gfx/2d/image_operations.cpp

Tue, 06 Jan 2015 21:39:09 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Tue, 06 Jan 2015 21:39:09 +0100
branch
TOR_BUG_9701
changeset 8
97036ab72558
permissions
-rw-r--r--

Conditionally force memory storage according to privacy.thirdparty.isolate;
This solves Tor bug #9701, complying with disk avoidance documented in
https://www.torproject.org/projects/torbrowser/design/#disk-avoidance.

     1 // Copyright (c) 2006-2012 The Chromium Authors. All rights reserved.
     2 //
     3 // Redistribution and use in source and binary forms, with or without
     4 // modification, are permitted provided that the following conditions
     5 // are met:
     6 //  * Redistributions of source code must retain the above copyright
     7 //    notice, this list of conditions and the following disclaimer.
     8 //  * Redistributions in binary form must reproduce the above copyright
     9 //    notice, this list of conditions and the following disclaimer in
    10 //    the documentation and/or other materials provided with the
    11 //    distribution.
    12 //  * Neither the name of Google, Inc. nor the names of its contributors
    13 //    may be used to endorse or promote products derived from this
    14 //    software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    19 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    20 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
    21 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
    22 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
    23 // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
    24 // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
    25 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
    26 // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    27 // SUCH DAMAGE.
    29 #include "base/basictypes.h"
    31 #define _USE_MATH_DEFINES
    32 #include <algorithm>
    33 #include <cmath>
    34 #include <limits>
    36 #include "image_operations.h"
    38 #include "base/stack_container.h"
    39 #include "convolver.h"
    40 #include "skia/SkColorPriv.h"
    41 #include "skia/SkBitmap.h"
    42 #include "skia/SkRect.h"
    43 #include "skia/SkFontHost.h"
    45 namespace skia {
    47 namespace {
    49 // Returns the ceiling/floor as an integer.
    50 inline int CeilInt(float val) {
    51   return static_cast<int>(ceil(val));
    52 }
    53 inline int FloorInt(float val) {
    54   return static_cast<int>(floor(val));
    55 }
    57 // Filter function computation -------------------------------------------------
    59 // Evaluates the box filter, which goes from -0.5 to +0.5.
    60 float EvalBox(float x) {
    61   return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f;
    62 }
    64 // Evaluates the Lanczos filter of the given filter size window for the given
    65 // position.
    66 //
    67 // |filter_size| is the width of the filter (the "window"), outside of which
    68 // the value of the function is 0. Inside of the window, the value is the
    69 // normalized sinc function:
    70 //   lanczos(x) = sinc(x) * sinc(x / filter_size);
    71 // where
    72 //   sinc(x) = sin(pi*x) / (pi*x);
    73 float EvalLanczos(int filter_size, float x) {
    74   if (x <= -filter_size || x >= filter_size)
    75     return 0.0f;  // Outside of the window.
    76   if (x > -std::numeric_limits<float>::epsilon() &&
    77       x < std::numeric_limits<float>::epsilon())
    78     return 1.0f;  // Special case the discontinuity at the origin.
    79   float xpi = x * static_cast<float>(M_PI);
    80   return (sin(xpi) / xpi) *  // sinc(x)
    81           sin(xpi / filter_size) / (xpi / filter_size);  // sinc(x/filter_size)
    82 }
    84 // Evaluates the Hamming filter of the given filter size window for the given
    85 // position.
    86 //
    87 // The filter covers [-filter_size, +filter_size]. Outside of this window
    88 // the value of the function is 0. Inside of the window, the value is sinus
    89 // cardinal multiplied by a recentered Hamming function. The traditional
    90 // Hamming formula for a window of size N and n ranging in [0, N-1] is:
    91 //   hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1)))
    92 // In our case we want the function centered for x == 0 and at its minimum
    93 // on both ends of the window (x == +/- filter_size), hence the adjusted
    94 // formula:
    95 //   hamming(x) = (0.54 -
    96 //                 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size)))
    97 //              = 0.54 - 0.46 * cos(pi * x / filter_size - pi)
    98 //              = 0.54 + 0.46 * cos(pi * x / filter_size)
    99 float EvalHamming(int filter_size, float x) {
   100   if (x <= -filter_size || x >= filter_size)
   101     return 0.0f;  // Outside of the window.
   102   if (x > -std::numeric_limits<float>::epsilon() &&
   103       x < std::numeric_limits<float>::epsilon())
   104     return 1.0f;  // Special case the sinc discontinuity at the origin.
