|
1 /* |
|
2 ********************************************************************** |
|
3 * Copyright (C) 2005-2012, International Business Machines |
|
4 * Corporation and others. All Rights Reserved. |
|
5 ********************************************************************** |
|
6 */ |
|
7 |
|
8 #include "unicode/utypes.h" |
|
9 |
|
10 #if !UCONFIG_NO_CONVERSION |
|
11 |
|
12 #include "csmatch.h" |
|
13 #include "csrmbcs.h" |
|
14 |
|
15 #include <math.h> |
|
16 |
|
17 U_NAMESPACE_BEGIN |
|
18 |
|
19 #define ARRAY_SIZE(array) (sizeof array / sizeof array[0]) |
|
20 |
|
21 #define min(x,y) (((x)<(y))?(x):(y)) |
|
22 |
|
23 static const uint16_t commonChars_sjis [] = { |
|
24 // TODO: This set of data comes from the character frequency- |
|
25 // of-occurence analysis tool. The data needs to be moved |
|
26 // into a resource and loaded from there. |
|
27 0x8140, 0x8141, 0x8142, 0x8145, 0x815b, 0x8169, 0x816a, 0x8175, 0x8176, 0x82a0, |
|
28 0x82a2, 0x82a4, 0x82a9, 0x82aa, 0x82ab, 0x82ad, 0x82af, 0x82b1, 0x82b3, 0x82b5, |
|
29 0x82b7, 0x82bd, 0x82be, 0x82c1, 0x82c4, 0x82c5, 0x82c6, 0x82c8, 0x82c9, 0x82cc, |
|
30 0x82cd, 0x82dc, 0x82e0, 0x82e7, 0x82e8, 0x82e9, 0x82ea, 0x82f0, 0x82f1, 0x8341, |
|
31 0x8343, 0x834e, 0x834f, 0x8358, 0x835e, 0x8362, 0x8367, 0x8375, 0x8376, 0x8389, |
|
32 0x838a, 0x838b, 0x838d, 0x8393, 0x8e96, 0x93fa, 0x95aa}; |
|
33 |
|
34 static const uint16_t commonChars_euc_jp[] = { |
|
35 // TODO: This set of data comes from the character frequency- |
|
36 // of-occurence analysis tool. The data needs to be moved |
|
37 // into a resource and loaded from there. |
|
38 0xa1a1, 0xa1a2, 0xa1a3, 0xa1a6, 0xa1bc, 0xa1ca, 0xa1cb, 0xa1d6, 0xa1d7, 0xa4a2, |
|
39 0xa4a4, 0xa4a6, 0xa4a8, 0xa4aa, 0xa4ab, 0xa4ac, 0xa4ad, 0xa4af, 0xa4b1, 0xa4b3, |
|
40 0xa4b5, 0xa4b7, 0xa4b9, 0xa4bb, 0xa4bd, 0xa4bf, 0xa4c0, 0xa4c1, 0xa4c3, 0xa4c4, |
|
41 0xa4c6, 0xa4c7, 0xa4c8, 0xa4c9, 0xa4ca, 0xa4cb, 0xa4ce, 0xa4cf, 0xa4d0, 0xa4de, |
|
42 0xa4df, 0xa4e1, 0xa4e2, 0xa4e4, 0xa4e8, 0xa4e9, 0xa4ea, 0xa4eb, 0xa4ec, 0xa4ef, |
|
43 0xa4f2, 0xa4f3, 0xa5a2, 0xa5a3, 0xa5a4, 0xa5a6, 0xa5a7, 0xa5aa, 0xa5ad, 0xa5af, |
|
44 0xa5b0, 0xa5b3, 0xa5b5, 0xa5b7, 0xa5b8, 0xa5b9, 0xa5bf, 0xa5c3, 0xa5c6, 0xa5c7, |
|
45 0xa5c8, 0xa5c9, 0xa5cb, 0xa5d0, 0xa5d5, 0xa5d6, 0xa5d7, 0xa5de, 0xa5e0, 0xa5e1, |
|
46 0xa5e5, 0xa5e9, 0xa5ea, 0xa5eb, 0xa5ec, 0xa5ed, 0xa5f3, 0xb8a9, 0xb9d4, 0xbaee, |
|
47 0xbbc8, 0xbef0, 0xbfb7, 0xc4ea, 0xc6fc, 0xc7bd, 0xcab8, 0xcaf3, 0xcbdc, 0xcdd1}; |
|
48 |
|
49 static const uint16_t commonChars_euc_kr[] = { |
|
50 // TODO: This set of data comes from the character frequency- |
|
