|
1 /* |
|
2 * jmemmgr.c |
|
3 * |
|
4 * Copyright (C) 1991-1997, Thomas G. Lane. |
|
5 * This file is part of the Independent JPEG Group's software. |
|
6 * For conditions of distribution and use, see the accompanying README file. |
|
7 * |
|
8 * This file contains the JPEG system-independent memory management |
|
9 * routines. This code is usable across a wide variety of machines; most |
|
10 * of the system dependencies have been isolated in a separate file. |
|
11 * The major functions provided here are: |
|
12 * * pool-based allocation and freeing of memory; |
|
13 * * policy decisions about how to divide available memory among the |
|
14 * virtual arrays; |
|
15 * * control logic for swapping virtual arrays between main memory and |
|
16 * backing storage. |
|
17 * The separate system-dependent file provides the actual backing-storage |
|
18 * access code, and it contains the policy decision about how much total |
|
19 * main memory to use. |
|
20 * This file is system-dependent in the sense that some of its functions |
|
21 * are unnecessary in some systems. For example, if there is enough virtual |
|
22 * memory so that backing storage will never be used, much of the virtual |
|
23 * array control logic could be removed. (Of course, if you have that much |
|
24 * memory then you shouldn't care about a little bit of unused code...) |
|
25 */ |
|
26 |
|
27 #define JPEG_INTERNALS |
|
28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
|
29 #include "jinclude.h" |
|
30 #include "jpeglib.h" |
|
31 #include "jmemsys.h" /* import the system-dependent declarations */ |
|
32 |
|
33 #ifndef NO_GETENV |
|
34 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
|
35 extern char * getenv JPP((const char * name)); |
|
36 #endif |
|
37 #endif |
|
38 |
|
39 |
|
40 LOCAL(size_t) |
|
41 round_up_pow2 (size_t a, size_t b) |
|
42 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ |
|
43 /* Assumes a >= 0, b > 0, and b is a power of 2 */ |
|
44 { |
|
45 return ((a + b - 1) & (~(b - 1))); |
|
46 } |
|
47 |
|
48 |
|
49 /* |
|
50 * Some important notes: |
|
51 * The allocation routines provided here must never return NULL. |
|
52 * They should exit to error_exit if unsuccessful. |
|
53 * |
|
54 * It's not a good idea to try to merge the sarray and barray routines, |
|
55 * even though they are textually almost the same, because samples are |
|
56 * usually stored as bytes while coefficients are shorts or ints. Thus, |
|
57 * in machines where byte pointers have a different representation from |
|
58 * word pointers, the resulting machine code could not be the same. |
|
59 */ |
|
60 |
|
61 |
|
62 /* |
|
63 * Many machines require storage alignment: longs must start on 4-byte |
|
64 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
|
65 * always returns pointers that are multiples of the worst-case alignment |
|
66 * requirement, and we had better do so too. |
|
67 * There isn't any really portable way to determine the worst-case alignment |
|
68 * requirement. This module assumes that the alignment requirement is |
|
69 * multiples of ALIGN_SIZE. |
|
70 * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on some |
|
71 * workstations (where doubles really do need 8-byte alignment) and will work |
|
72 * fine on nearly everything. If your machine has lesser alignment needs, |
|
73 * you can save a few bytes by making ALIGN_SIZE smaller. |
|
74 * The only place I know of where this will NOT work is certain Macintosh |
|
75 * 680x0 compilers that define double as a 10-byte IEEE extended float. |
|
76 * Doing 10-byte alignment is counterproductive because longwords won't be |
|
77 * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have |
|
78 * such a compiler. |
|
79 */ |
|
80 |
|
81 #ifndef ALIGN_SIZE /* so can override from jconfig.h */ |
|
82 #ifndef WITH_SIMD |
|
83 #define ALIGN_SIZE SIZEOF(double) |
|
84 #else |
|
85 #define ALIGN_SIZE 16 /* Most SIMD implementations require this */ |
|
86 #endif |
|
87 #endif |
|
88 |
|
89 /* |
|
90 * We allocate objects from "pools", where each pool is gotten with a single |
|
91 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
|
92 * overhead within a pool, except for alignment padding. Each pool has a |
|
93 * header with a link to the next pool of the same class. |
|
94 * Small and large pool headers are identical except that the latter's |
|
95 * link pointer must be FAR on 80x86 machines. |
|
96 */ |
|
97 |
|
98 typedef struct small_pool_struct * small_pool_ptr; |
|
99 |
|
100 typedef struct small_pool_struct { |
|
101 small_pool_ptr next; /* next in list of pools */ |
|
102 size_t bytes_used; /* how many bytes already used within pool */ |
|
103 size_t bytes_left; /* bytes still available in this pool */ |
|
104 } small_pool_hdr; |
|
105 |
|
106 typedef struct large_pool_struct FAR * large_pool_ptr; |
|
107 |
|
108 typedef struct large_pool_struct { |
|
109 large_pool_ptr next; /* next in list of pools */ |
|
110 size_t bytes_used; /* how many bytes already used within pool */ |
|
111 size_t bytes_left; /* bytes still available in this pool */ |
|
112 } large_pool_hdr; |
|
113 |
|
114 /* |
|
115 * Here is the full definition of a memory manager object. |
|
116 */ |
|
117 |
|
118 typedef struct { |
|
119 struct jpeg_memory_mgr pub; /* public fields */ |
|
120 |
|
121 /* Each pool identifier (lifetime class) names a linked list of pools. */ |
|
122 small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
|
123 large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
|
124 |
|
125 /* Since we only have one lifetime class of virtual arrays, only one |
|
126 * linked list is necessary (for each datatype). Note that the virtual |
|
127 * array control blocks being linked together are actually stored somewhere |
|
128 * in the small-pool list. |
|
129 */ |
|
130 jvirt_sarray_ptr virt_sarray_list; |
|
131 jvirt_barray_ptr virt_barray_list; |
|
132 |
|