   105   const float xpi = x * static_cast<float>(M_PI);
   107   return ((sin(xpi) / xpi) *  // sinc(x)
   108           (0.54f + 0.46f * cos(xpi / filter_size)));  // hamming(x)
   109 }
   111 // ResizeFilter ----------------------------------------------------------------
   113 // Encapsulates computation and storage of the filters required for one complete
   114 // resize operation.
   115 class ResizeFilter {
   116  public:
   117   ResizeFilter(ImageOperations::ResizeMethod method,
   118                int src_full_width, int src_full_height,
   119                int dest_width, int dest_height,
   120                const SkIRect& dest_subset);
   122   // Returns the filled filter values.
   123   const ConvolutionFilter1D& x_filter() { return x_filter_; }
   124   const ConvolutionFilter1D& y_filter() { return y_filter_; }
   126  private:
   127   // Returns the number of pixels that the filer spans, in filter space (the
   128   // destination image).
   129   float GetFilterSupport(float scale) {
   130     switch (method_) {
   131       case ImageOperations::RESIZE_BOX:
   132         // The box filter just scales with the image scaling.
   133         return 0.5f;  // Only want one side of the filter = /2.
   134       case ImageOperations::RESIZE_HAMMING1:
   135         // The Hamming filter takes as much space in the source image in
   136         // each direction as the size of the window = 1 for Hamming1.
   137         return 1.0f;
   138       case ImageOperations::RESIZE_LANCZOS2:
   139         // The Lanczos filter takes as much space in the source image in
   140         // each direction as the size of the window = 2 for Lanczos2.
   141         return 2.0f;
   142       case ImageOperations::RESIZE_LANCZOS3:
   143         // The Lanczos filter takes as much space in the source image in
   144         // each direction as the size of the window = 3 for Lanczos3.
   145         return 3.0f;
   146       default:
   147         return 1.0f;
   148     }
   149   }
   151   // Computes one set of filters either horizontally or vertically. The caller
   152   // will specify the "min" and "max" rather than the bottom/top and
   153   // right/bottom so that the same code can be re-used in each dimension.
   154   //
   155   // |src_depend_lo| and |src_depend_size| gives the range for the source
   156   // depend rectangle (horizontally or vertically at the caller's discretion
   157   // -- see above for what this means).
   158   //
   159   // Likewise, the range of destination values to compute and the scale factor
   160   // for the transform is also specified.
   161   void ComputeFilters(int src_size,
   162                       int dest_subset_lo, int dest_subset_size,
   163                       float scale, float src_support,
   164                       ConvolutionFilter1D* output);
   166   // Computes the filter value given the coordinate in filter space.
   167   inline float ComputeFilter(float pos) {
   168     switch (method_) {
   169       case ImageOperations::RESIZE_BOX:
   170         return EvalBox(pos);
   171       case ImageOperations::RESIZE_HAMMING1:
   172         return EvalHamming(1, pos);
   173       case ImageOperations::RESIZE_LANCZOS2:
   174         return EvalLanczos(2, pos);
   175       case ImageOperations::RESIZE_LANCZOS3:
   176         return EvalLanczos(3, pos);
   177       default:
   178         return 0;
   179     }
   180   }
   182   ImageOperations::ResizeMethod method_;
   184   // Size of the filter support on one side only in the destination space.
   185   // See GetFilterSupport.
   186   float x_filter_support_;
   187   float y_filter_support_;
   189   // Subset of scaled destination bitmap to compute.
   190   SkIRect out_bounds_;
   192   ConvolutionFilter1D x_filter_;
   193   ConvolutionFilter1D y_filter_;
   195   DISALLOW_COPY_AND_ASSIGN(ResizeFilter);
   196 };
   198 ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method,
   199                            int src_full_width, int src_full_height,
   200                            int dest_width, int dest_height,
   201                            const SkIRect& dest_subset)
   202     : method_(method),
   203       out_bounds_(dest_subset) {
   204   // method_ will only ever refer to an "algorithm method".
   205   SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
   206            (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
   208   float scale_x = static_cast<float>(dest_width) /
   209                   static_cast<float>(src_full_width);
   210   float scale_y = static_cast<float>(dest_height) /
   211                   static_cast<float>(src_full_height);
   213   x_filter_support_ = GetFilterSupport(scale_x);
   214   y_filter_support_ = GetFilterSupport(scale_y);
   216   // Support of the filter in source space.
