media/libjpeg/jmemmgr.c

Thu, 22 Jan 2015 13:21:57 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Thu, 22 Jan 2015 13:21:57 +0100
branch
TOR_BUG_9701
changeset 15
b8a032363ba2
permissions
-rw-r--r--

Incorporate requested changes from Mozilla in review:
https://bugzilla.mozilla.org/show_bug.cgi?id=1123480#c6

     1 /*
     2  * jmemmgr.c
     3  *
     4  * Copyright (C) 1991-1997, Thomas G. Lane.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains the JPEG system-independent memory management
     9  * routines.  This code is usable across a wide variety of machines; most
    10  * of the system dependencies have been isolated in a separate file.
    11  * The major functions provided here are:
    12  *   * pool-based allocation and freeing of memory;
    13  *   * policy decisions about how to divide available memory among the
    14  *     virtual arrays;
    15  *   * control logic for swapping virtual arrays between main memory and
    16  *     backing storage.
    17  * The separate system-dependent file provides the actual backing-storage
    18  * access code, and it contains the policy decision about how much total
    19  * main memory to use.
    20  * This file is system-dependent in the sense that some of its functions
    21  * are unnecessary in some systems.  For example, if there is enough virtual
    22  * memory so that backing storage will never be used, much of the virtual
    23  * array control logic could be removed.  (Of course, if you have that much
    24  * memory then you shouldn't care about a little bit of unused code...)
    25  */
    27 #define JPEG_INTERNALS
    28 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
    29 #include "jinclude.h"
    30 #include "jpeglib.h"
    31 #include "jmemsys.h"		/* import the system-dependent declarations */
    33 #ifndef NO_GETENV
    34 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
    35 extern char * getenv JPP((const char * name));
    36 #endif
    37 #endif
    40 LOCAL(size_t)
    41 round_up_pow2 (size_t a, size_t b)
    42 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
    43 /* Assumes a >= 0, b > 0, and b is a power of 2 */
    44 {
    45   return ((a + b - 1) & (~(b - 1)));
    46 }
    49 /*
    50  * Some important notes:
    51  *   The allocation routines provided here must never return NULL.
    52  *   They should exit to error_exit if unsuccessful.
    53  *
    54  *   It's not a good idea to try to merge the sarray and barray routines,
    55  *   even though they are textually almost the same, because samples are
    56  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
    57  *   in machines where byte pointers have a different representation from
    58  *   word pointers, the resulting machine code could not be the same.
    59  */
    62 /*
    63  * Many machines require storage alignment: longs must start on 4-byte
    64  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
    65  * always returns pointers that are multiples of the worst-case alignment
    66  * requirement, and we had better do so too.
    67  * There isn't any really portable way to determine the worst-case alignment
    68  * requirement.  This module assumes that the alignment requirement is
    69  * multiples of ALIGN_SIZE.
    70  * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on some
    71  * workstations (where doubles really do need 8-byte alignment) and will work
    72  * fine on nearly everything.  If your machine has lesser alignment needs,
    73  * you can save a few bytes by making ALIGN_SIZE smaller.
    74  * The only place I know of where this will NOT work is certain Macintosh
    75  * 680x0 compilers that define double as a 10-byte IEEE extended float.
    76  * Doing 10-byte alignment is counterproductive because longwords won't be
    77  * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
    78  * such a compiler.
    79  */
    81 #ifndef ALIGN_SIZE		/* so can override from jconfig.h */
    82 #ifndef WITH_SIMD
    83 #define ALIGN_SIZE  SIZEOF(double)
    84 #else
    85 #define ALIGN_SIZE  16 /* Most SIMD implementations require this */
    86 #endif
    87 #endif
    89 /*
    90  * We allocate objects from "pools", where each pool is gotten with a single
    91  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
    92  * overhead within a pool, except for alignment padding.  Each pool has a
    93  * header with a link to the next pool of the same class.
    94  * Small and large pool headers are identical except that the latter's
    95  * link pointer must be FAR on 80x86 machines.
    96  */
    98 typedef struct small_pool_struct * small_pool_ptr;
   100 typedef struct small_pool_struct {
   101   small_pool_ptr next;	/* next in list of pools */
   102   size_t bytes_used;		/* how many bytes already used within pool */
   103   size_t bytes_left;		/* bytes still available in this pool */
   104 } small_pool_hdr;
   106 typedef struct large_pool_struct FAR * large_pool_ptr;
   108 typedef struct large_pool_struct {
   109   large_pool_ptr next;	/* next in list of pools */
   110   size_t bytes_used;		/* how many bytes already used within pool */
   111   size_t bytes_left;		/* bytes still available in this pool */
   112 } large_pool_hdr;
   114 /*
   115  * Here is the full definition of a memory manager object.
   116  */
   118 typedef struct {
   119   struct jpeg_memory_mgr pub;	/* public fields */
   121   /* Each pool identifier (lifetime class) names a linked list of pools. */
   122   small_pool_ptr small_list[JPOOL_NUMPOOLS];
   123   large_pool_ptr large_list[JPOOL_NUMPOOLS];
   125   /* Since we only have one lifetime class of virtual arrays, only one
   126    * linked list is necessary (for each datatype).  Note that the virtual
   127    * array control blocks being linked together are actually stored somewhere
   128    * in the small-pool list.
