|
1 /* |
|
2 * jdcoefct.c |
|
3 * |
|
4 * This file was part of the Independent JPEG Group's software: |
|
5 * Copyright (C) 1994-1997, Thomas G. Lane. |
|
6 * libjpeg-turbo Modifications: |
|
7 * Copyright (C) 2010, D. R. Commander. |
|
8 * For conditions of distribution and use, see the accompanying README file. |
|
9 * |
|
10 * This file contains the coefficient buffer controller for decompression. |
|
11 * This controller is the top level of the JPEG decompressor proper. |
|
12 * The coefficient buffer lies between entropy decoding and inverse-DCT steps. |
|
13 * |
|
14 * In buffered-image mode, this controller is the interface between |
|
15 * input-oriented processing and output-oriented processing. |
|
16 * Also, the input side (only) is used when reading a file for transcoding. |
|
17 */ |
|
18 |
|
19 #define JPEG_INTERNALS |
|
20 #include "jinclude.h" |
|
21 #include "jpeglib.h" |
|
22 #include "jpegcomp.h" |
|
23 |
|
24 /* Block smoothing is only applicable for progressive JPEG, so: */ |
|
25 #ifndef D_PROGRESSIVE_SUPPORTED |
|
26 #undef BLOCK_SMOOTHING_SUPPORTED |
|
27 #endif |
|
28 |
|
29 /* Private buffer controller object */ |
|
30 |
|
31 typedef struct { |
|
32 struct jpeg_d_coef_controller pub; /* public fields */ |
|
33 |
|
34 /* These variables keep track of the current location of the input side. */ |
|
35 /* cinfo->input_iMCU_row is also used for this. */ |
|
36 JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ |
|
37 int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
|
38 int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
|
39 |
|
40 /* The output side's location is represented by cinfo->output_iMCU_row. */ |
|
41 |
|
42 /* In single-pass modes, it's sufficient to buffer just one MCU. |
|
43 * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, |
|
44 * and let the entropy decoder write into that workspace each time. |
|
45 * (On 80x86, the workspace is FAR even though it's not really very big; |
|
46 * this is to keep the module interfaces unchanged when a large coefficient |
|
47 * buffer is necessary.) |
|
48 * In multi-pass modes, this array points to the current MCU's blocks |
|
49 * within the virtual arrays; it is used only by the input side. |
|
50 */ |
|
51 JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; |
|
52 |
|
53 /* Temporary workspace for one MCU */ |
|
54 JCOEF * workspace; |
|
55 |
|
56 #ifdef D_MULTISCAN_FILES_SUPPORTED |
|
57 /* In multi-pass modes, we need a virtual block array for each component. */ |
|
58 jvirt_barray_ptr whole_image[MAX_COMPONENTS]; |
|
59 #endif |
|
60 |
|
61 #ifdef BLOCK_SMOOTHING_SUPPORTED |
|
62 /* When doing block smoothing, we latch coefficient Al values here */ |
|
63 int * coef_bits_latch; |
|
64 #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ |
|
65 #endif |
|
66 } my_coef_controller; |
|
67 |
|
68 typedef my_coef_controller * my_coef_ptr; |
|
69 |
|
70 /* Forward declarations */ |
|
71 METHODDEF(int) decompress_onepass |
|
72 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
|
73 #ifdef D_MULTISCAN_FILES_SUPPORTED |
|
74 METHODDEF(int) decompress_data |
|
75 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
|
76 #endif |
|
77 #ifdef BLOCK_SMOOTHING_SUPPORTED |
|
78 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); |
|
79 METHODDEF(int) decompress_smooth_data |
|
80 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); |
|
81 #endif |
|
82 |
|
83 |
|
84 LOCAL(void) |
|
85 start_iMCU_row (j_decompress_ptr cinfo) |
|
86 /* Reset within-iMCU-row counters for a new row (input side) */ |
|
87 { |
|
88 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