133 /* This counts total space obtained from jpeg_get_small/large */ |
|
134 size_t total_space_allocated; |
|
135 |
|
136 /* alloc_sarray and alloc_barray set this value for use by virtual |
|
137 * array routines. |
|
138 */ |
|
139 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
|
140 } my_memory_mgr; |
|
141 |
|
142 typedef my_memory_mgr * my_mem_ptr; |
|
143 |
|
144 |
|
145 /* |
|
146 * The control blocks for virtual arrays. |
|
147 * Note that these blocks are allocated in the "small" pool area. |
|
148 * System-dependent info for the associated backing store (if any) is hidden |
|
149 * inside the backing_store_info struct. |
|
150 */ |
|
151 |
|
152 struct jvirt_sarray_control { |
|
153 JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
|
154 JDIMENSION rows_in_array; /* total virtual array height */ |
|
155 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
|
156 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
|
157 JDIMENSION rows_in_mem; /* height of memory buffer */ |
|
158 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
|
159 JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
|
160 JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
|
161 boolean pre_zero; /* pre-zero mode requested? */ |
|
162 boolean dirty; /* do current buffer contents need written? */ |
|
163 boolean b_s_open; /* is backing-store data valid? */ |
|
164 jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
|
165 backing_store_info b_s_info; /* System-dependent control info */ |
|
166 }; |
|
167 |
|
168 struct jvirt_barray_control { |
|
169 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
|
170 JDIMENSION rows_in_array; /* total virtual array height */ |
|
171 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
|
172 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
|
173 JDIMENSION rows_in_mem; /* height of memory buffer */ |
|
174 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
|
175 JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
|
176 JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
|
177 boolean pre_zero; /* pre-zero mode requested? */ |
|
178 boolean dirty; /* do current buffer contents need written? */ |
|
179 boolean b_s_open; /* is backing-store data valid? */ |
|
180 jvirt_barray_ptr next; /* link to next virtual barray control block */ |
|
181 backing_store_info b_s_info; /* System-dependent control info */ |
|
182 }; |
|
183 |
|
184 |
|
185 #ifdef MEM_STATS /* optional extra stuff for statistics */ |
|
186 |
|
187 LOCAL(void) |
|
188 print_mem_stats (j_common_ptr cinfo, int pool_id) |
|
189 { |
|
190 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
191 small_pool_ptr shdr_ptr; |
|
192 large_pool_ptr lhdr_ptr; |
|
193 |
|
194 /* Since this is only a debugging stub, we can cheat a little by using |
|
195 * fprintf directly rather than going through the trace message code. |
|
196 * This is helpful because message parm array can't handle longs. |
|
197 */ |
|
198 fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
|
199 pool_id, mem->total_space_allocated); |
|
200 |
|
201 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
|
202 lhdr_ptr = lhdr_ptr->next) { |
|
203 fprintf(stderr, " Large chunk used %ld\n", |
|
204 (long) lhdr_ptr->bytes_used); |
|
205 } |
|
206 |
|
207 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
|
208 shdr_ptr = shdr_ptr->next) { |
|
209 fprintf(stderr, " Small chunk used %ld free %ld\n", |
|
210 (long) shdr_ptr->bytes_used, |
|
211 (long) shdr_ptr->bytes_left); |
|
212 } |
|
213 } |
|
214 |
|
215 #endif /* MEM_STATS */ |
|
216 |
|
217 |
|
218 LOCAL(void) |
|
219 out_of_memory (j_common_ptr cinfo, int which) |
|
220 /* Report an out-of-memory error and stop execution */ |
|
221 /* If we compiled MEM_STATS support, report alloc requests before dying */ |
|
222 { |
|
223 #ifdef MEM_STATS |
|
224 cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
|
225 #endif |
|
226 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
|
227 } |
|
228 |
|
229 |
|
230 /* |
|
231 * Allocation of "small" objects. |
|
232 * |
|
233 * For these, we use pooled storage. When a new pool must be created, |
|
234 * we try to get enough space for the current request plus a "slop" factor, |
|
235 * where the slop will be the amount of leftover space in the new pool. |
|
236 * The speed vs. space tradeoff is largely determined by the slop values. |
|
237 * A different slop value is provided for each pool class (lifetime), |
|
238 * and we also distinguish the first pool of a class from later ones. |
|
239 * NOTE: the values given work fairly well on both 16- and 32-bit-int |
|
240 * machines, but may be too small if longs are 64 bits or more. |
|
241 * |
|
242 * Since we do not know what alignment malloc() gives us, we have to |
|
243 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment |
|
244 * adjustment. |
|
245 */ |
|
246 |
|
247 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
|
248 { |
|
249 1600, /* first PERMANENT pool */ |
|
250 16000 /* first IMAGE pool */ |
|
251 }; |
|
252 |
|
253 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = |
|
254 { |
|
255 0, /* additional PERMANENT pools */ |
|
256 5000 /* additional IMAGE pools */ |
|
257 }; |
|
258 |
|
259 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
|
260 |
|
261 |
|
262 METHODDEF(void *) |
|
263 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
|
264 /* Allocate a "small" object */ |
|
265 { |
|
266 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
267 small_pool_ptr hdr_ptr, prev_hdr_ptr; |
|
268 char * data_ptr; |
|
269 size_t min_request, slop; |
|
270 |
|
271 /* |
|
272 * Round up the requested size to a multiple of ALIGN_SIZE in order |
|
273 * to assure alignment for the next object allocated in the same pool |
|
274 * and so that algorithms can straddle outside the proper area up |
|
275 * to the next alignment. |
|
276 */ |
|
277 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