   217   float src_x_support = x_filter_support_ / scale_x;
   218   float src_y_support = y_filter_support_ / scale_y;
   220   ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(),
   221                  scale_x, src_x_support, &x_filter_);
   222   ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(),
   223                  scale_y, src_y_support, &y_filter_);
   224 }
   226 // TODO(egouriou): Take advantage of periods in the convolution.
   227 // Practical resizing filters are periodic outside of the border area.
   228 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
   229 // source become p pixels in the destination) will have a period of p.
   230 // A nice consequence is a period of 1 when downscaling by an integral
   231 // factor. Downscaling from typical display resolutions is also bound
   232 // to produce interesting periods as those are chosen to have multiple
   233 // small factors.
   234 // Small periods reduce computational load and improve cache usage if
   235 // the coefficients can be shared. For periods of 1 we can consider
   236 // loading the factors only once outside the borders.
   237 void ResizeFilter::ComputeFilters(int src_size,
   238                                   int dest_subset_lo, int dest_subset_size,
   239                                   float scale, float src_support,
   240                                   ConvolutionFilter1D* output) {
   241   int dest_subset_hi = dest_subset_lo + dest_subset_size;  // [lo, hi)
   243   // When we're doing a magnification, the scale will be larger than one. This
   244   // means the destination pixels are much smaller than the source pixels, and
   245   // that the range covered by the filter won't necessarily cover any source
   246   // pixel boundaries. Therefore, we use these clamped values (max of 1) for
   247   // some computations.
   248   float clamped_scale = std::min(1.0f, scale);
   250   // Speed up the divisions below by turning them into multiplies.
   251   float inv_scale = 1.0f / scale;
   253   StackVector<float, 64> filter_values;
   254   StackVector<int16_t, 64> fixed_filter_values;
   256   // Loop over all pixels in the output range. We will generate one set of
   257   // filter values for each one. Those values will tell us how to blend the
   258   // source pixels to compute the destination pixel.
   259   for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi;
   260        dest_subset_i++) {
   261     // Reset the arrays. We don't declare them inside so they can re-use the
   262     // same malloc-ed buffer.
   263     filter_values->clear();
   264     fixed_filter_values->clear();
   266     // This is the pixel in the source directly under the pixel in the dest.
   267     // Note that we base computations on the "center" of the pixels. To see
   268     // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
   269     // downscale should "cover" the pixels around the pixel with *its center*
   270     // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
   271     // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
   272     float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale;
   274     // Compute the (inclusive) range of source pixels the filter covers.
   275     int src_begin = std::max(0, FloorInt(src_pixel - src_support));
   276     int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support));
   278     // Compute the unnormalized filter value at each location of the source
   279     // it covers.
   280     float filter_sum = 0.0f;  // Sub of the filter values for normalizing.
   281     for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end;
   282          cur_filter_pixel++) {
   283       // Distance from the center of the filter, this is the filter coordinate
   284       // in source space. We also need to consider the center of the pixel
   285       // when comparing distance against 'src_pixel'. In the 5x downscale
   286       // example used above the distance from the center of the filter to
   287       // the pixel with coordinates (2, 2) should be 0, because its center
   288       // is at (2.5, 2.5).
   289       float src_filter_dist =
   290            ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel);
   292       // Since the filter really exists in dest space, map it there.
   293       float dest_filter_dist = src_filter_dist * clamped_scale;
   295       // Compute the filter value at that location.
   296       float filter_value = ComputeFilter(dest_filter_dist);
   297       filter_values->push_back(filter_value);
   299       filter_sum += filter_value;
   300     }
   302     // The filter must be normalized so that we don't affect the brightness of
   303     // the image. Convert to normalized fixed point.
   304     int16_t fixed_sum = 0;
   305     for (size_t i = 0; i < filter_values->size(); i++) {
   306       int16_t cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum);
   307       fixed_sum += cur_fixed;
   308       fixed_filter_values->push_back(cur_fixed);
   309     }
   311     // The conversion to fixed point will leave some rounding errors, which
   312     // we add back in to avoid affecting the brightness of the image. We
   313     // arbitrarily add this to the center of the filter array (this won't always
   314     // be the center of the filter function since it could get clipped on the
   315     // edges, but it doesn't matter enough to worry about that case).
   316     int16_t leftovers = output->FloatToFixed(1.0f) - fixed_sum;
   317     fixed_filter_values[fixed_filter_values->size() / 2] += leftovers;
   319     // Now it's ready to go.