89 |
|
90 /* In an interleaved scan, an MCU row is the same as an iMCU row. |
|
91 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
|
92 * But at the bottom of the image, process only what's left. |
|
93 */ |
|
94 if (cinfo->comps_in_scan > 1) { |
|
95 coef->MCU_rows_per_iMCU_row = 1; |
|
96 } else { |
|
97 if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) |
|
98 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
|
99 else |
|
100 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
|
101 } |
|
102 |
|
103 coef->MCU_ctr = 0; |
|
104 coef->MCU_vert_offset = 0; |
|
105 } |
|
106 |
|
107 |
|
108 /* |
|
109 * Initialize for an input processing pass. |
|
110 */ |
|
111 |
|
112 METHODDEF(void) |
|
113 start_input_pass (j_decompress_ptr cinfo) |
|
114 { |
|
115 cinfo->input_iMCU_row = 0; |
|
116 start_iMCU_row(cinfo); |
|
117 } |
|
118 |
|
119 |
|
120 /* |
|
121 * Initialize for an output processing pass. |
|
122 */ |
|
123 |
|
124 METHODDEF(void) |
|
125 start_output_pass (j_decompress_ptr cinfo) |
|
126 { |
|
127 #ifdef BLOCK_SMOOTHING_SUPPORTED |
|
128 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
129 |
|
130 /* If multipass, check to see whether to use block smoothing on this pass */ |
|
131 if (coef->pub.coef_arrays != NULL) { |
|
132 if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) |
|
133 coef->pub.decompress_data = decompress_smooth_data; |
|
134 else |
|
135 coef->pub.decompress_data = decompress_data; |
|
136 } |
|
137 #endif |
|
138 cinfo->output_iMCU_row = 0; |
|
139 } |
|
140 |
|
141 |
|
142 /* |
|
143 * Decompress and return some data in the single-pass case. |
|
144 * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
|
145 * Input and output must run in lockstep since we have only a one-MCU buffer. |
|
146 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
|
147 * |
|
148 * NB: output_buf contains a plane for each component in image, |
|
149 * which we index according to the component's SOF position. |
|
150 */ |
|
151 |
|
152 METHODDEF(int) |
|
153 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
|
154 { |
|
155 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
156 JDIMENSION MCU_col_num; /* index of current MCU within row */ |
|
157 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
|
158 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
159 int blkn, ci, xindex, yindex, yoffset, useful_width; |
|
160 JSAMPARRAY output_ptr; |
|
161 JDIMENSION start_col, output_col; |
|
162 jpeg_component_info *compptr; |
|
163 inverse_DCT_method_ptr inverse_DCT; |
|
164 |
|
165 /* Loop to process as much as one whole iMCU row */ |
|
166 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
|
167 yoffset++) { |
|
168 for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; |
|
169 MCU_col_num++) { |
|
170 /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ |
|
171 jzero_far((void FAR *) coef->MCU_buffer[0], |
|
172 (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); |
|
173 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
|
174 /* Suspension forced; update state counters and exit */ |
|
175 coef->MCU_vert_offset = yoffset; |
|
176 coef->MCU_ctr = MCU_col_num; |
|
177 return JPEG_SUSPENDED; |
|
178 } |
|
179 /* Determine where data should go in output_buf and do the IDCT thing. |
|
180 * We skip dummy blocks at the right and bottom edges (but blkn gets |
|
181 * incremented past them!). Note the inner loop relies on having |
|
182 * allocated the MCU_buffer[] blocks sequentially. |
|
183 */ |
|
184 blkn = 0; /* index of current DCT block within MCU */ |
|
185 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