|
278 |
|
279 /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
|
280 if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK) |
|
281 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
|
282 |
|
283 /* See if space is available in any existing pool */ |
|
284 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
|
285 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
286 prev_hdr_ptr = NULL; |
|
287 hdr_ptr = mem->small_list[pool_id]; |
|
288 while (hdr_ptr != NULL) { |
|
289 if (hdr_ptr->bytes_left >= sizeofobject) |
|
290 break; /* found pool with enough space */ |
|
291 prev_hdr_ptr = hdr_ptr; |
|
292 hdr_ptr = hdr_ptr->next; |
|
293 } |
|
294 |
|
295 /* Time to make a new pool? */ |
|
296 if (hdr_ptr == NULL) { |
|
297 /* min_request is what we need now, slop is what will be leftover */ |
|
298 min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; |
|
299 if (prev_hdr_ptr == NULL) /* first pool in class? */ |
|
300 slop = first_pool_slop[pool_id]; |
|
301 else |
|
302 slop = extra_pool_slop[pool_id]; |
|
303 /* Don't ask for more than MAX_ALLOC_CHUNK */ |
|
304 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
|
305 slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
|
306 /* Try to get space, if fail reduce slop and try again */ |
|
307 for (;;) { |
|
308 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
|
309 if (hdr_ptr != NULL) |
|
310 break; |
|
311 slop /= 2; |
|
312 if (slop < MIN_SLOP) /* give up when it gets real small */ |
|
313 out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
|
314 } |
|
315 mem->total_space_allocated += min_request + slop; |
|
316 /* Success, initialize the new pool header and add to end of list */ |
|
317 hdr_ptr->next = NULL; |
|
318 hdr_ptr->bytes_used = 0; |
|
319 hdr_ptr->bytes_left = sizeofobject + slop; |
|
320 if (prev_hdr_ptr == NULL) /* first pool in class? */ |
|
321 mem->small_list[pool_id] = hdr_ptr; |
|
322 else |
|
323 prev_hdr_ptr->next = hdr_ptr; |
|
324 } |
|
325 |
|
326 /* OK, allocate the object from the current pool */ |
|
327 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
|
328 data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */ |
|
329 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
|
330 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
|
331 data_ptr += hdr_ptr->bytes_used; /* point to place for object */ |
|
332 hdr_ptr->bytes_used += sizeofobject; |
|
333 hdr_ptr->bytes_left -= sizeofobject; |
|
334 |
|
335 return (void *) data_ptr; |
|
336 } |
|
337 |
|
338 |
|
339 /* |
|
340 * Allocation of "large" objects. |
|
341 * |
|
342 * The external semantics of these are the same as "small" objects, |
|
343 * except that FAR pointers are used on 80x86. However the pool |
|
344 * management heuristics are quite different. We assume that each |
|
345 * request is large enough that it may as well be passed directly to |
|
346 * jpeg_get_large; the pool management just links everything together |
|
347 * so that we can free it all on demand. |
|
348 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
|
349 * structures. The routines that create these structures (see below) |
|
350 * deliberately bunch rows together to ensure a large request size. |
|
351 */ |
|
352 |
|
353 METHODDEF(void FAR *) |
|
354 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
|
355 /* Allocate a "large" object */ |
|
356 { |
|
357 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
358 large_pool_ptr hdr_ptr; |
|
359 char FAR * data_ptr; |
|
360 |
|
361 /* |
|
362 * Round up the requested size to a multiple of ALIGN_SIZE so that |
|
363 * algorithms can straddle outside the proper area up to the next |
|
364 * alignment. |
|
365 */ |
|
366 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
|
367 |
|
368 /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
|
369 if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK) |
|
370 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
|
371 |
|
372 /* Always make a new pool */ |
|
373 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
|
374 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
375 |
|
376 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
|
377 SIZEOF(large_pool_hdr) + |
|
378 ALIGN_SIZE - 1); |
|
379 if (hdr_ptr == NULL) |
|
380 out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
|
381 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SIZE - 1; |
|
382 |
|
383 /* Success, initialize the new pool header and add to list */ |
|
384 hdr_ptr->next = mem->large_list[pool_id]; |
|
385 /* We maintain space counts in each pool header for statistical purposes, |
|
386 * even though they are not needed for allocation. |
|
387 */ |
|
388 hdr_ptr->bytes_used = sizeofobject; |
|
389 hdr_ptr->bytes_left = 0; |
|
390 mem->large_list[pool_id] = hdr_ptr; |
|
391 |
|
392 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
|
393 data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */ |
|
394 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
|
395 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
|
396 |
|
397 return (void FAR *) data_ptr; |
|
398 } |
|
399 |
|
400 |
|
401 /* |
|
402 * Creation of 2-D sample arrays. |
|
403 * The pointers are in near heap, the samples themselves in FAR heap. |
|
404 * |
|
405 * To minimize allocation overhead and to allow I/O of large contiguous |
|
406 * blocks, we allocate the sample rows in groups of as many rows as possible |
|
407 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
|
408 * NB: the virtual array control routines, later in this file, know about |
|
409 * this chunking of rows. The rowsperchunk value is left in the mem manager |
|
410 * object so that it can be saved away if this sarray is the workspace for |
|
411 * a virtual array. |
|
412 * |
|
413 * Since we are often upsampling with a factor 2, we align the size (not |
|
414 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have |
