media/libjpeg/jdcoefct.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jdcoefct.c
     3  *
     4  * This file was part of the Independent JPEG Group's software:
     5  * Copyright (C) 1994-1997, Thomas G. Lane.
     6  * libjpeg-turbo Modifications:
     7  * Copyright (C) 2010, D. R. Commander.
     8  * For conditions of distribution and use, see the accompanying README file.
     9  *
    10  * This file contains the coefficient buffer controller for decompression.
    11  * This controller is the top level of the JPEG decompressor proper.
    12  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
    13  *
    14  * In buffered-image mode, this controller is the interface between
    15  * input-oriented processing and output-oriented processing.
    16  * Also, the input side (only) is used when reading a file for transcoding.
    17  */
    19 #define JPEG_INTERNALS
    20 #include "jinclude.h"
    21 #include "jpeglib.h"
    22 #include "jpegcomp.h"
    24 /* Block smoothing is only applicable for progressive JPEG, so: */
    25 #ifndef D_PROGRESSIVE_SUPPORTED
    26 #undef BLOCK_SMOOTHING_SUPPORTED
    27 #endif
    29 /* Private buffer controller object */
    31 typedef struct {
    32   struct jpeg_d_coef_controller pub; /* public fields */
    34   /* These variables keep track of the current location of the input side. */
    35   /* cinfo->input_iMCU_row is also used for this. */
    36   JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
    37   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
    38   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
    40   /* The output side's location is represented by cinfo->output_iMCU_row. */
    42   /* In single-pass modes, it's sufficient to buffer just one MCU.
    43    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
    44    * and let the entropy decoder write into that workspace each time.
    45    * (On 80x86, the workspace is FAR even though it's not really very big;
    46    * this is to keep the module interfaces unchanged when a large coefficient
    47    * buffer is necessary.)
    48    * In multi-pass modes, this array points to the current MCU's blocks
    49    * within the virtual arrays; it is used only by the input side.
    50    */
    51   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
    53   /* Temporary workspace for one MCU */
    54   JCOEF * workspace;
    56 #ifdef D_MULTISCAN_FILES_SUPPORTED
    57   /* In multi-pass modes, we need a virtual block array for each component. */
    58   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
    59 #endif
    61 #ifdef BLOCK_SMOOTHING_SUPPORTED
    62   /* When doing block smoothing, we latch coefficient Al values here */
    63   int * coef_bits_latch;
    64 #define SAVED_COEFS  6		/* we save coef_bits[0..5] */
    65 #endif
    66 } my_coef_controller;
    68 typedef my_coef_controller * my_coef_ptr;
    70 /* Forward declarations */
    71 METHODDEF(int) decompress_onepass
    72 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
    73 #ifdef D_MULTISCAN_FILES_SUPPORTED
    74 METHODDEF(int) decompress_data
    75 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
    76 #endif
    77 #ifdef BLOCK_SMOOTHING_SUPPORTED
    78 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
    79 METHODDEF(int) decompress_smooth_data
    80 	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
    81 #endif
    84 LOCAL(void)
    85 start_iMCU_row (j_decompress_ptr cinfo)
    86 /* Reset within-iMCU-row counters for a new row (input side) */
    87 {
    88   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    90   /* In an interleaved scan, an MCU row is the same as an iMCU row.
    91    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
    92    * But at the bottom of the image, process only what's left.
    93    */
    94   if (cinfo->comps_in_scan > 1) {
    95     coef->MCU_rows_per_iMCU_row = 1;
    96   } else {
    97     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
    98       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
    99     else
   100       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
   101   }
   103   coef->MCU_ctr = 0;
   104   coef->MCU_vert_offset = 0;
   105 }
   108 /*
   109  * Initialize for an input processing pass.
   110  */
   112 METHODDEF(void)
   113 start_input_pass (j_decompress_ptr cinfo)
   114 {
   115   cinfo->input_iMCU_row = 0;
   116   start_iMCU_row(cinfo);
   117 }
   120 /*
   121  * Initialize for an output processing pass.
   122  */
   124 METHODDEF(void)
   125 start_output_pass (j_decompress_ptr cinfo)
   126 {
   127 #ifdef BLOCK_SMOOTHING_SUPPORTED
   128   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   130   /* If multipass, check to see whether to use block smoothing on this pass */
   131   if (coef->pub.coef_arrays != NULL) {
   132     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
   133       coef->pub.decompress_data = decompress_smooth_data;
   134     else
   135       coef->pub.decompress_data = decompress_data;
   136   }
   137 #endif
   138   cinfo->output_iMCU_row = 0;
   139 }
   142 /*
   143  * Decompress and return some data in the single-pass case.