186 compptr = cinfo->cur_comp_info[ci]; |
|
187 /* Don't bother to IDCT an uninteresting component. */ |
|
188 if (! compptr->component_needed) { |
|
189 blkn += compptr->MCU_blocks; |
|
190 continue; |
|
191 } |
|
192 inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; |
|
193 useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width |
|
194 : compptr->last_col_width; |
|
195 output_ptr = output_buf[compptr->component_index] + |
|
196 yoffset * compptr->_DCT_scaled_size; |
|
197 start_col = MCU_col_num * compptr->MCU_sample_width; |
|
198 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
|
199 if (cinfo->input_iMCU_row < last_iMCU_row || |
|
200 yoffset+yindex < compptr->last_row_height) { |
|
201 output_col = start_col; |
|
202 for (xindex = 0; xindex < useful_width; xindex++) { |
|
203 (*inverse_DCT) (cinfo, compptr, |
|
204 (JCOEFPTR) coef->MCU_buffer[blkn+xindex], |
|
205 output_ptr, output_col); |
|
206 output_col += compptr->_DCT_scaled_size; |
|
207 } |
|
208 } |
|
209 blkn += compptr->MCU_width; |
|
210 output_ptr += compptr->_DCT_scaled_size; |
|
211 } |
|
212 } |
|
213 } |
|
214 /* Completed an MCU row, but perhaps not an iMCU row */ |
|
215 coef->MCU_ctr = 0; |
|
216 } |
|
217 /* Completed the iMCU row, advance counters for next one */ |
|
218 cinfo->output_iMCU_row++; |
|
219 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
|
220 start_iMCU_row(cinfo); |
|
221 return JPEG_ROW_COMPLETED; |
|
222 } |
|
223 /* Completed the scan */ |
|
224 (*cinfo->inputctl->finish_input_pass) (cinfo); |
|
225 return JPEG_SCAN_COMPLETED; |
|
226 } |
|
227 |
|
228 |
|
229 /* |
|
230 * Dummy consume-input routine for single-pass operation. |
|
231 */ |
|
232 |
|
233 METHODDEF(int) |
|
234 dummy_consume_data (j_decompress_ptr cinfo) |
|
235 { |
|
236 return JPEG_SUSPENDED; /* Always indicate nothing was done */ |
|
237 } |
|
238 |
|
239 |
|
240 #ifdef D_MULTISCAN_FILES_SUPPORTED |
|
241 |
|
242 /* |
|
243 * Consume input data and store it in the full-image coefficient buffer. |
|
244 * We read as much as one fully interleaved MCU row ("iMCU" row) per call, |
|
245 * ie, v_samp_factor block rows for each component in the scan. |
|
246 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
|
247 */ |
|
248 |
|
249 METHODDEF(int) |
|
250 consume_data (j_decompress_ptr cinfo) |
|
251 { |
|
252 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
253 JDIMENSION MCU_col_num; /* index of current MCU within row */ |
|
254 int blkn, ci, xindex, yindex, yoffset; |
|
255 JDIMENSION start_col; |
|
256 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
|
257 JBLOCKROW buffer_ptr; |
|
258 jpeg_component_info *compptr; |
|
259 |
|
260 /* Align the virtual buffers for the components used in this scan. */ |
|
261 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
262 compptr = cinfo->cur_comp_info[ci]; |
|
263 buffer[ci] = (*cinfo->mem->access_virt_barray) |
|
264 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], |
|
265 cinfo->input_iMCU_row * compptr->v_samp_factor, |
|
266 (JDIMENSION) compptr->v_samp_factor, TRUE); |
|
267 /* Note: entropy decoder expects buffer to be zeroed, |
|
268 * but this is handled automatically by the memory manager |
|
269 * because we requested a pre-zeroed array. |
|
270 */ |
|
271 } |
|
272 |
|
273 /* Loop to process one whole iMCU row */ |
|
274 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
|
275 yoffset++) { |
|
276 for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; |
|
277 MCU_col_num++) { |
|
278 /* Construct list of pointers to DCT blocks belonging to this MCU */ |
|
279 blkn = 0; /* index of current DCT block within MCU */ |