|
415 * to be as careful about size. |
|
416 */ |
|
417 |
|
418 METHODDEF(JSAMPARRAY) |
|
419 alloc_sarray (j_common_ptr cinfo, int pool_id, |
|
420 JDIMENSION samplesperrow, JDIMENSION numrows) |
|
421 /* Allocate a 2-D sample array */ |
|
422 { |
|
423 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
424 JSAMPARRAY result; |
|
425 JSAMPROW workspace; |
|
426 JDIMENSION rowsperchunk, currow, i; |
|
427 long ltemp; |
|
428 |
|
429 /* Make sure each row is properly aligned */ |
|
430 if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0) |
|
431 out_of_memory(cinfo, 5); /* safety check */ |
|
432 samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF(JSAMPLE)); |
|
433 |
|
434 /* Calculate max # of rows allowed in one allocation chunk */ |
|
435 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
|
436 ((long) samplesperrow * SIZEOF(JSAMPLE)); |
|
437 if (ltemp <= 0) |
|
438 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
|
439 if (ltemp < (long) numrows) |
|
440 rowsperchunk = (JDIMENSION) ltemp; |
|
441 else |
|
442 rowsperchunk = numrows; |
|
443 mem->last_rowsperchunk = rowsperchunk; |
|
444 |
|
445 /* Get space for row pointers (small object) */ |
|
446 result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
|
447 (size_t) (numrows * SIZEOF(JSAMPROW))); |
|
448 |
|
449 /* Get the rows themselves (large objects) */ |
|
450 currow = 0; |
|
451 while (currow < numrows) { |
|
452 rowsperchunk = MIN(rowsperchunk, numrows - currow); |
|
453 workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
|
454 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
|
455 * SIZEOF(JSAMPLE))); |
|
456 for (i = rowsperchunk; i > 0; i--) { |
|
457 result[currow++] = workspace; |
|
458 workspace += samplesperrow; |
|
459 } |
|
460 } |
|
461 |
|
462 return result; |
|
463 } |
|
464 |
|
465 |
|
466 /* |
|
467 * Creation of 2-D coefficient-block arrays. |
|
468 * This is essentially the same as the code for sample arrays, above. |
|
469 */ |
|
470 |
|
471 METHODDEF(JBLOCKARRAY) |
|
472 alloc_barray (j_common_ptr cinfo, int pool_id, |
|
473 JDIMENSION blocksperrow, JDIMENSION numrows) |
|
474 /* Allocate a 2-D coefficient-block array */ |
|
475 { |
|
476 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
477 JBLOCKARRAY result; |
|
478 JBLOCKROW workspace; |
|
479 JDIMENSION rowsperchunk, currow, i; |
|
480 long ltemp; |
|
481 |
|
482 /* Make sure each row is properly aligned */ |
|
483 if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0) |
|
484 out_of_memory(cinfo, 6); /* safety check */ |
|
485 |
|
486 /* Calculate max # of rows allowed in one allocation chunk */ |
|
487 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / |
|
488 ((long) blocksperrow * SIZEOF(JBLOCK)); |
|
489 if (ltemp <= 0) |
|
490 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
|
491 if (ltemp < (long) numrows) |
|
492 rowsperchunk = (JDIMENSION) ltemp; |
|
493 else |
|
494 rowsperchunk = numrows; |
|
495 mem->last_rowsperchunk = rowsperchunk; |
|
496 |
|
497 /* Get space for row pointers (small object) */ |
|
498 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
|
499 (size_t) (numrows * SIZEOF(JBLOCKROW))); |
|
500 |
|
501 /* Get the rows themselves (large objects) */ |
|
502 currow = 0; |
|
503 while (currow < numrows) { |
|
504 rowsperchunk = MIN(rowsperchunk, numrows - currow); |
|
505 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
|
506 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
|
507 * SIZEOF(JBLOCK))); |
|
508 for (i = rowsperchunk; i > 0; i--) { |
|
509 result[currow++] = workspace; |
|
510 workspace += blocksperrow; |
|
511 } |
|
512 } |
|
513 |
|
514 return result; |
|
515 } |
|
516 |
|
517 |
|
518 /* |
|
519 * About virtual array management: |
|
520 * |
|
521 * The above "normal" array routines are only used to allocate strip buffers |
|
522 * (as wide as the image, but just a few rows high). Full-image-sized buffers |
|
523 * are handled as "virtual" arrays. The array is still accessed a strip at a |
|
524 * time, but the memory manager must save the whole array for repeated |
|
525 * accesses. The intended implementation is that there is a strip buffer in |
|
526 * memory (as high as is possible given the desired memory limit), plus a |
|
527 * backing file that holds the rest of the array. |
|
528 * |
|
529 * The request_virt_array routines are told the total size of the image and |
|
530 * the maximum number of rows that will be accessed at once. The in-memory |
|
531 * buffer must be at least as large as the maxaccess value. |
|
532 * |
|
533 * The request routines create control blocks but not the in-memory buffers. |
|
534 * That is postponed until realize_virt_arrays is called. At that time the |
|
535 * total amount of space needed is known (approximately, anyway), so free |
|
536 * memory can be divided up fairly. |
|
537 * |
|
538 * The access_virt_array routines are responsible for making a specific strip |
|
539 * area accessible (after reading or writing the backing file, if necessary). |
|
540 * Note that the access routines are told whether the caller intends to modify |
|
541 * the accessed strip; during a read-only pass this saves having to rewrite |
|
542 * data to disk. The access routines are also responsible for pre-zeroing |
|
543 * any newly accessed rows, if pre-zeroing was requested. |
|
544 * |
|
545 * In current usage, the access requests are usually for nonoverlapping |
|
546 * strips; that is, successive access start_row numbers differ by exactly |
|
547 * num_rows = maxaccess. This means we can get good performance with simple |
|
548 * buffer dump/reload logic, by making the in-memory buffer be a multiple |
|
549 * of the access height; then there will never be accesses across bufferload |
|
550 * boundaries. The code will still work with overlapping access requests, |
|
551 * but it doesn't handle bufferload overlaps very efficiently. |