   129    */
   130   jvirt_sarray_ptr virt_sarray_list;
   131   jvirt_barray_ptr virt_barray_list;
   133   /* This counts total space obtained from jpeg_get_small/large */
   134   size_t total_space_allocated;
   136   /* alloc_sarray and alloc_barray set this value for use by virtual
   137    * array routines.
   138    */
   139   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
   140 } my_memory_mgr;
   142 typedef my_memory_mgr * my_mem_ptr;
   145 /*
   146  * The control blocks for virtual arrays.
   147  * Note that these blocks are allocated in the "small" pool area.
   148  * System-dependent info for the associated backing store (if any) is hidden
   149  * inside the backing_store_info struct.
   150  */
   152 struct jvirt_sarray_control {
   153   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
   154   JDIMENSION rows_in_array;	/* total virtual array height */
   155   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
   156   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
   157   JDIMENSION rows_in_mem;	/* height of memory buffer */
   158   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
   159   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
   160   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
   161   boolean pre_zero;		/* pre-zero mode requested? */
   162   boolean dirty;		/* do current buffer contents need written? */
   163   boolean b_s_open;		/* is backing-store data valid? */
   164   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
   165   backing_store_info b_s_info;	/* System-dependent control info */
   166 };
   168 struct jvirt_barray_control {
   169   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
   170   JDIMENSION rows_in_array;	/* total virtual array height */
   171   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
   172   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
   173   JDIMENSION rows_in_mem;	/* height of memory buffer */
   174   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
   175   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
   176   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
   177   boolean pre_zero;		/* pre-zero mode requested? */
   178   boolean dirty;		/* do current buffer contents need written? */
   179   boolean b_s_open;		/* is backing-store data valid? */
   180   jvirt_barray_ptr next;	/* link to next virtual barray control block */
   181   backing_store_info b_s_info;	/* System-dependent control info */
   182 };
   185 #ifdef MEM_STATS		/* optional extra stuff for statistics */
   187 LOCAL(void)
   188 print_mem_stats (j_common_ptr cinfo, int pool_id)
   189 {
   190   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   191   small_pool_ptr shdr_ptr;
   192   large_pool_ptr lhdr_ptr;
   194   /* Since this is only a debugging stub, we can cheat a little by using
   195    * fprintf directly rather than going through the trace message code.
   196    * This is helpful because message parm array can't handle longs.
   197    */
   198   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
   199 	  pool_id, mem->total_space_allocated);
   201   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
   202        lhdr_ptr = lhdr_ptr->next) {
   203     fprintf(stderr, "  Large chunk used %ld\n",
   204 	    (long) lhdr_ptr->bytes_used);
   205   }
   207   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
   208        shdr_ptr = shdr_ptr->next) {
   209     fprintf(stderr, "  Small chunk used %ld free %ld\n",
   210 	    (long) shdr_ptr->bytes_used,
   211 	    (long) shdr_ptr->bytes_left);
   212   }
   213 }
   215 #endif /* MEM_STATS */
   218 LOCAL(void)
   219 out_of_memory (j_common_ptr cinfo, int which)
   220 /* Report an out-of-memory error and stop execution */
   221 /* If we compiled MEM_STATS support, report alloc requests before dying */
   222 {
   223 #ifdef MEM_STATS
   224   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
   225 #endif
   226   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
   227 }
   230 /*
   231  * Allocation of "small" objects.
   232  *
   233  * For these, we use pooled storage.  When a new pool must be created,
   234  * we try to get enough space for the current request plus a "slop" factor,
   235  * where the slop will be the amount of leftover space in the new pool.
   236  * The speed vs. space tradeoff is largely determined by the slop values.
   237  * A different slop value is provided for each pool class (lifetime),
   238  * and we also distinguish the first pool of a class from later ones.
   239  * NOTE: the values given work fairly well on both 16- and 32-bit-int
   240  * machines, but may be too small if longs are 64 bits or more.
   241  *
   242  * Since we do not know what alignment malloc() gives us, we have to
   243  * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
   244  * adjustment.
   245  */
   247 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
   248 {
   249 	1600,			/* first PERMANENT pool */
   250 	16000			/* first IMAGE pool */
   251 };
   253 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
   254 {
   255 	0,			/* additional PERMANENT pools */
   256 	5000			/* additional IMAGE pools */
   257 };
   259 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
   262 METHODDEF(void *)
   263 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
   264 /* Allocate a "small" object */
   265 {
   266   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   267   small_pool_ptr hdr_ptr, prev_hdr_ptr;
   268   char * data_ptr;
   269   size_t min_request, slop;
   271   /*
   272    * Round up the requested size to a multiple of ALIGN_SIZE in order
   273    * to assure alignment for the next object allocated in the same pool
   274    * and so that algorithms can straddle outside the proper area up
   275    * to the next alignment.