|
280 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
281 compptr = cinfo->cur_comp_info[ci]; |
|
282 start_col = MCU_col_num * compptr->MCU_width; |
|
283 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
|
284 buffer_ptr = buffer[ci][yindex+yoffset] + start_col; |
|
285 for (xindex = 0; xindex < compptr->MCU_width; xindex++) { |
|
286 coef->MCU_buffer[blkn++] = buffer_ptr++; |
|
287 } |
|
288 } |
|
289 } |
|
290 /* Try to fetch the MCU. */ |
|
291 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { |
|
292 /* Suspension forced; update state counters and exit */ |
|
293 coef->MCU_vert_offset = yoffset; |
|
294 coef->MCU_ctr = MCU_col_num; |
|
295 return JPEG_SUSPENDED; |
|
296 } |
|
297 } |
|
298 /* Completed an MCU row, but perhaps not an iMCU row */ |
|
299 coef->MCU_ctr = 0; |
|
300 } |
|
301 /* Completed the iMCU row, advance counters for next one */ |
|
302 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { |
|
303 start_iMCU_row(cinfo); |
|
304 return JPEG_ROW_COMPLETED; |
|
305 } |
|
306 /* Completed the scan */ |
|
307 (*cinfo->inputctl->finish_input_pass) (cinfo); |
|
308 return JPEG_SCAN_COMPLETED; |
|
309 } |
|
310 |
|
311 |
|
312 /* |
|
313 * Decompress and return some data in the multi-pass case. |
|
314 * Always attempts to emit one fully interleaved MCU row ("iMCU" row). |
|
315 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. |
|
316 * |
|
317 * NB: output_buf contains a plane for each component in image. |
|
318 */ |
|
319 |
|
320 METHODDEF(int) |
|
321 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
|
322 { |
|
323 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
324 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
325 JDIMENSION block_num; |
|
326 int ci, block_row, block_rows; |
|
327 JBLOCKARRAY buffer; |
|
328 JBLOCKROW buffer_ptr; |
|
329 JSAMPARRAY output_ptr; |
|
330 JDIMENSION output_col; |
|
331 jpeg_component_info *compptr; |
|
332 inverse_DCT_method_ptr inverse_DCT; |
|
333 |
|
334 /* Force some input to be done if we are getting ahead of the input. */ |
|
335 while (cinfo->input_scan_number < cinfo->output_scan_number || |
|
336 (cinfo->input_scan_number == cinfo->output_scan_number && |
|
337 cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { |
|
338 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
|
339 return JPEG_SUSPENDED; |
|
340 } |
|
341 |
|
342 /* OK, output from the virtual arrays. */ |
|
343 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
344 ci++, compptr++) { |
|
345 /* Don't bother to IDCT an uninteresting component. */ |
|
346 if (! compptr->component_needed) |
|
347 continue; |
|
348 /* Align the virtual buffer for this component. */ |
|
349 buffer = (*cinfo->mem->access_virt_barray) |
|
350 ((j_common_ptr) cinfo, coef->whole_image[ci], |
|
351 cinfo->output_iMCU_row * compptr->v_samp_factor, |
|
352 (JDIMENSION) compptr->v_samp_factor, FALSE); |
|
353 /* Count non-dummy DCT block rows in this iMCU row. */ |
|
354 if (cinfo->output_iMCU_row < last_iMCU_row) |
|
355 block_rows = compptr->v_samp_factor; |
|
356 else { |
|
357 /* NB: can't use last_row_height here; it is input-side-dependent! */ |
|
358 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
|
359 if (block_rows == 0) block_rows = compptr->v_samp_factor; |
|
360 } |
|
361 inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
|
362 output_ptr = output_buf[ci]; |
|
363 /* Loop over all DCT blocks to be processed. */ |
|
364 for (block_row = 0; block_row < block_rows; block_row++) { |
|
365 buffer_ptr = buffer[block_row]; |
|
366 output_col = 0; |
|
367 for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { |
|
368 (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, |
|
369 output_ptr, output_col); |
|
370 buffer_ptr++; |
|
371 output_col += compptr->_DCT_scaled_size; |
|
372 } |
|
373 output_ptr += compptr->_DCT_scaled_size; |
|
374 } |
|
375 } |
|
376 |
|
377 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
|
378 return JPEG_ROW_COMPLETED; |
|
379 return JPEG_SCAN_COMPLETED; |
|
380 } |
|
381 |
|
382 #endif /* D_MULTISCAN_FILES_SUPPORTED */ |
|
383 |
|
384 |
|
385 #ifdef BLOCK_SMOOTHING_SUPPORTED |
|
386 |
|
387 /* |
|
388 * This code applies interblock smoothing as described by section K.8 |
|
389 * of the JPEG standard: the first 5 AC coefficients are estimated from |
|
390 * the DC values of a DCT block and its 8 neighboring blocks. |
|
391 * We apply smoothing only for progressive JPEG decoding, and only if |
|
392 * the coefficients it can estimate are not yet known to full precision. |
|
393 */ |
|
394 |
|
395 /* Natural-order array positions of the first 5 zigzag-order coefficients */ |
|
396 #define Q01_POS 1 |
|
397 #define Q10_POS 8 |
|
398 #define Q20_POS 16 |
|
399 #define Q11_POS 9 |
|
400 #define Q02_POS 2 |
|
401 |
|
402 /* |
|
403 * Determine whether block smoothing is applicable and safe. |
|
404 * We also latch the current states of the coef_bits[] entries for the |
|
405 * AC coefficients; otherwise, if the input side of the decompressor |
|
406 * advances into a new scan, we might think the coefficients are known |
|
407 * more accurately than they really are. |
|
408 */ |
|
409 |
|
410 LOCAL(boolean) |
|
411 smoothing_ok (j_decompress_ptr cinfo) |
|
412 { |
|
413 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
414 boolean smoothing_useful = FALSE; |
|
415 int ci, coefi; |
|
416 jpeg_component_info *compptr; |
|
417 JQUANT_TBL * qtable; |
|
418 int * coef_bits; |
|
419 int * coef_bits_latch; |
|
420 |
|
421 if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) |
|
422 return FALSE; |
|
423 |
|
424 /* Allocate latch area if not already done */ |
|
425 if (coef->coef_bits_latch == NULL) |
|
426 coef->coef_bits_latch = (int *) |
|
427 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
428 cinfo->num_components * |
|
429 (SAVED_COEFS * SIZEOF(int))); |
|
430 coef_bits_latch = coef->coef_bits_latch; |
|
431 |
|
432 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
433 ci++, compptr++) { |
|
434 /* All components' quantization values must already be latched. */ |
|
435 if ((qtable = compptr->quant_table) == NULL) |
|
436 return FALSE; |
|
437 /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ |
|
438 if (qtable->quantval[0] == 0 || |
|
439 qtable->quantval[Q01_POS] == 0 || |
|
440 qtable->quantval[Q10_POS] == 0 || |
|
441 qtable->quantval[Q20_POS] == 0 || |
|
442 qtable->quantval[Q11_POS] == 0 || |
|
443 qtable->quantval[Q02_POS] == 0) |
|
444 return FALSE; |
|
445 /* DC values must be at least partly known for all components. */ |
|
446 coef_bits = cinfo->coef_bits[ci]; |
|
447 if (coef_bits[0] < 0) |
|
448 return FALSE; |
|
449 /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ |
|
450 for (coefi = 1; coefi <= 5; coefi++) { |
|
451 coef_bits_latch[coefi] = coef_bits[coefi]; |
|
452 if (coef_bits[coefi] != 0) |
|
453 smoothing_useful = TRUE; |
|
454 } |
|
455 coef_bits_latch += SAVED_COEFS; |
|
456 } |
|
457 |
|
458 return smoothing_useful; |
|
459 } |
|
460 |
|
461 |
|
462 /* |
|
463 * Variant of decompress_data for use when doing block smoothing. |
|
464 */ |
|
465 |
|
466 METHODDEF(int) |
|
467 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) |
|
468 { |
|
469 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; |
