of scaled destination bitmap to compute.
190 SkIRect out_bounds_;
191
192 ConvolutionFilter1D x_filter_;
193 ConvolutionFilter1D y_filter_;
194
195 DISALLOW_COPY_AND_ASSIGN(ResizeFilter);
196 };
197
198 ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method,
199 int src_full_width, int src_full_height,
200 int dest_width, int dest_height,
201 const SkIRect& dest_subset)
202 : method_(method),
203 out_bounds_(dest_subset) {
204 // method_ will only ever refer to an "algorithm method".
205 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
206 (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
207
208 float scale_x = static_cast<float>(dest_width) /
209 static_cast<float>(src_full_width);
210 float scale_y = static_cast<float>(dest_height) /
211 static_cast<float>(src_full_height);
212
213 x_filter_support_ = GetFilterSupport(scale_x);
214 y_filter_support_ = GetFilterSupport(scale_y);
215
216 // Support of the filter in source space.
217 float src_x_support = x_filter_support_ / scale_x;
218 float src_y_support = y_filter_support_ / scale_y;
219
220 ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(),
221 scale_x, src_x_support, &x_filter_);
222 ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(),
223 scale_y, src_y_support, &y_filter_);
224 }
225
226 // TODO(egouriou): Take advantage of periods in the convolution.
227 // Practical resizing filters are periodic outside of the border area.
228 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
229 // source become p pixels in the destination) will have a period of p.
230 // A nice consequence is a period of 1 when downscaling by an integral
231 // factor. Downscaling from typical display resolutions is also bound
232 // to produce interesting periods as those are chosen to have multiple
233 // small factors.
234 // Small periods reduce computational load and improve cache usage if
235 // the coefficients can be shared. For periods of 1 we can consider
236 // loading the factors only once outside the borders.
237 void ResizeFilter::ComputeFilters(int src_size,
238 int dest_subset_lo, int dest_subset_size,
239 float scale, float src_support,
240 ConvolutionFilter1D* output) {
241 int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi)
242
243 // When we're doing a magnification, the scale will be larger than one. This
244 // means the destination pixels are much smaller than the source pixels, and
245 // that the range covered by the filter won't necessarily cover any source
246 // pixel boundaries. Therefore, we use these clamped values (max of 1) for
247 // some computations.
248 float clamped_scale = std::min(1.0f, scale);
249
250 // Speed up the divisions below by turning them into multiplies.
251 float inv_scale = 1.0f / scale;
252
253 StackVector<float, 64> filter_values;
254 StackVector<int16_t, 64> fixed_filter_values;
255
256 // Loop over all pixels in the output range. We will generate one set of
257 // filter values for each one. Those values will tell us how to blend the
258 // source pixels to compute the destination pixel.
259 for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi;
260 dest_subset_i++) {
261 // Reset the arrays. We don't declare them inside so they can re-use the
262 // same malloc-ed buffer.
263 filter_values->clear();
264 fixed_filter_values->clear();
265
266 // This is the pixel in the source directly under the pixel in the dest.
267 // Note that we base computations on the "center" of the pixels. To see
268 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
269 // downscale should "cover" the pixels around the pixel with *its center*
270 // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
271 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
272 float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale;
273
274 // Compute the (inclusive) range of source pixels the filter covers.
275 int src_begin = std::max(0, FloorInt(src_pixel - src_support));
276 int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support));
277
278 // Compute the unnormalized filter value at each location of the source
279 // it covers.
280 float filter_sum = 0.0f; // Sub of the filter values for normalizing.
281 for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end;
282 cur_filter_pixel++) {
283 // Distance from the center of the filter, this is the filter coordinate
284 // in source space. We also need to consider the center of the pixel
285 // when comparing distance against 'src_pixel'. In the 5x downscale
286 // example used above the distance from the center of the filter to
287 // the pixel with coordinates (2, 2) should be 0, because its center
288 // is at (2.5, 2.5).
289 float src_filter_dist =
290 ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel);
291
292 // Since the filter really exists in dest space, map it there.
293 float dest_filter_dist = src_filter_dist * clamped_scale;
294
295 // Compute the filter value at that location.
296 float filter_value = ComputeFilter(dest_filter_dist);
297 filter_values->push_back(filter_value);
298
299 filter_sum += filter_value;
300 }
301
302 // The filter must be normalized so that we don't affect the brightness of
303 // the image. Convert to normalized fixed point.