51 // of-occurence analysis tool. The data needs to be moved |
|
52 // into a resource and loaded from there. |
|
53 0xb0a1, 0xb0b3, 0xb0c5, 0xb0cd, 0xb0d4, 0xb0e6, 0xb0ed, 0xb0f8, 0xb0fa, 0xb0fc, |
|
54 0xb1b8, 0xb1b9, 0xb1c7, 0xb1d7, 0xb1e2, 0xb3aa, 0xb3bb, 0xb4c2, 0xb4cf, 0xb4d9, |
|
55 0xb4eb, 0xb5a5, 0xb5b5, 0xb5bf, 0xb5c7, 0xb5e9, 0xb6f3, 0xb7af, 0xb7c2, 0xb7ce, |
|
56 0xb8a6, 0xb8ae, 0xb8b6, 0xb8b8, 0xb8bb, 0xb8e9, 0xb9ab, 0xb9ae, 0xb9cc, 0xb9ce, |
|
57 0xb9fd, 0xbab8, 0xbace, 0xbad0, 0xbaf1, 0xbbe7, 0xbbf3, 0xbbfd, 0xbcad, 0xbcba, |
|
58 0xbcd2, 0xbcf6, 0xbdba, 0xbdc0, 0xbdc3, 0xbdc5, 0xbec6, 0xbec8, 0xbedf, 0xbeee, |
|
59 0xbef8, 0xbefa, 0xbfa1, 0xbfa9, 0xbfc0, 0xbfe4, 0xbfeb, 0xbfec, 0xbff8, 0xc0a7, |
|
60 0xc0af, 0xc0b8, 0xc0ba, 0xc0bb, 0xc0bd, 0xc0c7, 0xc0cc, 0xc0ce, 0xc0cf, 0xc0d6, |
|
61 0xc0da, 0xc0e5, 0xc0fb, 0xc0fc, 0xc1a4, 0xc1a6, 0xc1b6, 0xc1d6, 0xc1df, 0xc1f6, |
|
62 0xc1f8, 0xc4a1, 0xc5cd, 0xc6ae, 0xc7cf, 0xc7d1, 0xc7d2, 0xc7d8, 0xc7e5, 0xc8ad}; |
|
63 |
|
64 static const uint16_t commonChars_big5[] = { |
|
65 // TODO: This set of data comes from the character frequency- |
|
66 // of-occurence analysis tool. The data needs to be moved |
|
67 // into a resource and loaded from there. |
|
68 0xa140, 0xa141, 0xa142, 0xa143, 0xa147, 0xa149, 0xa175, 0xa176, 0xa440, 0xa446, |
|
69 0xa447, 0xa448, 0xa451, 0xa454, 0xa457, 0xa464, 0xa46a, 0xa46c, 0xa477, 0xa4a3, |
|
70 0xa4a4, 0xa4a7, 0xa4c1, 0xa4ce, 0xa4d1, 0xa4df, 0xa4e8, 0xa4fd, 0xa540, 0xa548, |
|
71 0xa558, 0xa569, 0xa5cd, 0xa5e7, 0xa657, 0xa661, 0xa662, 0xa668, 0xa670, 0xa6a8, |
|
72 0xa6b3, 0xa6b9, 0xa6d3, 0xa6db, 0xa6e6, 0xa6f2, 0xa740, 0xa751, 0xa759, 0xa7da, |
|
73 0xa8a3, 0xa8a5, 0xa8ad, 0xa8d1, 0xa8d3, 0xa8e4, 0xa8fc, 0xa9c0, 0xa9d2, 0xa9f3, |
|
74 0xaa6b, 0xaaba, 0xaabe, 0xaacc, 0xaafc, 0xac47, 0xac4f, 0xacb0, 0xacd2, 0xad59, |
|
75 0xaec9, 0xafe0, 0xb0ea, 0xb16f, 0xb2b3, 0xb2c4, 0xb36f, 0xb44c, 0xb44e, 0xb54c, |
|
76 0xb5a5, 0xb5bd, 0xb5d0, 0xb5d8, 0xb671, 0xb7ed, 0xb867, 0xb944, 0xbad8, 0xbb44, |
|
77 0xbba1, 0xbdd1, 0xc2c4, 0xc3b9, 0xc440, 0xc45f}; |
|
78 |
|
79 static const uint16_t commonChars_gb_18030[] = { |
|
80 // TODO: This set of data comes from the character frequency- |
|
81 // of-occurence analysis tool. The data needs to be moved |
|
82 // into a resource and loaded from there. |
|
83 0xa1a1, 0xa1a2, 0xa1a3, 0xa1a4, 0xa1b0, 0xa1b1, 0xa1f1, 0xa1f3, 0xa3a1, 0xa3ac, |
|
84 0xa3ba, 0xb1a8, 0xb1b8, 0xb1be, 0xb2bb, 0xb3c9, 0xb3f6, 0xb4f3, 0xb5bd, 0xb5c4, |
|
85 0xb5e3, 0xb6af, 0xb6d4, 0xb6e0, 0xb7a2, 0xb7a8, 0xb7bd, 0xb7d6, 0xb7dd, 0xb8b4, |
|