|
470 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
|
471 JDIMENSION block_num, last_block_column; |
|
472 int ci, block_row, block_rows, access_rows; |
|
473 JBLOCKARRAY buffer; |
|
474 JBLOCKROW buffer_ptr, prev_block_row, next_block_row; |
|
475 JSAMPARRAY output_ptr; |
|
476 JDIMENSION output_col; |
|
477 jpeg_component_info *compptr; |
|
478 inverse_DCT_method_ptr inverse_DCT; |
|
479 boolean first_row, last_row; |
|
480 JCOEF * workspace; |
|
481 int *coef_bits; |
|
482 JQUANT_TBL *quanttbl; |
|
483 INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; |
|
484 int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; |
|
485 int Al, pred; |
|
486 |
|
487 /* Keep a local variable to avoid looking it up more than once */ |
|
488 workspace = coef->workspace; |
|
489 |
|
490 /* Force some input to be done if we are getting ahead of the input. */ |
|
491 while (cinfo->input_scan_number <= cinfo->output_scan_number && |
|
492 ! cinfo->inputctl->eoi_reached) { |
|
493 if (cinfo->input_scan_number == cinfo->output_scan_number) { |
|
494 /* If input is working on current scan, we ordinarily want it to |
|
495 * have completed the current row. But if input scan is DC, |
|
496 * we want it to keep one row ahead so that next block row's DC |
|
497 * values are up to date. |
|
498 */ |
|
499 JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; |
|
500 if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) |
|
501 break; |
|
502 } |
|
503 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) |
|
504 return JPEG_SUSPENDED; |
|
505 } |
|
506 |
|
507 /* OK, output from the virtual arrays. */ |
|
508 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
509 ci++, compptr++) { |
|
510 /* Don't bother to IDCT an uninteresting component. */ |
|
511 if (! compptr->component_needed) |
|
512 continue; |
|
513 /* Count non-dummy DCT block rows in this iMCU row. */ |
|
514 if (cinfo->output_iMCU_row < last_iMCU_row) { |
|
515 block_rows = compptr->v_samp_factor; |
|
516 access_rows = block_rows * 2; /* this and next iMCU row */ |
|
517 last_row = FALSE; |
|
518 } else { |
|
519 /* NB: can't use last_row_height here; it is input-side-dependent! */ |
|
520 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
|
521 if (block_rows == 0) block_rows = compptr->v_samp_factor; |
|
522 access_rows = block_rows; /* this iMCU row only */ |
|
523 last_row = TRUE; |
|
524 } |
|
525 /* Align the virtual buffer for this component. */ |
|
526 if (cinfo->output_iMCU_row > 0) { |
|
527 access_rows += compptr->v_samp_factor; /* prior iMCU row too */ |
|
528 buffer = (*cinfo->mem->access_virt_barray) |
|
529 ((j_common_ptr) cinfo, coef->whole_image[ci], |
|
530 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, |
|
531 (JDIMENSION) access_rows, FALSE); |
|
532 buffer += compptr->v_samp_factor; /* point to current iMCU row */ |
|
533 first_row = FALSE; |
|
534 } else { |
|
535 buffer = (*cinfo->mem->access_virt_barray) |
|
536 ((j_common_ptr) cinfo, coef->whole_image[ci], |
|
537 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); |
|
538 first_row = TRUE; |
|
539 } |
|
540 /* Fetch component-dependent info */ |
|
541 coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); |
|
542 quanttbl = compptr->quant_table; |
|
543 Q00 = quanttbl->quantval[0]; |
|
544 Q01 = quanttbl->quantval[Q01_POS]; |
|
545 Q10 = quanttbl->quantval[Q10_POS]; |
|
546 Q20 = quanttbl->quantval[Q20_POS]; |
|
547 Q11 = quanttbl->quantval[Q11_POS]; |
|
548 Q02 = quanttbl->quantval[Q02_POS]; |
|
549 inverse_DCT = cinfo->idct->inverse_DCT[ci]; |
|
550 output_ptr = output_buf[ci]; |
|