   276    */
   277   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
   279   /* Check for unsatisfiable request (do now to ensure no overflow below) */
   280   if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
   281     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
   283   /* See if space is available in any existing pool */
   284   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
   285     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
   286   prev_hdr_ptr = NULL;
   287   hdr_ptr = mem->small_list[pool_id];
   288   while (hdr_ptr != NULL) {
   289     if (hdr_ptr->bytes_left >= sizeofobject)
   290       break;			/* found pool with enough space */
   291     prev_hdr_ptr = hdr_ptr;
   292     hdr_ptr = hdr_ptr->next;
   293   }
   295   /* Time to make a new pool? */
   296   if (hdr_ptr == NULL) {
   297     /* min_request is what we need now, slop is what will be leftover */
   298     min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
   299     if (prev_hdr_ptr == NULL)	/* first pool in class? */
   300       slop = first_pool_slop[pool_id];
   301     else
   302       slop = extra_pool_slop[pool_id];
   303     /* Don't ask for more than MAX_ALLOC_CHUNK */
   304     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
   305       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
   306     /* Try to get space, if fail reduce slop and try again */
   307     for (;;) {
   308       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
   309       if (hdr_ptr != NULL)
   310 	break;
   311       slop /= 2;
   312       if (slop < MIN_SLOP)	/* give up when it gets real small */
   313 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
   314     }
   315     mem->total_space_allocated += min_request + slop;
   316     /* Success, initialize the new pool header and add to end of list */
   317     hdr_ptr->next = NULL;
   318     hdr_ptr->bytes_used = 0;
   319     hdr_ptr->bytes_left = sizeofobject + slop;
   320     if (prev_hdr_ptr == NULL)	/* first pool in class? */
   321       mem->small_list[pool_id] = hdr_ptr;
   322     else
   323       prev_hdr_ptr->next = hdr_ptr;
   324   }
   326   /* OK, allocate the object from the current pool */
   327   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
   328   data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
   329   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
   330     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
   331   data_ptr += hdr_ptr->bytes_used; /* point to place for object */
   332   hdr_ptr->bytes_used += sizeofobject;
   333   hdr_ptr->bytes_left -= sizeofobject;
   335   return (void *) data_ptr;
   336 }
   339 /*
   340  * Allocation of "large" objects.
   341  *
   342  * The external semantics of these are the same as "small" objects,
   343  * except that FAR pointers are used on 80x86.  However the pool
   344  * management heuristics are quite different.  We assume that each
   345  * request is large enough that it may as well be passed directly to
   346  * jpeg_get_large; the pool management just links everything together
   347  * so that we can free it all on demand.
   348  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
   349  * structures.  The routines that create these structures (see below)
   350  * deliberately bunch rows together to ensure a large request size.
   351  */
   353 METHODDEF(void FAR *)
   354 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
   355 /* Allocate a "large" object */
   356 {
   357   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   358   large_pool_ptr hdr_ptr;
   359   char FAR * data_ptr;
   361   /*
   362    * Round up the requested size to a multiple of ALIGN_SIZE so that
   363    * algorithms can straddle outside the proper area up to the next
   364    * alignment.
   365    */
   366   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
   368   /* Check for unsatisfiable request (do now to ensure no overflow below) */
   369   if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
   370     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
   372   /* Always make a new pool */
   373   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
   374     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
   376   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
   377 					    SIZEOF(large_pool_hdr) +
   378 					    ALIGN_SIZE - 1);
   379   if (hdr_ptr == NULL)
   380     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
   381   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SIZE - 1;
   383   /* Success, initialize the new pool header and add to list */
   384   hdr_ptr->next = mem->large_list[pool_id];
   385   /* We maintain space counts in each pool header for statistical purposes,
   386    * even though they are not needed for allocation.
   387    */
   388   hdr_ptr->bytes_used = sizeofobject;
   389   hdr_ptr->bytes_left = 0;
   390   mem->large_list[pool_id] = hdr_ptr;
   392   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
   393   data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
   394   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
   395     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
   397   return (void FAR *) data_ptr;
   398 }
   401 /*
   402  * Creation of 2-D sample arrays.
   403  * The pointers are in near heap, the samples themselves in FAR heap.
   404  *
   405  * To minimize allocation overhead and to allow I/O of large contiguous
   406  * blocks, we allocate the sample rows in groups of as many rows as possible
   407  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
   408  * NB: the virtual array control routines, later in this file, know about
   409  * this chunking of rows.  The rowsperchunk value is left in the mem manager
   410  * object so that it can be saved away if this sarray is the workspace for
   411  * a virtual array.
   412  *
   413  * Since we are often upsampling with a factor 2, we align the size (not
   414  * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
   415  * to be as careful about size.