86 0xb8df, 0xb8f6, 0xb9ab, 0xb9c9, 0xb9d8, 0xb9fa, 0xb9fd, 0xbacd, 0xbba7, 0xbbd6, |
|
87 0xbbe1, 0xbbfa, 0xbcbc, 0xbcdb, 0xbcfe, 0xbdcc, 0xbecd, 0xbedd, 0xbfb4, 0xbfc6, |
|
88 0xbfc9, 0xc0b4, 0xc0ed, 0xc1cb, 0xc2db, 0xc3c7, 0xc4dc, 0xc4ea, 0xc5cc, 0xc6f7, |
|
89 0xc7f8, 0xc8ab, 0xc8cb, 0xc8d5, 0xc8e7, 0xc9cf, 0xc9fa, 0xcab1, 0xcab5, 0xcac7, |
|
90 0xcad0, 0xcad6, 0xcaf5, 0xcafd, 0xccec, 0xcdf8, 0xceaa, 0xcec4, 0xced2, 0xcee5, |
|
91 0xcfb5, 0xcfc2, 0xcfd6, 0xd0c2, 0xd0c5, 0xd0d0, 0xd0d4, 0xd1a7, 0xd2aa, 0xd2b2, |
|
92 0xd2b5, 0xd2bb, 0xd2d4, 0xd3c3, 0xd3d0, 0xd3fd, 0xd4c2, 0xd4da, 0xd5e2, 0xd6d0}; |
|
93 |
|
94 static int32_t binarySearch(const uint16_t *array, int32_t len, uint16_t value) |
|
95 { |
|
96 int32_t start = 0, end = len-1; |
|
97 int32_t mid = (start+end)/2; |
|
98 |
|
99 while(start <= end) { |
|
100 if(array[mid] == value) { |
|
101 return mid; |
|
102 } |
|
103 |
|
104 if(array[mid] < value){ |
|
105 start = mid+1; |
|
106 } else { |
|
107 end = mid-1; |
|
108 } |
|
109 |
|
110 mid = (start+end)/2; |
|
111 } |
|
112 |
|
113 return -1; |
|
114 } |
|
115 |
|
116 IteratedChar::IteratedChar() : |
|
117 charValue(0), index(-1), nextIndex(0), error(FALSE), done(FALSE) |
|
118 { |
|
119 // nothing else to do. |
|
120 } |
|
121 |
|
122 /*void IteratedChar::reset() |
|
123 { |
|
124 charValue = 0; |
|
125 index = -1; |
|
126 nextIndex = 0; |
|
127 error = FALSE; |
|
128 done = FALSE; |
|
129 }*/ |
|
130 |
|
131 int32_t IteratedChar::nextByte(InputText *det) |
|
132 { |
|
133 if (nextIndex >= det->fRawLength) { |
|
134 done = TRUE; |
|
135 |
|
136 return -1; |
|
137 } |
|
138 |
|
139 return det->fRawInput[nextIndex++]; |
|
140 } |
|
141 |
|
142 CharsetRecog_mbcs::~CharsetRecog_mbcs() |
|
143 { |
|
144 // nothing to do. |
|
145 } |
|
146 |
|
147 int32_t CharsetRecog_mbcs::match_mbcs(InputText *det, const uint16_t commonChars[], int32_t commonCharsLen) const { |
|
148 int32_t singleByteCharCount = 0; |
|
149 int32_t doubleByteCharCount = 0; |
|
150 int32_t commonCharCount = 0; |
|
151 int32_t badCharCount = 0; |
|
152 int32_t totalCharCount = 0; |
|
153 int32_t confidence = 0; |
|
154 IteratedChar iter; |
|
155 |
|
156 while (nextChar(&iter, det)) { |
|
157 totalCharCount++; |
|
158 |
|
159 if (iter.error) { |
|
160 badCharCount++; |
|
161 } else { |
|
162 if (iter.charValue <= 0xFF) { |
|
163 singleByteCharCount++; |
|
164 } else { |
|
165 doubleByteCharCount++; |
|
166 |
|
167 if (commonChars != 0) { |
|
168 if (binarySearch(commonChars, commonCharsLen, iter.charValue) >= 0){ |
|
169 commonCharCount += 1; |
|
170 } |
|
171 } |
|
172 } |
|
173 } |
|
174 |
|
175 |
|