551 /* Loop over all DCT blocks to be processed. */ |
|
552 for (block_row = 0; block_row < block_rows; block_row++) { |
|
553 buffer_ptr = buffer[block_row]; |
|
554 if (first_row && block_row == 0) |
|
555 prev_block_row = buffer_ptr; |
|
556 else |
|
557 prev_block_row = buffer[block_row-1]; |
|
558 if (last_row && block_row == block_rows-1) |
|
559 next_block_row = buffer_ptr; |
|
560 else |
|
561 next_block_row = buffer[block_row+1]; |
|
562 /* We fetch the surrounding DC values using a sliding-register approach. |
|
563 * Initialize all nine here so as to do the right thing on narrow pics. |
|
564 */ |
|
565 DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; |
|
566 DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; |
|
567 DC7 = DC8 = DC9 = (int) next_block_row[0][0]; |
|
568 output_col = 0; |
|
569 last_block_column = compptr->width_in_blocks - 1; |
|
570 for (block_num = 0; block_num <= last_block_column; block_num++) { |
|
571 /* Fetch current DCT block into workspace so we can modify it. */ |
|
572 jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); |
|
573 /* Update DC values */ |
|
574 if (block_num < last_block_column) { |
|
575 DC3 = (int) prev_block_row[1][0]; |
|
576 DC6 = (int) buffer_ptr[1][0]; |
|
577 DC9 = (int) next_block_row[1][0]; |
|
578 } |
|
579 /* Compute coefficient estimates per K.8. |
|
580 * An estimate is applied only if coefficient is still zero, |
|
581 * and is not known to be fully accurate. |
|
582 */ |
|
583 /* AC01 */ |
|
584 if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { |
|
585 num = 36 * Q00 * (DC4 - DC6); |
|
586 if (num >= 0) { |
|
587 pred = (int) (((Q01<<7) + num) / (Q01<<8)); |
|
588 if (Al > 0 && pred >= (1<<Al)) |
|
589 pred = (1<<Al)-1; |
|
590 } else { |
|
591 pred = (int) (((Q01<<7) - num) / (Q01<<8)); |
|
592 if (Al > 0 && pred >= (1<<Al)) |
|
593 pred = (1<<Al)-1; |
|
594 pred = -pred; |
|
595 } |
|
596 workspace[1] = (JCOEF) pred; |
|
597 } |
|
598 /* AC10 */ |
|
599 if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { |
|
600 num = 36 * Q00 * (DC2 - DC8); |
|
601 if (num >= 0) { |
|
602 pred = (int) (((Q10<<7) + num) / (Q10<<8)); |
|
603 if (Al > 0 && pred >= (1<<Al)) |
|
604 pred = (1<<Al)-1; |
|
605 } else { |
|
606 pred = (int) (((Q10<<7) - num) / (Q10<<8)); |
|
607 if (Al > 0 && pred >= (1<<Al)) |
|
608 pred = (1<<Al)-1; |
|
609 pred = -pred; |
|
610 } |
|
611 workspace[8] = (JCOEF) pred; |
|
612 } |
|
613 /* AC20 */ |
|
614 if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { |
|
615 num = 9 * Q00 * (DC2 + DC8 - 2*DC5); |
|
616 if (num >= 0) { |
|
617 pred = (int) (((Q20<<7) + num) / (Q20<<8)); |
|
618 if (Al > 0 && pred >= (1<<Al)) |
|
619 pred = (1<<Al)-1; |
|
620 } else { |
|
621 pred = (int) (((Q20<<7) - num) / (Q20<<8)); |
|
622 if (Al > 0 && pred >= (1<<Al)) |
|
623 pred = (1<<Al)-1; |
|
624 pred = -pred; |
|
625 } |
|
626 workspace[16] = (JCOEF) pred; |
|
627 } |
|
628 /* AC11 */ |
|
629 if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { |
|
630 num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); |
|
631 if (num >= 0) { |
|
632 pred = (int) (((Q11<<7) + num) / (Q11<<8)); |
|
633 if (Al > 0 && pred >= (1<<Al)) |
|
634 pred = (1<<Al)-1; |
|
635 } else { |
|
636 pred = (int) (((Q11<<7) - num) / (Q11<<8)); |
|
637 if (Al > 0 && pred >= (1<<Al)) |
|
638 pred = (1<<Al)-1; |
|
639 pred = -pred; |
|
640 } |
|
641 workspace[9] = (JCOEF) pred; |
|
642 } |
|
643 /* AC02 */ |
|
644 if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { |
|
645 num = 9 * Q00 * (DC4 + DC6 - 2*DC5); |
|
646 if (num >= 0) { |
|
647 pred = (int) (((Q02<<7) + num) / (Q02<<8)); |
|