   144  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
   145  * Input and output must run in lockstep since we have only a one-MCU buffer.
   146  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
   147  *
   148  * NB: output_buf contains a plane for each component in image,
   149  * which we index according to the component's SOF position.
   150  */
   152 METHODDEF(int)
   153 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
   154 {
   155   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   156   JDIMENSION MCU_col_num;	/* index of current MCU within row */
   157   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
   158   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
   159   int blkn, ci, xindex, yindex, yoffset, useful_width;
   160   JSAMPARRAY output_ptr;
   161   JDIMENSION start_col, output_col;
   162   jpeg_component_info *compptr;
   163   inverse_DCT_method_ptr inverse_DCT;
   165   /* Loop to process as much as one whole iMCU row */
   166   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
   167        yoffset++) {
   168     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
   169 	 MCU_col_num++) {
   170       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
   171       jzero_far((void FAR *) coef->MCU_buffer[0],
   172 		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
   173       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
   174 	/* Suspension forced; update state counters and exit */
   175 	coef->MCU_vert_offset = yoffset;
   176 	coef->MCU_ctr = MCU_col_num;
   177 	return JPEG_SUSPENDED;
   178       }
   179       /* Determine where data should go in output_buf and do the IDCT thing.
   180        * We skip dummy blocks at the right and bottom edges (but blkn gets
   181        * incremented past them!).  Note the inner loop relies on having
   182        * allocated the MCU_buffer[] blocks sequentially.
   183        */
   184       blkn = 0;			/* index of current DCT block within MCU */
   185       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   186 	compptr = cinfo->cur_comp_info[ci];
   187 	/* Don't bother to IDCT an uninteresting component. */
   188 	if (! compptr->component_needed) {
   189 	  blkn += compptr->MCU_blocks;
   190 	  continue;
   191 	}
   192 	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
   193 	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
   194 						    : compptr->last_col_width;
   195 	output_ptr = output_buf[compptr->component_index] +
   196 	  yoffset * compptr->_DCT_scaled_size;
   197 	start_col = MCU_col_num * compptr->MCU_sample_width;
   198 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
   199 	  if (cinfo->input_iMCU_row < last_iMCU_row ||
   200 	      yoffset+yindex < compptr->last_row_height) {
   201 	    output_col = start_col;
   202 	    for (xindex = 0; xindex < useful_width; xindex++) {
   203 	      (*inverse_DCT) (cinfo, compptr,
   204 			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
   205 			      output_ptr, output_col);
   206 	      output_col += compptr->_DCT_scaled_size;
   207 	    }
   208 	  }
   209 	  blkn += compptr->MCU_width;
   210 	  output_ptr += compptr->_DCT_scaled_size;
   211 	}
   212       }
   213     }
   214     /* Completed an MCU row, but perhaps not an iMCU row */
   215     coef->MCU_ctr = 0;
   216   }
   217   /* Completed the iMCU row, advance counters for next one */
   218   cinfo->output_iMCU_row++;
   219   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
   220     start_iMCU_row(cinfo);
   221     return JPEG_ROW_COMPLETED;
   222   }
   223   /* Completed the scan */
   224   (*cinfo->inputctl->finish_input_pass) (cinfo);
   225   return JPEG_SCAN_COMPLETED;
   226 }
   229 /*
   230  * Dummy consume-input routine for single-pass operation.
   231  */
   233 METHODDEF(int)
   234 dummy_consume_data (j_decompress_ptr cinfo)
   235 {
   236   return JPEG_SUSPENDED;	/* Always indicate nothing was done */
   237 }
   240 #ifdef D_MULTISCAN_FILES_SUPPORTED
   242 /*
   243  * Consume input data and store it in the full-image coefficient buffer.
   244  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
   245  * ie, v_samp_factor block rows for each component in the scan.
   246  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
   247  */
   249 METHODDEF(int)
   250 consume_data (j_decompress_ptr cinfo)
   251 {
   252   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   253   JDIMENSION MCU_col_num;	/* index of current MCU within row */
   254   int blkn, ci, xindex, yindex, yoffset;
   255   JDIMENSION start_col;
   256   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
   257   JBLOCKROW buffer_ptr;
   258   jpeg_component_info *compptr;
   260   /* Align the virtual buffers for the components used in this scan. */
   261   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   262     compptr = cinfo->cur_comp_info[ci];
   263     buffer[ci] = (*cinfo->mem->access_virt_barray)
   264       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
   265        cinfo->input_iMCU_row * compptr->v_samp_factor,
   266        (JDIMENSION) compptr->v_samp_factor, TRUE);
   267     /* Note: entropy decoder expects buffer to be zeroed,
   268      * but this is handled automatically by the memory manager
   269      * because we requested a pre-zeroed array.