176 if (badCharCount >= 2 && badCharCount*5 >= doubleByteCharCount) { |
|
177 // Bail out early if the byte data is not matching the encoding scheme. |
|
178 // break detectBlock; |
|
179 return confidence; |
|
180 } |
|
181 } |
|
182 |
|
183 if (doubleByteCharCount <= 10 && badCharCount == 0) { |
|
184 // Not many multi-byte chars. |
|
185 if (doubleByteCharCount == 0 && totalCharCount < 10) { |
|
186 // There weren't any multibyte sequences, and there was a low density of non-ASCII single bytes. |
|
187 // We don't have enough data to have any confidence. |
|
188 // Statistical analysis of single byte non-ASCII charcters would probably help here. |
|
189 confidence = 0; |
|
190 } |
|
191 else { |
|
192 // ASCII or ISO file? It's probably not our encoding, |
|
193 // but is not incompatible with our encoding, so don't give it a zero. |
|
194 confidence = 10; |
|
195 } |
|
196 |
|
197 return confidence; |
|
198 } |
|
199 |
|
200 // |
|
201 // No match if there are too many characters that don't fit the encoding scheme. |
|
202 // (should we have zero tolerance for these?) |
|
203 // |
|
204 if (doubleByteCharCount < 20*badCharCount) { |
|
205 confidence = 0; |
|
206 |
|
207 return confidence; |
|
208 } |
|
209 |
|
210 if (commonChars == 0) { |
|
211 // We have no statistics on frequently occuring characters. |
|
212 // Assess confidence purely on having a reasonable number of |
|
213 // multi-byte characters (the more the better) |
|
214 confidence = 30 + doubleByteCharCount - 20*badCharCount; |
|
215 |
|
216 if (confidence > 100) { |
|
217 confidence = 100; |
|
218 } |
|
219 } else { |
|
220 // |
|
221 // Frequency of occurence statistics exist. |
|
222 // |
|
223 |
|
224 double maxVal = log((double)doubleByteCharCount / 4); /*(float)?*/ |
|
225 double scaleFactor = 90.0 / maxVal; |
|
226 confidence = (int32_t)(log((double)commonCharCount+1) * scaleFactor + 10.0); |
|
227 |
|
228 confidence = min(confidence, 100); |
|
229 } |
|
230 |
|
231 if (confidence < 0) { |
|
232 confidence = 0; |
|
233 } |
|
234 |
|
235 return confidence; |
|
236 } |
|
237 |
|
238 CharsetRecog_sjis::~CharsetRecog_sjis() |
|
239 { |
|
240 // nothing to do |
|
241 } |
|
242 |
|
243 UBool CharsetRecog_sjis::nextChar(IteratedChar* it, InputText* det) const { |
|
244 it->index = it->nextIndex; |
|
245 it->error = FALSE; |
|
246 |
|
247 int32_t firstByte = it->charValue = it->nextByte(det); |
|
248 |
|
249 if (firstByte < 0) { |
|
250 return FALSE; |
|
251 } |
|
252 |
|
253 if (firstByte <= 0x7F || (firstByte > 0xA0 && firstByte <= 0xDF)) { |
|
254 return TRUE; |
|
255 } |
|
256 |
|
257 int32_t secondByte = it->nextByte(det); |