648 if (Al > 0 && pred >= (1<<Al)) |
|
649 pred = (1<<Al)-1; |
|
650 } else { |
|
651 pred = (int) (((Q02<<7) - num) / (Q02<<8)); |
|
652 if (Al > 0 && pred >= (1<<Al)) |
|
653 pred = (1<<Al)-1; |
|
654 pred = -pred; |
|
655 } |
|
656 workspace[2] = (JCOEF) pred; |
|
657 } |
|
658 /* OK, do the IDCT */ |
|
659 (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, |
|
660 output_ptr, output_col); |
|
661 /* Advance for next column */ |
|
662 DC1 = DC2; DC2 = DC3; |
|
663 DC4 = DC5; DC5 = DC6; |
|
664 DC7 = DC8; DC8 = DC9; |
|
665 buffer_ptr++, prev_block_row++, next_block_row++; |
|
666 output_col += compptr->_DCT_scaled_size; |
|
667 } |
|
668 output_ptr += compptr->_DCT_scaled_size; |
|
669 } |
|
670 } |
|
671 |
|
672 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) |
|
673 return JPEG_ROW_COMPLETED; |
|
674 return JPEG_SCAN_COMPLETED; |
|
675 } |
|
676 |
|
677 #endif /* BLOCK_SMOOTHING_SUPPORTED */ |
|
678 |
|
679 |
|
680 /* |
|
681 * Initialize coefficient buffer controller. |
|
682 */ |
|
683 |
|
684 GLOBAL(void) |
|
685 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) |
|
686 { |
|
687 my_coef_ptr coef; |
|
688 |
|
689 coef = (my_coef_ptr) |
|
690 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
691 SIZEOF(my_coef_controller)); |
|
692 cinfo->coef = (struct jpeg_d_coef_controller *) coef; |
|
693 coef->pub.start_input_pass = start_input_pass; |
|
694 coef->pub.start_output_pass = start_output_pass; |
|
695 #ifdef BLOCK_SMOOTHING_SUPPORTED |
|
696 coef->coef_bits_latch = NULL; |
|
697 #endif |
|
698 |
|
699 /* Create the coefficient buffer. */ |
|
700 if (need_full_buffer) { |
|
701 #ifdef D_MULTISCAN_FILES_SUPPORTED |
|
702 /* Allocate a full-image virtual array for each component, */ |
|
703 /* padded to a multiple of samp_factor DCT blocks in each direction. */ |
|
704 /* Note we ask for a pre-zeroed array. */ |
|
705 int ci, access_rows; |
|
706 jpeg_component_info *compptr; |
|
707 |
|
708 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
709 ci++, compptr++) { |
|
710 access_rows = compptr->v_samp_factor; |
|
711 #ifdef BLOCK_SMOOTHING_SUPPORTED |
|
712 /* If block smoothing could be used, need a bigger window */ |
|
713 if (cinfo->progressive_mode) |
|
714 access_rows *= 3; |
|
715 #endif |
|
716 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |
|
717 ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, |
|
718 (JDIMENSION) jround_up((long) compptr->width_in_blocks, |
|
719 (long) compptr->h_samp_factor), |
|
720 (JDIMENSION) jround_up((long) compptr->height_in_blocks, |
|
721 (long) compptr->v_samp_factor), |
|
722 (JDIMENSION) access_rows); |
|
723 } |
|
724 coef->pub.consume_data = consume_data; |
|
725 coef->pub.decompress_data = decompress_data; |
|
726 coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |
|
727 #else |
|
728 ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
729 #endif |
|
730 } else { |
|
731 /* We only need a single-MCU buffer. */ |
|
732 JBLOCKROW buffer; |
|
733 int i; |
|
734 |
|
735 buffer = (JBLOCKROW) |
|
736 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
737 D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); |
|
738 for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |
|
739 coef->MCU_buffer[i] = buffer + i; |
|
740 } |
|
741 coef->pub.consume_data = dummy_consume_data; |
|
742 coef->pub.decompress_data = decompress_onepass; |
|
743 coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |
|
744 } |
|
745 |
|
746 /* Allocate the workspace buffer */ |
|
747 coef->workspace = (JCOEF *) |
|
748 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
749 SIZEOF(JCOEF) * DCTSIZE2); |
|
750 } |