   416  */
   418 METHODDEF(JSAMPARRAY)
   419 alloc_sarray (j_common_ptr cinfo, int pool_id,
   420 	      JDIMENSION samplesperrow, JDIMENSION numrows)
   421 /* Allocate a 2-D sample array */
   422 {
   423   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   424   JSAMPARRAY result;
   425   JSAMPROW workspace;
   426   JDIMENSION rowsperchunk, currow, i;
   427   long ltemp;
   429   /* Make sure each row is properly aligned */
   430   if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0)
   431     out_of_memory(cinfo, 5);	/* safety check */
   432   samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF(JSAMPLE));
   434   /* Calculate max # of rows allowed in one allocation chunk */
   435   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
   436 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
   437   if (ltemp <= 0)
   438     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
   439   if (ltemp < (long) numrows)
   440     rowsperchunk = (JDIMENSION) ltemp;
   441   else
   442     rowsperchunk = numrows;
   443   mem->last_rowsperchunk = rowsperchunk;
   445   /* Get space for row pointers (small object) */
   446   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
   447 				    (size_t) (numrows * SIZEOF(JSAMPROW)));
   449   /* Get the rows themselves (large objects) */
   450   currow = 0;
   451   while (currow < numrows) {
   452     rowsperchunk = MIN(rowsperchunk, numrows - currow);
   453     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
   454 	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
   455 		  * SIZEOF(JSAMPLE)));
   456     for (i = rowsperchunk; i > 0; i--) {
   457       result[currow++] = workspace;
   458       workspace += samplesperrow;
   459     }
   460   }
   462   return result;
   463 }
   466 /*
   467  * Creation of 2-D coefficient-block arrays.
   468  * This is essentially the same as the code for sample arrays, above.
   469  */
   471 METHODDEF(JBLOCKARRAY)
   472 alloc_barray (j_common_ptr cinfo, int pool_id,
   473 	      JDIMENSION blocksperrow, JDIMENSION numrows)
   474 /* Allocate a 2-D coefficient-block array */
   475 {
   476   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   477   JBLOCKARRAY result;
   478   JBLOCKROW workspace;
   479   JDIMENSION rowsperchunk, currow, i;
   480   long ltemp;
   482   /* Make sure each row is properly aligned */
   483   if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0)
   484     out_of_memory(cinfo, 6);	/* safety check */
   486   /* Calculate max # of rows allowed in one allocation chunk */
   487   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
   488 	  ((long) blocksperrow * SIZEOF(JBLOCK));
   489   if (ltemp <= 0)
   490     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
   491   if (ltemp < (long) numrows)
   492     rowsperchunk = (JDIMENSION) ltemp;
   493   else
   494     rowsperchunk = numrows;
   495   mem->last_rowsperchunk = rowsperchunk;
   497   /* Get space for row pointers (small object) */
   498   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
   499 				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
   501   /* Get the rows themselves (large objects) */
   502   currow = 0;
   503   while (currow < numrows) {
   504     rowsperchunk = MIN(rowsperchunk, numrows - currow);
   505     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
   506 	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
   507 		  * SIZEOF(JBLOCK)));
   508     for (i = rowsperchunk; i > 0; i--) {
   509       result[currow++] = workspace;
   510       workspace += blocksperrow;
   511     }
   512   }
   514   return result;
   515 }
   518 /*
   519  * About virtual array management:
   520  *
   521  * The above "normal" array routines are only used to allocate strip buffers
   522  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
   523  * are handled as "virtual" arrays.  The array is still accessed a strip at a
   524  * time, but the memory manager must save the whole array for repeated
   525  * accesses.  The intended implementation is that there is a strip buffer in
   526  * memory (as high as is possible given the desired memory limit), plus a
   527  * backing file that holds the rest of the array.
   528  *
   529  * The request_virt_array routines are told the total size of the image and
   530  * the maximum number of rows that will be accessed at once.  The in-memory
   531  * buffer must be at least as large as the maxaccess value.
   532  *
   533  * The request routines create control blocks but not the in-memory buffers.
   534  * That is postponed until realize_virt_arrays is called.  At that time the
   535  * total amount of space needed is known (approximately, anyway), so free
   536  * memory can be divided up fairly.
   537  *
   538  * The access_virt_array routines are responsible for making a specific strip
   539  * area accessible (after reading or writing the backing file, if necessary).
   540  * Note that the access routines are told whether the caller intends to modify
   541  * the accessed strip; during a read-only pass this saves having to rewrite
   542  * data to disk.  The access routines are also responsible for pre-zeroing
   543  * any newly accessed rows, if pre-zeroing was requested.
   544  *
   545  * In current usage, the access requests are usually for nonoverlapping
   546  * strips; that is, successive access start_row numbers differ by exactly
   547  * num_rows = maxaccess.  This means we can get good performance with simple
   548  * buffer dump/reload logic, by making the in-memory buffer be a multiple
   549  * of the access height; then there will never be accesses across bufferload
   550  * boundaries.  The code will still work with overlapping access requests,
   551  * but it doesn't handle bufferload overlaps very efficiently.