|
552 */ |
|
553 |
|
554 |
|
555 METHODDEF(jvirt_sarray_ptr) |
|
556 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
|
557 JDIMENSION samplesperrow, JDIMENSION numrows, |
|
558 JDIMENSION maxaccess) |
|
559 /* Request a virtual 2-D sample array */ |
|
560 { |
|
561 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
562 jvirt_sarray_ptr result; |
|
563 |
|
564 /* Only IMAGE-lifetime virtual arrays are currently supported */ |
|
565 if (pool_id != JPOOL_IMAGE) |
|
566 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
567 |
|
568 /* get control block */ |
|
569 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
|
570 SIZEOF(struct jvirt_sarray_control)); |
|
571 |
|
572 result->mem_buffer = NULL; /* marks array not yet realized */ |
|
573 result->rows_in_array = numrows; |
|
574 result->samplesperrow = samplesperrow; |
|
575 result->maxaccess = maxaccess; |
|
576 result->pre_zero = pre_zero; |
|
577 result->b_s_open = FALSE; /* no associated backing-store object */ |
|
578 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
|
579 mem->virt_sarray_list = result; |
|
580 |
|
581 return result; |
|
582 } |
|
583 |
|
584 |
|
585 METHODDEF(jvirt_barray_ptr) |
|
586 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
|
587 JDIMENSION blocksperrow, JDIMENSION numrows, |
|
588 JDIMENSION maxaccess) |
|
589 /* Request a virtual 2-D coefficient-block array */ |
|
590 { |
|
591 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
592 jvirt_barray_ptr result; |
|
593 |
|
594 /* Only IMAGE-lifetime virtual arrays are currently supported */ |
|
595 if (pool_id != JPOOL_IMAGE) |
|
596 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
597 |
|
598 /* get control block */ |
|
599 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
|
600 SIZEOF(struct jvirt_barray_control)); |
|
601 |
|
602 result->mem_buffer = NULL; /* marks array not yet realized */ |
|
603 result->rows_in_array = numrows; |
|
604 result->blocksperrow = blocksperrow; |
|
605 result->maxaccess = maxaccess; |
|
606 result->pre_zero = pre_zero; |
|
607 result->b_s_open = FALSE; /* no associated backing-store object */ |
|
608 result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
|
609 mem->virt_barray_list = result; |
|
610 |
|
611 return result; |
|
612 } |
|
613 |
|
614 |
|
615 METHODDEF(void) |
|
616 realize_virt_arrays (j_common_ptr cinfo) |
|
617 /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
|
618 { |
|
619 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
620 size_t space_per_minheight, maximum_space, avail_mem; |
|
621 size_t minheights, max_minheights; |
|
622 jvirt_sarray_ptr sptr; |
|
623 jvirt_barray_ptr bptr; |
|
624 |
|
625 /* Compute the minimum space needed (maxaccess rows in each buffer) |
|
626 * and the maximum space needed (full image height in each buffer). |
|
627 * These may be of use to the system-dependent jpeg_mem_available routine. |
|
628 */ |
|
629 space_per_minheight = 0; |
|
630 maximum_space = 0; |
|
631 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
|
632 if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
|
633 space_per_minheight += (long) sptr->maxaccess * |
|
634 (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
|
635 maximum_space += (long) sptr->rows_in_array * |
|
636 (long) sptr->samplesperrow * SIZEOF(JSAMPLE); |
|
637 } |
|
638 } |
|
639 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
|
640 if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
|
641 space_per_minheight += (long) bptr->maxaccess * |
|
642 (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
|
643 maximum_space += (long) bptr->rows_in_array * |
|
644 (long) bptr->blocksperrow * SIZEOF(JBLOCK); |
|
645 } |
|
646 } |
|
647 |
|
648 if (space_per_minheight <= 0) |
|
649 return; /* no unrealized arrays, no work */ |
|
650 |
|
651 /* Determine amount of memory to actually use; this is system-dependent. */ |
|
652 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
|
653 mem->total_space_allocated); |
|
654 |
|
655 /* If the maximum space needed is available, make all the buffers full |
|
656 * height; otherwise parcel it out with the same number of minheights |
|
657 * in each buffer. |
|
658 */ |
|
659 if (avail_mem >= maximum_space) |
|
660 max_minheights = 1000000000L; |
|
661 else { |
|
662 max_minheights = avail_mem / space_per_minheight; |
|
663 /* If there doesn't seem to be enough space, try to get the minimum |
|
664 * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
|
665 */ |
|
666 if (max_minheights <= 0) |
|
667 max_minheights = 1; |
|
668 } |
|
669 |
|
670 /* Allocate the in-memory buffers and initialize backing store as needed. */ |
|
671 |
|
672 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
|
673 if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
|
674 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
|
675 if (minheights <= max_minheights) { |
|
676 /* This buffer fits in memory */ |
|
677 sptr->rows_in_mem = sptr->rows_in_array; |
|
678 } else { |
|
679 /* It doesn't fit in memory, create backing store. */ |
|
680 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
|
681 jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
|
682 (long) sptr->rows_in_array * |
|
683 (long) sptr->samplesperrow * |
|
684 (long) SIZEOF(JSAMPLE)); |
|
685 sptr->b_s_open = TRUE; |
|
686 } |
|
687 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
|
688 sptr->samplesperrow, sptr->rows_in_mem); |
|
689 sptr->rowsperchunk = mem->last_rowsperchunk; |
|
690 sptr->cur_start_row = 0; |
|
691 sptr->first_undef_row = 0; |
|
692 sptr->dirty = FALSE; |
|
693 } |
|
694 } |
|
695 |
|
696 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
|
697 if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
|
698 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
|
699 if (minheights <= max_minheights) { |
|
700 /* This buffer fits in memory */ |
|
701 bptr->rows_in_mem = bptr->rows_in_array; |