   270      */
   271   }
   273   /* Loop to process one whole iMCU row */
   274   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
   275        yoffset++) {
   276     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
   277 	 MCU_col_num++) {
   278       /* Construct list of pointers to DCT blocks belonging to this MCU */
   279       blkn = 0;			/* index of current DCT block within MCU */
   280       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   281 	compptr = cinfo->cur_comp_info[ci];
   282 	start_col = MCU_col_num * compptr->MCU_width;
   283 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
   284 	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
   285 	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
   286 	    coef->MCU_buffer[blkn++] = buffer_ptr++;
   287 	  }
   288 	}
   289       }
   290       /* Try to fetch the MCU. */
   291       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
   292 	/* Suspension forced; update state counters and exit */
   293 	coef->MCU_vert_offset = yoffset;
   294 	coef->MCU_ctr = MCU_col_num;
   295 	return JPEG_SUSPENDED;
   296       }
   297     }
   298     /* Completed an MCU row, but perhaps not an iMCU row */
   299     coef->MCU_ctr = 0;
   300   }
   301   /* Completed the iMCU row, advance counters for next one */
   302   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
   303     start_iMCU_row(cinfo);
   304     return JPEG_ROW_COMPLETED;
   305   }
   306   /* Completed the scan */
   307   (*cinfo->inputctl->finish_input_pass) (cinfo);
   308   return JPEG_SCAN_COMPLETED;
   309 }
   312 /*
   313  * Decompress and return some data in the multi-pass case.
   314  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
   315  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
   316  *
   317  * NB: output_buf contains a plane for each component in image.
   318  */
   320 METHODDEF(int)
   321 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
   322 {
   323   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   324   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
   325   JDIMENSION block_num;
   326   int ci, block_row, block_rows;
   327   JBLOCKARRAY buffer;
   328   JBLOCKROW buffer_ptr;
   329   JSAMPARRAY output_ptr;
   330   JDIMENSION output_col;
   331   jpeg_component_info *compptr;
   332   inverse_DCT_method_ptr inverse_DCT;
   334   /* Force some input to be done if we are getting ahead of the input. */
   335   while (cinfo->input_scan_number < cinfo->output_scan_number ||
   336 	 (cinfo->input_scan_number == cinfo->output_scan_number &&
   337 	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
   338     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
   339       return JPEG_SUSPENDED;
   340   }
   342   /* OK, output from the virtual arrays. */
   343   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
   344        ci++, compptr++) {
   345     /* Don't bother to IDCT an uninteresting component. */
   346     if (! compptr->component_needed)
   347       continue;
   348     /* Align the virtual buffer for this component. */
   349     buffer = (*cinfo->mem->access_virt_barray)
   350       ((j_common_ptr) cinfo, coef->whole_image[ci],
   351        cinfo->output_iMCU_row * compptr->v_samp_factor,
   352        (JDIMENSION) compptr->v_samp_factor, FALSE);
   353     /* Count non-dummy DCT block rows in this iMCU row. */
   354     if (cinfo->output_iMCU_row < last_iMCU_row)
   355       block_rows = compptr->v_samp_factor;
   356     else {
   357       /* NB: can't use last_row_height here; it is input-side-dependent! */
   358       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
   359       if (block_rows == 0) block_rows = compptr->v_samp_factor;
   360     }
   361     inverse_DCT = cinfo->idct->inverse_DCT[ci];
   362     output_ptr = output_buf[ci];
   363     /* Loop over all DCT blocks to be processed. */
   364     for (block_row = 0; block_row < block_rows; block_row++) {
   365       buffer_ptr = buffer[block_row];
   366       output_col = 0;
   367       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
   368 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
   369 			output_ptr, output_col);
   370 	buffer_ptr++;
   371 	output_col += compptr->_DCT_scaled_size;
   372       }
   373       output_ptr += compptr->_DCT_scaled_size;
   374     }
   375   }
   377   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
   378     return JPEG_ROW_COMPLETED;
   379   return JPEG_SCAN_COMPLETED;
   380 }
   382 #endif /* D_MULTISCAN_FILES_SUPPORTED */
   385 #ifdef BLOCK_SMOOTHING_SUPPORTED
   387 /*
   388  * This code applies interblock smoothing as described by section K.8
   389  * of the JPEG standard: the first 5 AC coefficients are estimated from
   390  * the DC values of a DCT block and its 8 neighboring blocks.