|
258 if (secondByte >= 0) { |
|
259 it->charValue = (firstByte << 8) | secondByte; |
|
260 } |
|
261 // else we'll handle the error later. |
|
262 |
|
263 if (! ((secondByte >= 0x40 && secondByte <= 0x7F) || (secondByte >= 0x80 && secondByte <= 0xFE))) { |
|
264 // Illegal second byte value. |
|
265 it->error = TRUE; |
|
266 } |
|
267 |
|
268 return TRUE; |
|
269 } |
|
270 |
|
271 UBool CharsetRecog_sjis::match(InputText* det, CharsetMatch *results) const { |
|
272 int32_t confidence = match_mbcs(det, commonChars_sjis, ARRAY_SIZE(commonChars_sjis)); |
|
273 results->set(det, this, confidence); |
|
274 return (confidence > 0); |
|
275 } |
|
276 |
|
277 const char *CharsetRecog_sjis::getName() const |
|
278 { |
|
279 return "Shift_JIS"; |
|
280 } |
|
281 |
|
282 const char *CharsetRecog_sjis::getLanguage() const |
|
283 { |
|
284 return "ja"; |
|
285 } |
|
286 |
|
287 CharsetRecog_euc::~CharsetRecog_euc() |
|
288 { |
|
289 // nothing to do |
|
290 } |
|
291 |
|
292 UBool CharsetRecog_euc::nextChar(IteratedChar* it, InputText* det) const { |
|
293 int32_t firstByte = 0; |
|
294 int32_t secondByte = 0; |
|
295 int32_t thirdByte = 0; |
|
296 |
|
297 it->index = it->nextIndex; |
|
298 it->error = FALSE; |
|
299 firstByte = it->charValue = it->nextByte(det); |
|
300 |
|
301 if (firstByte < 0) { |
|
302 // Ran off the end of the input data |
|
303 return FALSE; |
|
304 } |
|
305 |
|
306 if (firstByte <= 0x8D) { |
|
307 // single byte char |
|
308 return TRUE; |
|
309 } |
|
310 |
|
311 secondByte = it->nextByte(det); |
|
312 if (secondByte >= 0) { |
|
313 it->charValue = (it->charValue << 8) | secondByte; |
|
314 } |
|
315 // else we'll handle the error later. |
|
316 |
|
317 if (firstByte >= 0xA1 && firstByte <= 0xFE) { |
|
318 // Two byte Char |
|
319 if (secondByte < 0xA1) { |
|
320 it->error = TRUE; |
|
321 } |
|
322 |
|
323 return TRUE; |
|
324 } |
|
325 |
|
326 if (firstByte == 0x8E) { |
|
327 // Code Set 2. |
|
328 // In EUC-JP, total char size is 2 bytes, only one byte of actual char value. |
|
329 // In EUC-TW, total char size is 4 bytes, three bytes contribute to char value. |
|
330 // We don't know which we've got. |
|
331 // Treat it like EUC-JP. If the data really was EUC-TW, the following two |
|
332 // bytes will look like a well formed 2 byte char. |
|
333 if (secondByte < 0xA1) { |
|
334 it->error = TRUE; |
|
335 } |
|
336 |
|
337 return TRUE; |
|
338 } |
|
339 |
|
340 if (firstByte == 0x8F) { |
|
341 // Code set 3. |
|
342 // Three byte total char size, two bytes of actual char value. |
|
343 thirdByte = it->nextByte(det); |
|