|
702 } else { |
|
703 /* It doesn't fit in memory, create backing store. */ |
|
704 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
|
705 jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
|
706 (long) bptr->rows_in_array * |
|
707 (long) bptr->blocksperrow * |
|
708 (long) SIZEOF(JBLOCK)); |
|
709 bptr->b_s_open = TRUE; |
|
710 } |
|
711 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
|
712 bptr->blocksperrow, bptr->rows_in_mem); |
|
713 bptr->rowsperchunk = mem->last_rowsperchunk; |
|
714 bptr->cur_start_row = 0; |
|
715 bptr->first_undef_row = 0; |
|
716 bptr->dirty = FALSE; |
|
717 } |
|
718 } |
|
719 } |
|
720 |
|
721 |
|
722 LOCAL(void) |
|
723 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
|
724 /* Do backing store read or write of a virtual sample array */ |
|
725 { |
|
726 long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
|
727 |
|
728 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); |
|
729 file_offset = ptr->cur_start_row * bytesperrow; |
|
730 /* Loop to read or write each allocation chunk in mem_buffer */ |
|
731 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
|
732 /* One chunk, but check for short chunk at end of buffer */ |
|
733 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
|
734 /* Transfer no more than is currently defined */ |
|
735 thisrow = (long) ptr->cur_start_row + i; |
|
736 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
|
737 /* Transfer no more than fits in file */ |
|
738 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
|
739 if (rows <= 0) /* this chunk might be past end of file! */ |
|
740 break; |
|
741 byte_count = rows * bytesperrow; |
|
742 if (writing) |
|
743 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
|
744 (void FAR *) ptr->mem_buffer[i], |
|
745 file_offset, byte_count); |
|
746 else |
|
747 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
|
748 (void FAR *) ptr->mem_buffer[i], |
|
749 file_offset, byte_count); |
|
750 file_offset += byte_count; |
|
751 } |
|
752 } |
|
753 |
|
754 |
|
755 LOCAL(void) |
|
756 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
|
757 /* Do backing store read or write of a virtual coefficient-block array */ |
|
758 { |
|
759 long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
|
760 |
|
761 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); |
|
762 file_offset = ptr->cur_start_row * bytesperrow; |
|
763 /* Loop to read or write each allocation chunk in mem_buffer */ |
|
764 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
|
765 /* One chunk, but check for short chunk at end of buffer */ |
|
766 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
|
767 /* Transfer no more than is currently defined */ |
|
768 thisrow = (long) ptr->cur_start_row + i; |
|
769 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
|
770 /* Transfer no more than fits in file */ |
|
771 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
|
772 if (rows <= 0) /* this chunk might be past end of file! */ |
|
773 break; |
|
774 byte_count = rows * bytesperrow; |
|
775 if (writing) |
|
776 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
|
777 (void FAR *) ptr->mem_buffer[i], |
|
778 file_offset, byte_count); |
|
779 else |
|
780 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
|
781 (void FAR *) ptr->mem_buffer[i], |
|
782 file_offset, byte_count); |
|
783 file_offset += byte_count; |
|
784 } |
|
785 } |
|
786 |
|
787 |
|
788 METHODDEF(JSAMPARRAY) |
|
789 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
|
790 JDIMENSION start_row, JDIMENSION num_rows, |
|
791 boolean writable) |
|
792 /* Access the part of a virtual sample array starting at start_row */ |
|
793 /* and extending for num_rows rows. writable is true if */ |
|
794 /* caller intends to modify the accessed area. */ |
|
795 { |
|
796 JDIMENSION end_row = start_row + num_rows; |
|
797 JDIMENSION undef_row; |
|
798 |
|
799 /* debugging check */ |
|
800 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
|
801 ptr->mem_buffer == NULL) |
|
802 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
803 |
|
804 /* Make the desired part of the virtual array accessible */ |
|
805 if (start_row < ptr->cur_start_row || |
|
806 end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
|
807 if (! ptr->b_s_open) |
|
808 ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
|
809 /* Flush old buffer contents if necessary */ |
|
810 if (ptr->dirty) { |
|
811 do_sarray_io(cinfo, ptr, TRUE); |
|
812 ptr->dirty = FALSE; |
|
813 } |
|
814 /* Decide what part of virtual array to access. |
|
815 * Algorithm: if target address > current window, assume forward scan, |
|
816 * load starting at target address. If target address < current window, |
|
817 * assume backward scan, load so that target area is top of window. |
|
818 * Note that when switching from forward write to forward read, will have |
|
819 * start_row = 0, so the limiting case applies and we load from 0 anyway. |
|
820 */ |
|
821 if (start_row > ptr->cur_start_row) { |
|
822 ptr->cur_start_row = start_row; |
|
823 } else { |
|
824 /* use long arithmetic here to avoid overflow & unsigned problems */ |
|
825 long ltemp; |
|
826 |
|
827 ltemp = (long) end_row - (long) ptr->rows_in_mem; |
|
828 if (ltemp < 0) |
|
829 ltemp = 0; /* don't fall off front end of file */ |
|
830 ptr->cur_start_row = (JDIMENSION) ltemp; |
|
831 } |
|
832 /* Read in the selected part of the array. |
|
833 * During the initial write pass, we will do no actual read |
|
834 * because the selected part is all undefined. |
|
835 */ |
|
836 do_sarray_io(cinfo, ptr, FALSE); |
|
837 } |
|
838 /* Ensure the accessed part of the array is defined; prezero if needed. |
|
839 * To improve locality of access, we only prezero the part of the array |
|
840 * that the caller is about to access, not the entire in-memory array. |
|
841 */ |
|
842 if (ptr->first_undef_row < end_row) { |
|