   552  */
   555 METHODDEF(jvirt_sarray_ptr)
   556 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
   557 		     JDIMENSION samplesperrow, JDIMENSION numrows,
   558 		     JDIMENSION maxaccess)
   559 /* Request a virtual 2-D sample array */
   560 {
   561   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   562   jvirt_sarray_ptr result;
   564   /* Only IMAGE-lifetime virtual arrays are currently supported */
   565   if (pool_id != JPOOL_IMAGE)
   566     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
   568   /* get control block */
   569   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
   570 					  SIZEOF(struct jvirt_sarray_control));
   572   result->mem_buffer = NULL;	/* marks array not yet realized */
   573   result->rows_in_array = numrows;
   574   result->samplesperrow = samplesperrow;
   575   result->maxaccess = maxaccess;
   576   result->pre_zero = pre_zero;
   577   result->b_s_open = FALSE;	/* no associated backing-store object */
   578   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
   579   mem->virt_sarray_list = result;
   581   return result;
   582 }
   585 METHODDEF(jvirt_barray_ptr)
   586 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
   587 		     JDIMENSION blocksperrow, JDIMENSION numrows,
   588 		     JDIMENSION maxaccess)
   589 /* Request a virtual 2-D coefficient-block array */
   590 {
   591   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   592   jvirt_barray_ptr result;
   594   /* Only IMAGE-lifetime virtual arrays are currently supported */
   595   if (pool_id != JPOOL_IMAGE)
   596     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
   598   /* get control block */
   599   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
   600 					  SIZEOF(struct jvirt_barray_control));
   602   result->mem_buffer = NULL;	/* marks array not yet realized */
   603   result->rows_in_array = numrows;
   604   result->blocksperrow = blocksperrow;
   605   result->maxaccess = maxaccess;
   606   result->pre_zero = pre_zero;
   607   result->b_s_open = FALSE;	/* no associated backing-store object */
   608   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
   609   mem->virt_barray_list = result;
   611   return result;
   612 }
   615 METHODDEF(void)
   616 realize_virt_arrays (j_common_ptr cinfo)
   617 /* Allocate the in-memory buffers for any unrealized virtual arrays */
   618 {
   619   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   620   size_t space_per_minheight, maximum_space, avail_mem;
   621   size_t minheights, max_minheights;
   622   jvirt_sarray_ptr sptr;
   623   jvirt_barray_ptr bptr;
   625   /* Compute the minimum space needed (maxaccess rows in each buffer)
   626    * and the maximum space needed (full image height in each buffer).
   627    * These may be of use to the system-dependent jpeg_mem_available routine.
   628    */
   629   space_per_minheight = 0;
   630   maximum_space = 0;
   631   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
   632     if (sptr->mem_buffer == NULL) { /* if not realized yet */
   633       space_per_minheight += (long) sptr->maxaccess *
   634 			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
   635       maximum_space += (long) sptr->rows_in_array *
   636 		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
   637     }
   638   }
   639   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
   640     if (bptr->mem_buffer == NULL) { /* if not realized yet */
   641       space_per_minheight += (long) bptr->maxaccess *
   642 			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
   643       maximum_space += (long) bptr->rows_in_array *
   644 		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
   645     }
   646   }
   648   if (space_per_minheight <= 0)
   649     return;			/* no unrealized arrays, no work */
   651   /* Determine amount of memory to actually use; this is system-dependent. */
   652   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
   653 				 mem->total_space_allocated);
   655   /* If the maximum space needed is available, make all the buffers full
   656    * height; otherwise parcel it out with the same number of minheights
   657    * in each buffer.
   658    */
   659   if (avail_mem >= maximum_space)
   660     max_minheights = 1000000000L;
   661   else {
   662     max_minheights = avail_mem / space_per_minheight;
   663     /* If there doesn't seem to be enough space, try to get the minimum
   664      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
   665      */
   666     if (max_minheights <= 0)
   667       max_minheights = 1;
   668   }
   670   /* Allocate the in-memory buffers and initialize backing store as needed. */
   672   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
   673     if (sptr->mem_buffer == NULL) { /* if not realized yet */
   674       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
   675       if (minheights <= max_minheights) {
   676 	/* This buffer fits in memory */
   677 	sptr->rows_in_mem = sptr->rows_in_array;
   678       } else {
   679 	/* It doesn't fit in memory, create backing store. */
   680 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
   681 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
   682 				(long) sptr->rows_in_array *
   683 				(long) sptr->samplesperrow *
   684 				(long) SIZEOF(JSAMPLE));
   685 	sptr->b_s_open = TRUE;
   686       }
   687       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
   688 				      sptr->samplesperrow, sptr->rows_in_mem);
   689       sptr->rowsperchunk = mem->last_rowsperchunk;
   690       sptr->cur_start_row = 0;
   691       sptr->first_undef_row = 0;
   692       sptr->dirty = FALSE;
   693     }
   694   }
   696   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
   697     if (bptr->mem_buffer == NULL) { /* if not realized yet */
   698       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
   699       if (minheights <= max_minheights) {
   700 	/* This buffer fits in memory */
   701 	bptr->rows_in_mem = bptr->rows_in_array;
   702       } else {