   391  * We apply smoothing only for progressive JPEG decoding, and only if
   392  * the coefficients it can estimate are not yet known to full precision.
   393  */
   395 /* Natural-order array positions of the first 5 zigzag-order coefficients */
   396 #define Q01_POS  1
   397 #define Q10_POS  8
   398 #define Q20_POS  16
   399 #define Q11_POS  9
   400 #define Q02_POS  2
   402 /*
   403  * Determine whether block smoothing is applicable and safe.
   404  * We also latch the current states of the coef_bits[] entries for the
   405  * AC coefficients; otherwise, if the input side of the decompressor
   406  * advances into a new scan, we might think the coefficients are known
   407  * more accurately than they really are.
   408  */
   410 LOCAL(boolean)
   411 smoothing_ok (j_decompress_ptr cinfo)
   412 {
   413   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   414   boolean smoothing_useful = FALSE;
   415   int ci, coefi;
   416   jpeg_component_info *compptr;
   417   JQUANT_TBL * qtable;
   418   int * coef_bits;
   419   int * coef_bits_latch;
   421   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
   422     return FALSE;
   424   /* Allocate latch area if not already done */
   425   if (coef->coef_bits_latch == NULL)
   426     coef->coef_bits_latch = (int *)
   427       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   428 				  cinfo->num_components *
   429 				  (SAVED_COEFS * SIZEOF(int)));
   430   coef_bits_latch = coef->coef_bits_latch;
   432   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
   433        ci++, compptr++) {
   434     /* All components' quantization values must already be latched. */
   435     if ((qtable = compptr->quant_table) == NULL)
   436       return FALSE;
   437     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
   438     if (qtable->quantval[0] == 0 ||
   439 	qtable->quantval[Q01_POS] == 0 ||
   440 	qtable->quantval[Q10_POS] == 0 ||
   441 	qtable->quantval[Q20_POS] == 0 ||
   442 	qtable->quantval[Q11_POS] == 0 ||
   443 	qtable->quantval[Q02_POS] == 0)
   444       return FALSE;
   445     /* DC values must be at least partly known for all components. */
   446     coef_bits = cinfo->coef_bits[ci];
   447     if (coef_bits[0] < 0)
   448       return FALSE;
   449     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
   450     for (coefi = 1; coefi <= 5; coefi++) {
   451       coef_bits_latch[coefi] = coef_bits[coefi];
   452       if (coef_bits[coefi] != 0)
   453 	smoothing_useful = TRUE;
   454     }
   455     coef_bits_latch += SAVED_COEFS;
   456   }
   458   return smoothing_useful;
   459 }
   462 /*
   463  * Variant of decompress_data for use when doing block smoothing.
   464  */
   466 METHODDEF(int)
   467 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
   468 {
   469   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
   470   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
   471   JDIMENSION block_num, last_block_column;
   472   int ci, block_row, block_rows, access_rows;
   473   JBLOCKARRAY buffer;
   474   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
   475   JSAMPARRAY output_ptr;
   476   JDIMENSION output_col;
   477   jpeg_component_info *compptr;
   478   inverse_DCT_method_ptr inverse_DCT;
   479   boolean first_row, last_row;
   480   JCOEF * workspace;
   481   int *coef_bits;
   482   JQUANT_TBL *quanttbl;
   483   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
   484   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
   485   int Al, pred;
   487   /* Keep a local variable to avoid looking it up more than once */
   488   workspace = coef->workspace;
   490   /* Force some input to be done if we are getting ahead of the input. */
   491   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
   492 	 ! cinfo->inputctl->eoi_reached) {
   493     if (cinfo->input_scan_number == cinfo->output_scan_number) {
   494       /* If input is working on current scan, we ordinarily want it to
   495        * have completed the current row.  But if input scan is DC,
   496        * we want it to keep one row ahead so that next block row's DC
   497        * values are up to date.