843 if (ptr->first_undef_row < start_row) { |
|
844 if (writable) /* writer skipped over a section of array */ |
|
845 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
846 undef_row = start_row; /* but reader is allowed to read ahead */ |
|
847 } else { |
|
848 undef_row = ptr->first_undef_row; |
|
849 } |
|
850 if (writable) |
|
851 ptr->first_undef_row = end_row; |
|
852 if (ptr->pre_zero) { |
|
853 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); |
|
854 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
|
855 end_row -= ptr->cur_start_row; |
|
856 while (undef_row < end_row) { |
|
857 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
|
858 undef_row++; |
|
859 } |
|
860 } else { |
|
861 if (! writable) /* reader looking at undefined data */ |
|
862 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
863 } |
|
864 } |
|
865 /* Flag the buffer dirty if caller will write in it */ |
|
866 if (writable) |
|
867 ptr->dirty = TRUE; |
|
868 /* Return address of proper part of the buffer */ |
|
869 return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
|
870 } |
|
871 |
|
872 |
|
873 METHODDEF(JBLOCKARRAY) |
|
874 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
|
875 JDIMENSION start_row, JDIMENSION num_rows, |
|
876 boolean writable) |
|
877 /* Access the part of a virtual block array starting at start_row */ |
|
878 /* and extending for num_rows rows. writable is true if */ |
|
879 /* caller intends to modify the accessed area. */ |
|
880 { |
|
881 JDIMENSION end_row = start_row + num_rows; |
|
882 JDIMENSION undef_row; |
|
883 |
|
884 /* debugging check */ |
|
885 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
|
886 ptr->mem_buffer == NULL) |
|
887 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
888 |
|
889 /* Make the desired part of the virtual array accessible */ |
|
890 if (start_row < ptr->cur_start_row || |
|
891 end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
|
892 if (! ptr->b_s_open) |
|
893 ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
|
894 /* Flush old buffer contents if necessary */ |
|
895 if (ptr->dirty) { |
|
896 do_barray_io(cinfo, ptr, TRUE); |
|
897 ptr->dirty = FALSE; |
|
898 } |
|
899 /* Decide what part of virtual array to access. |
|
900 * Algorithm: if target address > current window, assume forward scan, |
|
901 * load starting at target address. If target address < current window, |
|
902 * assume backward scan, load so that target area is top of window. |
|
903 * Note that when switching from forward write to forward read, will have |
|
904 * start_row = 0, so the limiting case applies and we load from 0 anyway. |
|
905 */ |
|
906 if (start_row > ptr->cur_start_row) { |
|
907 ptr->cur_start_row = start_row; |
|
908 } else { |
|
909 /* use long arithmetic here to avoid overflow & unsigned problems */ |
|
910 long ltemp; |
|
911 |
|
912 ltemp = (long) end_row - (long) ptr->rows_in_mem; |
|
913 if (ltemp < 0) |
|
914 ltemp = 0; /* don't fall off front end of file */ |
|
915 ptr->cur_start_row = (JDIMENSION) ltemp; |
|
916 } |
|
917 /* Read in the selected part of the array. |
|
918 * During the initial write pass, we will do no actual read |
|
919 * because the selected part is all undefined. |
|
920 */ |
|
921 do_barray_io(cinfo, ptr, FALSE); |
|
922 } |
|
923 /* Ensure the accessed part of the array is defined; prezero if needed. |
|
924 * To improve locality of access, we only prezero the part of the array |
|
925 * that the caller is about to access, not the entire in-memory array. |
|
926 */ |
|
927 if (ptr->first_undef_row < end_row) { |
|
928 if (ptr->first_undef_row < start_row) { |
|
929 if (writable) /* writer skipped over a section of array */ |
|
930 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
931 undef_row = start_row; /* but reader is allowed to read ahead */ |
|
932 } else { |
|
933 undef_row = ptr->first_undef_row; |
|
934 } |
|
935 if (writable) |
|
936 ptr->first_undef_row = end_row; |
|
937 if (ptr->pre_zero) { |
|
938 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); |
|
939 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
|
940 end_row -= ptr->cur_start_row; |
|
941 while (undef_row < end_row) { |
|
942 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); |
|
943 undef_row++; |
|
944 } |
|
945 } else { |
|
946 if (! writable) /* reader looking at undefined data */ |
|
947 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
948 } |
|
949 } |
|
950 /* Flag the buffer dirty if caller will write in it */ |
|
951 if (writable) |
|
952 ptr->dirty = TRUE; |
|
953 /* Return address of proper part of the buffer */ |
|
954 return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
|
955 } |
|
956 |
|
957 |
|
958 /* |
|
959 * Release all objects belonging to a specified pool. |
|
960 */ |
|
961 |
|
962 METHODDEF(void) |
|
963 free_pool (j_common_ptr cinfo, int pool_id) |
|
964 { |
|
965 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
|
966 small_pool_ptr shdr_ptr; |
|
967 large_pool_ptr lhdr_ptr; |
|
968 size_t space_freed; |
|
969 |
|
970 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
|
971 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
972 |
|
973 #ifdef MEM_STATS |
|
974 if (cinfo->err->trace_level > 1) |
|
975 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
|
976 #endif |
|
977 |
|
978 /* If freeing IMAGE pool, close any virtual arrays first */ |
|
979 if (pool_id == JPOOL_IMAGE) { |
|
980 jvirt_sarray_ptr sptr; |
|
981 jvirt_barray_ptr bptr; |
|
982 |
|
983 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
|
984 if (sptr->b_s_open) { /* there may be no backing store */ |
|
985 sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
|
986 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
|
987 } |
|
988 } |
|
989 mem->virt_sarray_list = NULL; |
|
990 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
|
991 if (bptr->b_s_open) { /* there may be no backing store */ |