   703 	/* It doesn't fit in memory, create backing store. */
   704 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
   705 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
   706 				(long) bptr->rows_in_array *
   707 				(long) bptr->blocksperrow *
   708 				(long) SIZEOF(JBLOCK));
   709 	bptr->b_s_open = TRUE;
   710       }
   711       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
   712 				      bptr->blocksperrow, bptr->rows_in_mem);
   713       bptr->rowsperchunk = mem->last_rowsperchunk;
   714       bptr->cur_start_row = 0;
   715       bptr->first_undef_row = 0;
   716       bptr->dirty = FALSE;
   717     }
   718   }
   719 }
   722 LOCAL(void)
   723 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
   724 /* Do backing store read or write of a virtual sample array */
   725 {
   726   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
   728   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
   729   file_offset = ptr->cur_start_row * bytesperrow;
   730   /* Loop to read or write each allocation chunk in mem_buffer */
   731   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
   732     /* One chunk, but check for short chunk at end of buffer */
   733     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
   734     /* Transfer no more than is currently defined */
   735     thisrow = (long) ptr->cur_start_row + i;
   736     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
   737     /* Transfer no more than fits in file */
   738     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
   739     if (rows <= 0)		/* this chunk might be past end of file! */
   740       break;
   741     byte_count = rows * bytesperrow;
   742     if (writing)
   743       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
   744 					    (void FAR *) ptr->mem_buffer[i],
   745 					    file_offset, byte_count);
   746     else
   747       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
   748 					   (void FAR *) ptr->mem_buffer[i],
   749 					   file_offset, byte_count);
   750     file_offset += byte_count;
   751   }
   752 }
   755 LOCAL(void)
   756 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
   757 /* Do backing store read or write of a virtual coefficient-block array */
   758 {
   759   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
   761   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
   762   file_offset = ptr->cur_start_row * bytesperrow;
   763   /* Loop to read or write each allocation chunk in mem_buffer */
   764   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
   765     /* One chunk, but check for short chunk at end of buffer */
   766     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
   767     /* Transfer no more than is currently defined */
   768     thisrow = (long) ptr->cur_start_row + i;
   769     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
   770     /* Transfer no more than fits in file */
   771     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
   772     if (rows <= 0)		/* this chunk might be past end of file! */
   773       break;
   774     byte_count = rows * bytesperrow;
   775     if (writing)
   776       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
   777 					    (void FAR *) ptr->mem_buffer[i],
   778 					    file_offset, byte_count);
   779     else
   780       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
   781 					   (void FAR *) ptr->mem_buffer[i],
   782 					   file_offset, byte_count);
   783     file_offset += byte_count;
   784   }
   785 }
   788 METHODDEF(JSAMPARRAY)
   789 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
   790 		    JDIMENSION start_row, JDIMENSION num_rows,
   791 		    boolean writable)
   792 /* Access the part of a virtual sample array starting at start_row */
   793 /* and extending for num_rows rows.  writable is true if  */
   794 /* caller intends to modify the accessed area. */
   795 {
   796   JDIMENSION end_row = start_row + num_rows;
   797   JDIMENSION undef_row;
   799   /* debugging check */
   800   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
   801       ptr->mem_buffer == NULL)
   802     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
   804   /* Make the desired part of the virtual array accessible */
   805   if (start_row < ptr->cur_start_row ||
   806       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
   807     if (! ptr->b_s_open)
   808       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
   809     /* Flush old buffer contents if necessary */
   810     if (ptr->dirty) {
   811       do_sarray_io(cinfo, ptr, TRUE);
   812       ptr->dirty = FALSE;
   813     }
   814     /* Decide what part of virtual array to access.
   815      * Algorithm: if target address > current window, assume forward scan,
   816      * load starting at target address.  If target address < current window,
   817      * assume backward scan, load so that target area is top of window.
   818      * Note that when switching from forward write to forward read, will have
   819      * start_row = 0, so the limiting case applies and we load from 0 anyway.
   820      */
   821     if (start_row > ptr->cur_start_row) {
   822       ptr->cur_start_row = start_row;
   823     } else {
   824       /* use long arithmetic here to avoid overflow & unsigned problems */
   825       long ltemp;
   827       ltemp = (long) end_row - (long) ptr->rows_in_mem;
   828       if (ltemp < 0)
   829 	ltemp = 0;		/* don't fall off front end of file */
   830       ptr->cur_start_row = (JDIMENSION) ltemp;
   831     }
   832     /* Read in the selected part of the array.
   833      * During the initial write pass, we will do no actual read
   834      * because the selected part is all undefined.
   835      */
   836     do_sarray_io(cinfo, ptr, FALSE);
   837   }
   838   /* Ensure the accessed part of the array is defined; prezero if needed.
   839    * To improve locality of access, we only prezero the part of the array
   840    * that the caller is about to access, not the entire in-memory array.