   320     output->AddFilter(src_begin, &fixed_filter_values[0],
   321                       static_cast<int>(fixed_filter_values->size()));
   322   }
   324   output->PaddingForSIMD(8);
   325 }
   327 ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod(
   328     ImageOperations::ResizeMethod method) {
   329   // Convert any "Quality Method" into an "Algorithm Method"
   330   if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD &&
   331       method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) {
   332     return method;
   333   }
   334   // The call to ImageOperationsGtv::Resize() above took care of
   335   // GPU-acceleration in the cases where it is possible. So now we just
   336   // pick the appropriate software method for each resize quality.
   337   switch (method) {
   338     // Users of RESIZE_GOOD are willing to trade a lot of quality to
   339     // get speed, allowing the use of linear resampling to get hardware
   340     // acceleration (SRB). Hence any of our "good" software filters
   341     // will be acceptable, and we use the fastest one, Hamming-1.
   342     case ImageOperations::RESIZE_GOOD:
   343       // Users of RESIZE_BETTER are willing to trade some quality in order
   344       // to improve performance, but are guaranteed not to devolve to a linear
   345       // resampling. In visual tests we see that Hamming-1 is not as good as
   346       // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
   347       // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
   348       // an acceptable trade-off between quality and speed.
   349     case ImageOperations::RESIZE_BETTER:
   350       return ImageOperations::RESIZE_HAMMING1;
   351     default:
   352       return ImageOperations::RESIZE_LANCZOS3;
   353   }
   354 }
   356 }  // namespace
   358 // Resize ----------------------------------------------------------------------
   360 // static
   361 SkBitmap ImageOperations::Resize(const SkBitmap& source,
   362                                  ResizeMethod method,
   363                                  int dest_width, int dest_height,
   364                                  const SkIRect& dest_subset,
   365                                  void* dest_pixels /* = nullptr */) {
   366   if (method == ImageOperations::RESIZE_SUBPIXEL)
   367     return ResizeSubpixel(source, dest_width, dest_height, dest_subset);
   368   else
   369     return ResizeBasic(source, method, dest_width, dest_height, dest_subset,
   370                        dest_pixels);
   371 }
   373 // static
   374 SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source,
   375                                          int dest_width, int dest_height,
   376                                          const SkIRect& dest_subset) {
   377   // Currently only works on Linux/BSD because these are the only platforms
   378   // where SkFontHost::GetSubpixelOrder is defined.
   379 #if defined(XP_UNIX)
   380   // Understand the display.
   381   const SkFontHost::LCDOrder order = SkFontHost::GetSubpixelOrder();
   382   const SkFontHost::LCDOrientation orientation =
   383       SkFontHost::GetSubpixelOrientation();
   385   // Decide on which dimension, if any, to deploy subpixel rendering.
   386   int w = 1;
   387   int h = 1;
   388   switch (orientation) {
   389     case SkFontHost::kHorizontal_LCDOrientation:
   390       w = dest_width < source.width() ? 3 : 1;
   391       break;
   392     case SkFontHost::kVertical_LCDOrientation:
   393       h = dest_height < source.height() ? 3 : 1;
   394       break;
   395   }
   397   // Resize the image.
   398   const int width = dest_width * w;
   399   const int height = dest_height * h;
   400   SkIRect subset = { dest_subset.fLeft, dest_subset.fTop,
   401                      dest_subset.fLeft + dest_subset.width() * w,
   402                      dest_subset.fTop + dest_subset.height() * h };
   403   SkBitmap img = ResizeBasic(source, ImageOperations::RESIZE_LANCZOS3, width,
   404                              height, subset);
   405   const int row_words = img.rowBytes() / 4;
   406   if (w == 1 && h == 1)
   407     return img;
   409   // Render into subpixels.