304 int16_t fixed_sum = 0;
305 for (size_t i = 0; i < filter_values->size(); i++) {
306 int16_t cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum);
307 fixed_sum += cur_fixed;
308 fixed_filter_values->push_back(cur_fixed);
309 }
310
311 // The conversion to fixed point will leave some rounding errors, which
312 // we add back in to avoid affecting the brightness of the image. We
313 // arbitrarily add this to the center of the filter array (this won't always
314 // be the center of the filter function since it could get clipped on the
315 // edges, but it doesn't matter enough to worry about that case).
316 int16_t leftovers = output->FloatToFixed(1.0f) - fixed_sum;
317 fixed_filter_values[fixed_filter_values->size() / 2] += leftovers;
318
319 // Now it's ready to go.
320 output->AddFilter(src_begin, &fixed_filter_values[0],
321 static_cast<int>(fixed_filter_values->size()));
322 }
323
324 output->PaddingForSIMD(8);
325 }
326
327 ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod(
328 ImageOperations::ResizeMethod method) {
329 // Convert any "Quality Method" into an "Algorithm Method"
330 if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD &&
331 method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) {
332 return method;
333 }
334 // The call to ImageOperationsGtv::Resize() above took care of
335 // GPU-acceleration in the cases where it is possible. So now we just
336 // pick the appropriate software method for each resize quality.
337 switch (method) {
338 // Users of RESIZE_GOOD are willing to trade a lot of quality to
339 // get speed, allowing the use of linear resampling to get hardware
340 // acceleration (SRB). Hence any of our "good" software filters
341 // will be acceptable, and we use the fastest one, Hamming-1.
342 case ImageOperations::RESIZE_GOOD:
343 // Users of RESIZE_BETTER are willing to trade some quality in order
344 // to improve performance, but are guaranteed not to devolve to a linear
345 // resampling. In visual tests we see that Hamming-1 is not as good as
346 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
347 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
348 // an acceptable trade-off between quality and speed.
349 case ImageOperations::RESIZE_BETTER:
350 return ImageOperations::RESIZE_HAMMING1;
351 default:
352 return ImageOperations::RESIZE_LANCZOS3;
353 }
354 }
355
356 } // namespace
357
358 // Resize ----------------------------------------------------------------------
359
360 // static
361 SkBitmap ImageOperations::Resize(const SkBitmap& source,
362 ResizeMethod method,
363 int dest_width, int dest_height,
364 const SkIRect& dest_subset,
365 void* dest_pixels /* = nullptr */) {
366 if (method == ImageOperations::RESIZE_SUBPIXEL)
367 return ResizeSubpixel(source, dest_width, dest_height, dest_subset);
368 else
369 return ResizeBasic(source, method, dest_width, dest_height, dest_subset,
370 dest_pixels);
371 }
372
373 // static
374 SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source,
375 int dest_width, int dest_height,
376 const SkIRect& dest_subset) {
377 // Currently only works on Linux/BSD because these are the only platforms
378 // where SkFontHost::GetSubpixelOrder is defined.
379 #if defined(XP_UNIX)
380 // Understand the display.
381 const SkFontHost::LCDOrder order = SkFontHost::GetSubpixelOrder();
382 const SkFontHost::LCDOrientation orientation =
383 SkFontHost::GetSubpixelOrientation();
384
385 // Decide on which dimension, if any, to deploy subpixel rendering.
386 int w = 1;
387 int h = 1;
388 switch (orientation) {
389 case SkFontHost::kHorizontal_LCDOrientation:
390 w = dest_width < source.width() ? 3 : 1;
391 break;
392 case SkFontHost::kVertical_LCDOrientation:
393 h = dest_height < source.height() ? 3 : 1;
394 break;
395 }
396
397 // Resize the image.
398 const int width = dest_width * w;
399 const int height = dest_height * h;
400 SkIRect subset = { dest_subset.fLeft, dest_subset.fTop,
401 dest_subset.fLeft + dest_subset.width() * w,
402 dest_subset.fTop + dest_subset.height() * h };
403 SkBitmap img = ResizeBasic(source, ImageOperations::RESIZE_LANCZOS3, width,
404 height, subset);
405 const int row_words = img.rowBytes() / 4;
406 if (w == 1 && h == 1)
407 return img;
408
409 // Render into subpixels.