   841    */
   842   if (ptr->first_undef_row < end_row) {
   843     if (ptr->first_undef_row < start_row) {
   844       if (writable)		/* writer skipped over a section of array */
   845 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
   846       undef_row = start_row;	/* but reader is allowed to read ahead */
   847     } else {
   848       undef_row = ptr->first_undef_row;
   849     }
   850     if (writable)
   851       ptr->first_undef_row = end_row;
   852     if (ptr->pre_zero) {
   853       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
   854       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
   855       end_row -= ptr->cur_start_row;
   856       while (undef_row < end_row) {
   857 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
   858 	undef_row++;
   859       }
   860     } else {
   861       if (! writable)		/* reader looking at undefined data */
   862 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
   863     }
   864   }
   865   /* Flag the buffer dirty if caller will write in it */
   866   if (writable)
   867     ptr->dirty = TRUE;
   868   /* Return address of proper part of the buffer */
   869   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
   870 }
   873 METHODDEF(JBLOCKARRAY)
   874 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
   875 		    JDIMENSION start_row, JDIMENSION num_rows,
   876 		    boolean writable)
   877 /* Access the part of a virtual block array starting at start_row */
   878 /* and extending for num_rows rows.  writable is true if  */
   879 /* caller intends to modify the accessed area. */
   880 {
   881   JDIMENSION end_row = start_row + num_rows;
   882   JDIMENSION undef_row;
   884   /* debugging check */
   885   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
   886       ptr->mem_buffer == NULL)
   887     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
   889   /* Make the desired part of the virtual array accessible */
   890   if (start_row < ptr->cur_start_row ||
   891       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
   892     if (! ptr->b_s_open)
   893       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
   894     /* Flush old buffer contents if necessary */
   895     if (ptr->dirty) {
   896       do_barray_io(cinfo, ptr, TRUE);
   897       ptr->dirty = FALSE;
   898     }
   899     /* Decide what part of virtual array to access.
   900      * Algorithm: if target address > current window, assume forward scan,
   901      * load starting at target address.  If target address < current window,
   902      * assume backward scan, load so that target area is top of window.
   903      * Note that when switching from forward write to forward read, will have
   904      * start_row = 0, so the limiting case applies and we load from 0 anyway.
   905      */
   906     if (start_row > ptr->cur_start_row) {
   907       ptr->cur_start_row = start_row;
   908     } else {
   909       /* use long arithmetic here to avoid overflow & unsigned problems */
   910       long ltemp;
   912       ltemp = (long) end_row - (long) ptr->rows_in_mem;
   913       if (ltemp < 0)
   914 	ltemp = 0;		/* don't fall off front end of file */
   915       ptr->cur_start_row = (JDIMENSION) ltemp;
   916     }
   917     /* Read in the selected part of the array.
   918      * During the initial write pass, we will do no actual read
   919      * because the selected part is all undefined.
   920      */
   921     do_barray_io(cinfo, ptr, FALSE);
   922   }
   923   /* Ensure the accessed part of the array is defined; prezero if needed.
   924    * To improve locality of access, we only prezero the part of the array
   925    * that the caller is about to access, not the entire in-memory array.
   926    */
   927   if (ptr->first_undef_row < end_row) {
   928     if (ptr->first_undef_row < start_row) {
   929       if (writable)		/* writer skipped over a section of array */
   930 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
   931       undef_row = start_row;	/* but reader is allowed to read ahead */
   932     } else {
   933       undef_row = ptr->first_undef_row;
   934     }
   935     if (writable)
   936       ptr->first_undef_row = end_row;
   937     if (ptr->pre_zero) {
   938       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
   939       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
   940       end_row -= ptr->cur_start_row;
   941       while (undef_row < end_row) {
   942 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
   943 	undef_row++;
   944       }
   945     } else {
   946       if (! writable)		/* reader looking at undefined data */
   947 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
   948     }
   949   }
   950   /* Flag the buffer dirty if caller will write in it */
   951   if (writable)
   952     ptr->dirty = TRUE;
   953   /* Return address of proper part of the buffer */
   954   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
   955 }
   958 /*
   959  * Release all objects belonging to a specified pool.
   960  */
   962 METHODDEF(void)
   963 free_pool (j_common_ptr cinfo, int pool_id)
   964 {
   965   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
   966   small_pool_ptr shdr_ptr;
   967   large_pool_ptr lhdr_ptr;
   968   size_t space_freed;
   970   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
   971     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
   973 #ifdef MEM_STATS
   974   if (cinfo->err->trace_level > 1)
   975     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
   976 #endif
   978   /* If freeing IMAGE pool, close any virtual arrays first */
   979   if (pool_id == JPOOL_IMAGE) {
   980     jvirt_sarray_ptr sptr;
   981     jvirt_barray_ptr bptr;
   983     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
   984       if (sptr->b_s_open) {	/* there may be no backing store */
   985 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
   986 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
   987       }
   988     }
   989     mem->virt_sarray_list = NULL;
   990     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
   991       if (bptr->b_s_open) {	/* there may be no backing store */
   992 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
   993 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
   994       }
   995     }
   996     mem->virt_barray_list = NULL;
   997   }
   999   /* Release large objects */
  1000   lhdr_ptr = mem->large_list[pool_id];
  1001   mem->large_list[pool_id] = NULL;
  1003   while (lhdr_ptr != NULL) {
  1004     large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
  1005     space_freed = lhdr_ptr->bytes_used +
  1006 		  lhdr_ptr->bytes_left +
  1007 		  SIZEOF(large_pool_hdr);
  1008     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
  1009     mem->total_space_allocated -= space_freed;
  1010     lhdr_ptr = next_lhdr_ptr;
  1013   /* Release small objects */
  1014   shdr_ptr = mem->small_list[pool_id];
  1015   mem->small_list[pool_id] = NULL;
  1017   while (shdr_ptr != NULL) {
  1018     small_pool_ptr next_shdr_ptr = shdr_ptr->next;
  1019     space_freed = shdr_ptr->bytes_used +
  1020 		  shdr_ptr->bytes_left +
  1021 		  SIZEOF(small_pool_hdr);
  1022     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
  1023     mem->total_space_allocated -= space_freed;
  1024     shdr_ptr = next_shdr_ptr;
  1029 /*
  1030  * Close up shop entirely.