   410   SkBitmap result;
   411   result.setConfig(SkBitmap::kARGB_8888_Config, dest_subset.width(),
   412                    dest_subset.height());
   413   result.allocPixels();
   414   if (!result.readyToDraw())
   415     return img;
   417   SkAutoLockPixels locker(img);
   418   if (!img.readyToDraw())
   419     return img;
   421   uint32_t* src_row = img.getAddr32(0, 0);
   422   uint32_t* dst_row = result.getAddr32(0, 0);
   423   for (int y = 0; y < dest_subset.height(); y++) {
   424     uint32_t* src = src_row;
   425     uint32_t* dst = dst_row;
   426     for (int x = 0; x < dest_subset.width(); x++, src += w, dst++) {
   427       uint8_t r = 0, g = 0, b = 0, a = 0;
   428       switch (order) {
   429         case SkFontHost::kRGB_LCDOrder:
   430           switch (orientation) {
   431             case SkFontHost::kHorizontal_LCDOrientation:
   432               r = SkGetPackedR32(src[0]);
   433               g = SkGetPackedG32(src[1]);
   434               b = SkGetPackedB32(src[2]);
   435               a = SkGetPackedA32(src[1]);
   436               break;
   437             case SkFontHost::kVertical_LCDOrientation:
   438               r = SkGetPackedR32(src[0 * row_words]);
   439               g = SkGetPackedG32(src[1 * row_words]);
   440               b = SkGetPackedB32(src[2 * row_words]);
   441               a = SkGetPackedA32(src[1 * row_words]);
   442               break;
   443           }
   444           break;
   445         case SkFontHost::kBGR_LCDOrder:
   446           switch (orientation) {
   447             case SkFontHost::kHorizontal_LCDOrientation:
   448               b = SkGetPackedB32(src[0]);
   449               g = SkGetPackedG32(src[1]);
   450               r = SkGetPackedR32(src[2]);
   451               a = SkGetPackedA32(src[1]);
   452               break;
   453             case SkFontHost::kVertical_LCDOrientation:
   454               b = SkGetPackedB32(src[0 * row_words]);
   455               g = SkGetPackedG32(src[1 * row_words]);
   456               r = SkGetPackedR32(src[2 * row_words]);
   457               a = SkGetPackedA32(src[1 * row_words]);
   458               break;
   459           }
   460           break;
   461         case SkFontHost::kNONE_LCDOrder:
   462           break;
   463       }
   464       // Premultiplied alpha is very fragile.
   465       a = a > r ? a : r;
   466       a = a > g ? a : g;
   467       a = a > b ? a : b;
   468       *dst = SkPackARGB32(a, r, g, b);
   469     }
   470     src_row += h * row_words;
   471     dst_row += result.rowBytes() / 4;
   472   }
   473   result.setAlphaType(img.alphaType());
   474   return result;
   475 #else
   476   return SkBitmap();
   477 #endif  // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID)
   478 }
   480 // static
   481 SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
   482                                       ResizeMethod method,
   483                                       int dest_width, int dest_height,
   484                                       const SkIRect& dest_subset,
   485                                       void* dest_pixels /* = nullptr */) {
   486   // Ensure that the ResizeMethod enumeration is sound.
   487   SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
   488             (method <= RESIZE_LAST_QUALITY_METHOD)) ||
   489            ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
   490             (method <= RESIZE_LAST_ALGORITHM_METHOD)));
   492   // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
   493   // return empty.
   494   if (source.width() < 1 || source.height() < 1 ||
   495       dest_width < 1 || dest_height < 1)
   496     return SkBitmap();
   498   method = ResizeMethodToAlgorithmMethod(method);
   499   // Check that we deal with an "algorithm methods" from this point onward.
   500   SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
   501            (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
   503   SkAutoLockPixels locker(source);
   504   if (!source.readyToDraw())
   505       return SkBitmap();
   507   ResizeFilter filter(method, source.width(), source.height(),
   508                       dest_width, dest_height, dest_subset);
   510   // Get a source bitmap encompassing this touched area. We construct the
   511   // offsets and row strides such that it looks like a new bitmap, while
   512   // referring to the old data.
   513   const uint8_t* source_subset =
   514       reinterpret_cast<const uint8_t*>(source.getPixels());
   516   // Convolve into the result.
   517   SkBitmap result;
   518   result.setConfig(SkBitmap::kARGB_8888_Config,
   519                    dest_subset.width(), dest_subset.height());
   521   if (dest_pixels) {
   522     result.setPixels(dest_pixels);
   523   } else {
   524     result.allocPixels();
   525   }
   527   if (!result.readyToDraw())
   528     return SkBitmap();
   530   BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()),
   531                  !source.isOpaque(), filter.x_filter(), filter.y_filter(),
   532                  static_cast<int>(result.rowBytes()),
   533                  static_cast<unsigned char*>(result.getPixels()),
   534                  /* sse = */ false);
   536   // Preserve the "opaque" flag for use as an optimization later.
   537   result.setAlphaType(source.alphaType());
   539   return result;
   540 }
   542 // static
   543 SkBitmap ImageOperations::Resize(const SkBitmap& source,
   544                                  ResizeMethod method,
   545                                  int dest_width, int dest_height,
   546                                  void* dest_pixels /* = nullptr */) {
   547   SkIRect dest_subset = { 0, 0, dest_width, dest_height };
   548   return Resize(source, method, dest_width, dest_height, dest_subset,
   549                 dest_pixels);
   550 }
   552 }  // namespace skia

mercurial