410 SkBitmap result;
411 result.setConfig(SkBitmap::kARGB_8888_Config, dest_subset.width(),
412 dest_subset.height());
413 result.allocPixels();
414 if (!result.readyToDraw())
415 return img;
416
417 SkAutoLockPixels locker(img);
418 if (!img.readyToDraw())
419 return img;
420
421 uint32_t* src_row = img.getAddr32(0, 0);
422 uint32_t* dst_row = result.getAddr32(0, 0);
423 for (int y = 0; y < dest_subset.height(); y++) {
424 uint32_t* src = src_row;
425 uint32_t* dst = dst_row;
426 for (int x = 0; x < dest_subset.width(); x++, src += w, dst++) {
427 uint8_t r = 0, g = 0, b = 0, a = 0;
428 switch (order) {
429 case SkFontHost::kRGB_LCDOrder:
430 switch (orientation) {
431 case SkFontHost::kHorizontal_LCDOrientation:
432 r = SkGetPackedR32(src[0]);
433 g = SkGetPackedG32(src[1]);
434 b = SkGetPackedB32(src[2]);
435 a = SkGetPackedA32(src[1]);
436 break;
437 case SkFontHost::kVertical_LCDOrientation:
438 r = SkGetPackedR32(src[0 * row_words]);
439 g = SkGetPackedG32(src[1 * row_words]);
440 b = SkGetPackedB32(src[2 * row_words]);
441 a = SkGetPackedA32(src[1 * row_words]);
442 break;
443 }
444 break;
445 case SkFontHost::kBGR_LCDOrder:
446 switch (orientation) {
447 case SkFontHost::kHorizontal_LCDOrientation:
448 b = SkGetPackedB32(src[0]);
449 g = SkGetPackedG32(src[1]);
450 r = SkGetPackedR32(src[2]);
451 a = SkGetPackedA32(src[1]);
452 break;
453 case SkFontHost::kVertical_LCDOrientation:
454 b = SkGetPackedB32(src[0 * row_words]);
455 g = SkGetPackedG32(src[1 * row_words]);
456 r = SkGetPackedR32(src[2 * row_words]);
457 a = SkGetPackedA32(src[1 * row_words]);
458 break;
459 }
460 break;
461 case SkFontHost::kNONE_LCDOrder:
462 break;
463 }
464 // Premultiplied alpha is very fragile.
465 a = a > r ? a : r;
466 a = a > g ? a : g;
467 a = a > b ? a : b;
468 *dst = SkPackARGB32(a, r, g, b);
469 }
470 src_row += h * row_words;
471 dst_row += result.rowBytes() / 4;
472 }
473 result.setAlphaType(img.alphaType());
474 return result;
475 #else
476 return SkBitmap();
477 #endif // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID)
478 }
479
480 // static
481 SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
482 ResizeMethod method,
483 int dest_width, int dest_height,
484 const SkIRect& dest_subset,
485 void* dest_pixels /* = nullptr */) {
486 // Ensure that the ResizeMethod enumeration is sound.
487 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
488 (method <= RESIZE_LAST_QUALITY_METHOD)) ||
489 ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
490 (method <= RESIZE_LAST_ALGORITHM_METHOD)));
491
492 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
493 // return empty.
494 if (source.width() < 1 || source.height() < 1 ||
495 dest_width < 1 || dest_height < 1)
496 return SkBitmap();
497
498 method = ResizeMethodToAlgorithmMethod(method);
499 // Check that we deal with an "algorithm methods" from this point onward.
500 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
501 (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
502
503 SkAutoLockPixels locker(source);
504 if (!source.readyToDraw())
505 return SkBitmap();
506
507 ResizeFilter filter(method, source.width(), source.height(),
508 dest_width, dest_height, dest_subset);
509
510 // Get a source bitmap encompassing this touched area. We construct the
511 // offsets and row strides such that it looks like a new bitmap, while
512 // referring to the old data.
513 const uint8_t* source_subset =
514 reinterpret_cast<const uint8_t*>(source.getPixels());
515
516 // Convolve into the result.
517 SkBitmap result;
518 result.setConfig(SkBitmap::kARGB_8888_Config,
519 dest_subset.width(), dest_subset.height());
520
521 if (dest_pixels) {
522 result.setPixels(dest_pixels);
523 } else {
524 result.allocPixels();
525 }
526
527 if (!result.readyToDraw())
528 return SkBitmap();
529
530 BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()),
531 !source.isOpaque(), filter.x_filter(), filter.y_filter(),
532 static_cast<int>(result.rowBytes()),
533 static_cast<unsigned char*>(result.getPixels()),
534 /* sse = */ false);
535
536 // Preserve the "opaque" flag for use as an optimization later.
537 result.setAlphaType(source.alphaType());
538
539 return result;
540 }
541
542 // static
543 SkBitmap ImageOperations::Resize(const SkBitmap& source,
544 ResizeMethod method,
545 int dest_width, int dest_height,
546 void* dest_pixels /* = nullptr */) {
547 SkIRect dest_subset = { 0, 0, dest_width, dest_height };
548 return Resize(source, method, dest_width, dest_height, dest_subset,
549 dest_pixels);
550 }
551
552 } // namespace skia

mercurial