  1031  * Note that this cannot be called unless cinfo->mem is non-NULL.
  1032  */
  1034 METHODDEF(void)
  1035 self_destruct (j_common_ptr cinfo)
  1037   int pool;
  1039   /* Close all backing store, release all memory.
  1040    * Releasing pools in reverse order might help avoid fragmentation
  1041    * with some (brain-damaged) malloc libraries.
  1042    */
  1043   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
  1044     free_pool(cinfo, pool);
  1047   /* Release the memory manager control block too. */
  1048   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
  1049   cinfo->mem = NULL;		/* ensures I will be called only once */
  1051   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
  1055 /*
  1056  * Memory manager initialization.
  1057  * When this is called, only the error manager pointer is valid in cinfo!
  1058  */
  1060 GLOBAL(void)
  1061 jinit_memory_mgr (j_common_ptr cinfo)
  1063   my_mem_ptr mem;
  1064   long max_to_use;
  1065   int pool;
  1066   size_t test_mac;
  1068   cinfo->mem = NULL;		/* for safety if init fails */
  1070   /* Check for configuration errors.
  1071    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
  1072    * doesn't reflect any real hardware alignment requirement.
  1073    * The test is a little tricky: for X>0, X and X-1 have no one-bits
  1074    * in common if and only if X is a power of 2, ie has only one one-bit.
  1075    * Some compilers may give an "unreachable code" warning here; ignore it.
  1076    */
  1077   if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
  1078     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
  1079   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
  1080    * a multiple of ALIGN_SIZE.
  1081    * Again, an "unreachable code" warning may be ignored here.
  1082    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
  1083    */
  1084   test_mac = (size_t) MAX_ALLOC_CHUNK;
  1085   if ((long) test_mac != MAX_ALLOC_CHUNK ||
  1086       (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
  1087     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
  1089   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
  1091   /* Attempt to allocate memory manager's control block */
  1092   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
  1094   if (mem == NULL) {
  1095     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
  1096     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
  1099   /* OK, fill in the method pointers */
  1100   mem->pub.alloc_small = alloc_small;
  1101   mem->pub.alloc_large = alloc_large;
  1102   mem->pub.alloc_sarray = alloc_sarray;
  1103   mem->pub.alloc_barray = alloc_barray;
  1104   mem->pub.request_virt_sarray = request_virt_sarray;
  1105   mem->pub.request_virt_barray = request_virt_barray;
  1106   mem->pub.realize_virt_arrays = realize_virt_arrays;
  1107   mem->pub.access_virt_sarray = access_virt_sarray;
  1108   mem->pub.access_virt_barray = access_virt_barray;
  1109   mem->pub.free_pool = free_pool;
  1110   mem->pub.self_destruct = self_destruct;
  1112   /* Make MAX_ALLOC_CHUNK accessible to other modules */
  1113   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
  1115   /* Initialize working state */
  1116   mem->pub.max_memory_to_use = max_to_use;
  1118   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
  1119     mem->small_list[pool] = NULL;
  1120     mem->large_list[pool] = NULL;
  1122   mem->virt_sarray_list = NULL;
  1123   mem->virt_barray_list = NULL;
  1125   mem->total_space_allocated = SIZEOF(my_memory_mgr);
  1127   /* Declare ourselves open for business */
  1128   cinfo->mem = & mem->pub;
  1130   /* Check for an environment variable JPEGMEM; if found, override the
  1131    * default max_memory setting from jpeg_mem_init.  Note that the
  1132    * surrounding application may again override this value.
  1133    * If your system doesn't support getenv(), define NO_GETENV to disable
  1134    * this feature.
  1135    */
  1136 #ifndef NO_GETENV
  1137   { char * memenv;
  1139     if ((memenv = getenv("JPEGMEM")) != NULL) {
  1140       char ch = 'x';
  1142       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
  1143 	if (ch == 'm' || ch == 'M')
  1144 	  max_to_use *= 1000L;
  1145 	mem->pub.max_memory_to_use = max_to_use * 1000L;
  1149 #endif

mercurial