   498        */
   499       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
   500       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
   501 	break;
   502     }
   503     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
   504       return JPEG_SUSPENDED;
   505   }
   507   /* OK, output from the virtual arrays. */
   508   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
   509        ci++, compptr++) {
   510     /* Don't bother to IDCT an uninteresting component. */
   511     if (! compptr->component_needed)
   512       continue;
   513     /* Count non-dummy DCT block rows in this iMCU row. */
   514     if (cinfo->output_iMCU_row < last_iMCU_row) {
   515       block_rows = compptr->v_samp_factor;
   516       access_rows = block_rows * 2; /* this and next iMCU row */
   517       last_row = FALSE;
   518     } else {
   519       /* NB: can't use last_row_height here; it is input-side-dependent! */
   520       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
   521       if (block_rows == 0) block_rows = compptr->v_samp_factor;
   522       access_rows = block_rows; /* this iMCU row only */
   523       last_row = TRUE;
   524     }
   525     /* Align the virtual buffer for this component. */
   526     if (cinfo->output_iMCU_row > 0) {
   527       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
   528       buffer = (*cinfo->mem->access_virt_barray)
   529 	((j_common_ptr) cinfo, coef->whole_image[ci],
   530 	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
   531 	 (JDIMENSION) access_rows, FALSE);
   532       buffer += compptr->v_samp_factor;	/* point to current iMCU row */
   533       first_row = FALSE;
   534     } else {
   535       buffer = (*cinfo->mem->access_virt_barray)
   536 	((j_common_ptr) cinfo, coef->whole_image[ci],
   537 	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
   538       first_row = TRUE;
   539     }
   540     /* Fetch component-dependent info */
   541     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
   542     quanttbl = compptr->quant_table;
   543     Q00 = quanttbl->quantval[0];
   544     Q01 = quanttbl->quantval[Q01_POS];
   545     Q10 = quanttbl->quantval[Q10_POS];
   546     Q20 = quanttbl->quantval[Q20_POS];
   547     Q11 = quanttbl->quantval[Q11_POS];
   548     Q02 = quanttbl->quantval[Q02_POS];
   549     inverse_DCT = cinfo->idct->inverse_DCT[ci];
   550     output_ptr = output_buf[ci];
   551     /* Loop over all DCT blocks to be processed. */
   552     for (block_row = 0; block_row < block_rows; block_row++) {
   553       buffer_ptr = buffer[block_row];
   554       if (first_row && block_row == 0)
   555 	prev_block_row = buffer_ptr;
   556       else
   557 	prev_block_row = buffer[block_row-1];
   558       if (last_row && block_row == block_rows-1)
   559 	next_block_row = buffer_ptr;
   560       else
   561 	next_block_row = buffer[block_row+1];
   562       /* We fetch the surrounding DC values using a sliding-register approach.
   563        * Initialize all nine here so as to do the right thing on narrow pics.
   564        */
   565       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
   566       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
   567       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
   568       output_col = 0;
   569       last_block_column = compptr->width_in_blocks - 1;
   570       for (block_num = 0; block_num <= last_block_column; block_num++) {
   571 	/* Fetch current DCT block into workspace so we can modify it. */
   572 	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
   573 	/* Update DC values */
   574 	if (block_num < last_block_column) {
   575 	  DC3 = (int) prev_block_row[1][0];
   576 	  DC6 = (int) buffer_ptr[1][0];
   577 	  DC9 = (int) next_block_row[1][0];
   578 	}
   579 	/* Compute coefficient estimates per K.8.
   580 	 * An estimate is applied only if coefficient is still zero,
   581 	 * and is not known to be fully accurate.