|
992 bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
|
993 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
|
994 } |
|
995 } |
|
996 mem->virt_barray_list = NULL; |
|
997 } |
|
998 |
|
999 /* Release large objects */ |
|
1000 lhdr_ptr = mem->large_list[pool_id]; |
|
1001 mem->large_list[pool_id] = NULL; |
|
1002 |
|
1003 while (lhdr_ptr != NULL) { |
|
1004 large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; |
|
1005 space_freed = lhdr_ptr->bytes_used + |
|
1006 lhdr_ptr->bytes_left + |
|
1007 SIZEOF(large_pool_hdr); |
|
1008 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); |
|
1009 mem->total_space_allocated -= space_freed; |
|
1010 lhdr_ptr = next_lhdr_ptr; |
|
1011 } |
|
1012 |
|
1013 /* Release small objects */ |
|
1014 shdr_ptr = mem->small_list[pool_id]; |
|
1015 mem->small_list[pool_id] = NULL; |
|
1016 |
|
1017 while (shdr_ptr != NULL) { |
|
1018 small_pool_ptr next_shdr_ptr = shdr_ptr->next; |
|
1019 space_freed = shdr_ptr->bytes_used + |
|
1020 shdr_ptr->bytes_left + |
|
1021 SIZEOF(small_pool_hdr); |
|
1022 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
|
1023 mem->total_space_allocated -= space_freed; |
|
1024 shdr_ptr = next_shdr_ptr; |
|
1025 } |
|
1026 } |
|
1027 |
|
1028 |
|
1029 /* |
|
1030 * Close up shop entirely. |
|
1031 * Note that this cannot be called unless cinfo->mem is non-NULL. |
|
1032 */ |
|
1033 |
|
1034 METHODDEF(void) |
|
1035 self_destruct (j_common_ptr cinfo) |
|
1036 { |
|
1037 int pool; |
|
1038 |
|
1039 /* Close all backing store, release all memory. |
|
1040 * Releasing pools in reverse order might help avoid fragmentation |
|
1041 * with some (brain-damaged) malloc libraries. |
|
1042 */ |
|
1043 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
|
1044 free_pool(cinfo, pool); |
|
1045 } |
|
1046 |
|
1047 /* Release the memory manager control block too. */ |
|
1048 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); |
|
1049 cinfo->mem = NULL; /* ensures I will be called only once */ |
|
1050 |
|
1051 jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
|
1052 } |
|
1053 |
|
1054 |
|
1055 /* |
|
1056 * Memory manager initialization. |
|
1057 * When this is called, only the error manager pointer is valid in cinfo! |
|
1058 */ |
|
1059 |
|
1060 GLOBAL(void) |
|
1061 jinit_memory_mgr (j_common_ptr cinfo) |
|
1062 { |
|
1063 my_mem_ptr mem; |
|
1064 long max_to_use; |
|
1065 int pool; |
|
1066 size_t test_mac; |
|
1067 |
|
1068 cinfo->mem = NULL; /* for safety if init fails */ |
|
1069 |
|
1070 /* Check for configuration errors. |
|
1071 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
|
1072 * doesn't reflect any real hardware alignment requirement. |
|
1073 * The test is a little tricky: for X>0, X and X-1 have no one-bits |
|
1074 * in common if and only if X is a power of 2, ie has only one one-bit. |
|
1075 * Some compilers may give an "unreachable code" warning here; ignore it. |
|
1076 */ |
|
1077 if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0) |
|
1078 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
|
1079 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
|
1080 * a multiple of ALIGN_SIZE. |
|
1081 * Again, an "unreachable code" warning may be ignored here. |
|
1082 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
|
1083 */ |
|
1084 test_mac = (size_t) MAX_ALLOC_CHUNK; |
|
1085 if ((long) test_mac != MAX_ALLOC_CHUNK || |
|
1086 (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) |
|
1087 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
|
1088 |
|
1089 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
|
1090 |
|
1091 /* Attempt to allocate memory manager's control block */ |
|
1092 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); |
|
1093 |
|
1094 if (mem == NULL) { |
|
1095 jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
|
1096 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
|
1097 } |
|
1098 |
|
1099 /* OK, fill in the method pointers */ |
|
1100 mem->pub.alloc_small = alloc_small; |
|
1101 mem->pub.alloc_large = alloc_large; |
|
1102 mem->pub.alloc_sarray = alloc_sarray; |
|
1103 mem->pub.alloc_barray = alloc_barray; |
|
1104 mem->pub.request_virt_sarray = request_virt_sarray; |
|
1105 mem->pub.request_virt_barray = request_virt_barray; |
|
1106 mem->pub.realize_virt_arrays = realize_virt_arrays; |
|
1107 mem->pub.access_virt_sarray = access_virt_sarray; |
|
1108 mem->pub.access_virt_barray = access_virt_barray; |
|
1109 mem->pub.free_pool = free_pool; |
|
1110 mem->pub.self_destruct = self_destruct; |
|
1111 |
|
1112 /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
|
1113 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
|
1114 |
|
1115 /* Initialize working state */ |
|
1116 mem->pub.max_memory_to_use = max_to_use; |
|
1117 |
|
1118 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
|
1119 mem->small_list[pool] = NULL; |
|
1120 mem->large_list[pool] = NULL; |
|
1121 } |
|
1122 mem->virt_sarray_list = NULL; |
|
1123 mem->virt_barray_list = NULL; |
|
1124 |
|
1125 mem->total_space_allocated = SIZEOF(my_memory_mgr); |
|
1126 |
|
1127 /* Declare ourselves open for business */ |
|
1128 cinfo->mem = & mem->pub; |
|
1129 |
|
1130 /* Check for an environment variable JPEGMEM; if found, override the |
|
1131 * default max_memory setting from jpeg_mem_init. Note that the |
|
1132 * surrounding application may again override this value. |
|
1133 * If your system doesn't support getenv(), define NO_GETENV to disable |
|
1134 * this feature. |
|
1135 */ |
|
1136 #ifndef NO_GETENV |
|
1137 { char * memenv; |
|
1138 |
|
1139 if ((memenv = getenv("JPEGMEM")) != NULL) { |
|
1140 char ch = 'x'; |
|
1141 |
|
1142 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
|
1143 if (ch == 'm' || ch == 'M') |
|
1144 max_to_use *= 1000L; |
|
1145 mem->pub.max_memory_to_use = max_to_use * 1000L; |
|
1146 } |
|
1147 } |
|
1148 } |
|
1149 #endif |
|
1150 |
|
1151 } |