   582 	 */
   583 	/* AC01 */
   584 	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
   585 	  num = 36 * Q00 * (DC4 - DC6);
   586 	  if (num >= 0) {
   587 	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
   588 	    if (Al > 0 && pred >= (1<<Al))
   589 	      pred = (1<<Al)-1;
   590 	  } else {
   591 	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
   592 	    if (Al > 0 && pred >= (1<<Al))
   593 	      pred = (1<<Al)-1;
   594 	    pred = -pred;
   595 	  }
   596 	  workspace[1] = (JCOEF) pred;
   597 	}
   598 	/* AC10 */
   599 	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
   600 	  num = 36 * Q00 * (DC2 - DC8);
   601 	  if (num >= 0) {
   602 	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
   603 	    if (Al > 0 && pred >= (1<<Al))
   604 	      pred = (1<<Al)-1;
   605 	  } else {
   606 	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
   607 	    if (Al > 0 && pred >= (1<<Al))
   608 	      pred = (1<<Al)-1;
   609 	    pred = -pred;
   610 	  }
   611 	  workspace[8] = (JCOEF) pred;
   612 	}
   613 	/* AC20 */
   614 	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
   615 	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
   616 	  if (num >= 0) {
   617 	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
   618 	    if (Al > 0 && pred >= (1<<Al))
   619 	      pred = (1<<Al)-1;
   620 	  } else {
   621 	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
   622 	    if (Al > 0 && pred >= (1<<Al))
   623 	      pred = (1<<Al)-1;
   624 	    pred = -pred;
   625 	  }
   626 	  workspace[16] = (JCOEF) pred;
   627 	}
   628 	/* AC11 */
   629 	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
   630 	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
   631 	  if (num >= 0) {
   632 	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
   633 	    if (Al > 0 && pred >= (1<<Al))
   634 	      pred = (1<<Al)-1;
   635 	  } else {
   636 	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
   637 	    if (Al > 0 && pred >= (1<<Al))
   638 	      pred = (1<<Al)-1;
   639 	    pred = -pred;
   640 	  }
   641 	  workspace[9] = (JCOEF) pred;
   642 	}
   643 	/* AC02 */
   644 	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
   645 	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
   646 	  if (num >= 0) {
   647 	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
   648 	    if (Al > 0 && pred >= (1<<Al))
   649 	      pred = (1<<Al)-1;
   650 	  } else {
   651 	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
   652 	    if (Al > 0 && pred >= (1<<Al))
   653 	      pred = (1<<Al)-1;
   654 	    pred = -pred;
   655 	  }
   656 	  workspace[2] = (JCOEF) pred;
   657 	}
   658 	/* OK, do the IDCT */
   659 	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
   660 			output_ptr, output_col);
   661 	/* Advance for next column */
   662 	DC1 = DC2; DC2 = DC3;
   663 	DC4 = DC5; DC5 = DC6;
   664 	DC7 = DC8; DC8 = DC9;
   665 	buffer_ptr++, prev_block_row++, next_block_row++;
   666 	output_col += compptr->_DCT_scaled_size;
   667       }
   668       output_ptr += compptr->_DCT_scaled_size;
   669     }
   670   }
   672   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
   673     return JPEG_ROW_COMPLETED;
   674   return JPEG_SCAN_COMPLETED;
   675 }
   677 #endif /* BLOCK_SMOOTHING_SUPPORTED */
   680 /*
   681  * Initialize coefficient buffer controller.
   682  */
   684 GLOBAL(void)
   685 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
   686 {
   687   my_coef_ptr coef;
   689   coef = (my_coef_ptr)
   690     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   691 				SIZEOF(my_coef_controller));
   692   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
   693   coef->pub.start_input_pass = start_input_pass;
   694   coef->pub.start_output_pass = start_output_pass;
   695 #ifdef BLOCK_SMOOTHING_SUPPORTED
   696   coef->coef_bits_latch = NULL;
   697 #endif
   699   /* Create the coefficient buffer. */
   700   if (need_full_buffer) {
   701 #ifdef D_MULTISCAN_FILES_SUPPORTED
   702     /* Allocate a full-image virtual array for each component, */
   703     /* padded to a multiple of samp_factor DCT blocks in each direction. */
   704     /* Note we ask for a pre-zeroed array. */
   705     int ci, access_rows;
   706     jpeg_component_info *compptr;
   708     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
   709 	 ci++, compptr++) {
   710       access_rows = compptr->v_samp_factor;
   711 #ifdef BLOCK_SMOOTHING_SUPPORTED
   712       /* If block smoothing could be used, need a bigger window */
   713       if (cinfo->progressive_mode)
   714 	access_rows *= 3;
   715 #endif
   716       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
   717 	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
   718 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
   719 				(long) compptr->h_samp_factor),
   720 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
   721 				(long) compptr->v_samp_factor),
   722 	 (JDIMENSION) access_rows);
   723     }
   724     coef->pub.consume_data = consume_data;
   725     coef->pub.decompress_data = decompress_data;
   726     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
   727 #else
   728     ERREXIT(cinfo, JERR_NOT_COMPILED);
   729 #endif
   730   } else {
   731     /* We only need a single-MCU buffer. */
   732     JBLOCKROW buffer;
   733     int i;
   735     buffer = (JBLOCKROW)
   736       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   737 				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
   738     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
   739       coef->MCU_buffer[i] = buffer + i;
   740     }
   741     coef->pub.consume_data = dummy_consume_data;
   742     coef->pub.decompress_data = decompress_onepass;
   743     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
   744   }
   746   /* Allocate the workspace buffer */
   747   coef->workspace = (JCOEF *)
   748     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   749                                 SIZEOF(JCOEF) * DCTSIZE2);
   750 }

mercurial