344 it->charValue = (it->charValue << 8) | thirdByte; |
|
345 |
|
346 if (thirdByte < 0xa1) { |
|
347 // Bad second byte or ran off the end of the input data with a non-ASCII first byte. |
|
348 it->error = TRUE; |
|
349 } |
|
350 } |
|
351 |
|
352 return TRUE; |
|
353 |
|
354 } |
|
355 |
|
356 CharsetRecog_euc_jp::~CharsetRecog_euc_jp() |
|
357 { |
|
358 // nothing to do |
|
359 } |
|
360 |
|
361 const char *CharsetRecog_euc_jp::getName() const |
|
362 { |
|
363 return "EUC-JP"; |
|
364 } |
|
365 |
|
366 const char *CharsetRecog_euc_jp::getLanguage() const |
|
367 { |
|
368 return "ja"; |
|
369 } |
|
370 |
|
371 UBool CharsetRecog_euc_jp::match(InputText *det, CharsetMatch *results) const |
|
372 { |
|
373 int32_t confidence = match_mbcs(det, commonChars_euc_jp, ARRAY_SIZE(commonChars_euc_jp)); |
|
374 results->set(det, this, confidence); |
|
375 return (confidence > 0); |
|
376 } |
|
377 |
|
378 CharsetRecog_euc_kr::~CharsetRecog_euc_kr() |
|
379 { |
|
380 // nothing to do |
|
381 } |
|
382 |
|
383 const char *CharsetRecog_euc_kr::getName() const |
|
384 { |
|
385 return "EUC-KR"; |
|
386 } |
|
387 |
|
388 const char *CharsetRecog_euc_kr::getLanguage() const |
|
389 { |
|
390 return "ko"; |
|
391 } |
|
392 |
|
393 UBool CharsetRecog_euc_kr::match(InputText *det, CharsetMatch *results) const |
|
394 { |
|
395 int32_t confidence = match_mbcs(det, commonChars_euc_kr, ARRAY_SIZE(commonChars_euc_kr)); |
|
396 results->set(det, this, confidence); |
|
397 return (confidence > 0); |
|
398 } |
|
399 |
|
400 CharsetRecog_big5::~CharsetRecog_big5() |
|
401 { |
|
402 // nothing to do |
|
403 } |
|
404 |
|
405 UBool CharsetRecog_big5::nextChar(IteratedChar* it, InputText* det) const |
|
406 { |
|
407 int32_t firstByte; |
|
408 |
|
409 it->index = it->nextIndex; |
|
410 it->error = FALSE; |
|
411 firstByte = it->charValue = it->nextByte(det); |
|
412 |
|
413 if (firstByte < 0) { |
|
414 return FALSE; |
|
415 } |
|
416 |
|
417 if (firstByte <= 0x7F || firstByte == 0xFF) { |
|
418 // single byte character. |
|
419 return TRUE; |
|
420 } |
|
421 |
|
422 int32_t secondByte = it->nextByte(det); |
|
423 if (secondByte >= 0) { |
|
424 it->charValue = (it->charValue << 8) | secondByte; |
|
425 } |
|
426 // else we'll handle the error later. |
|
427 |
|
428 if (secondByte < 0x40 || secondByte == 0x7F || secondByte == 0xFF) { |
|
429 it->error = TRUE; |
|
430 } |
|
431 |
|
432 return TRUE; |
|
433 } |
|
434 |
|
435 const char *CharsetRecog_big5::getName() const |
|
436 { |
|
437 return "Big5"; |
|
438 } |
|
439 |
|
440 const char *CharsetRecog_big5::getLanguage() const |
|
441 { |
|
442 return "zh"; |
|
443 } |
|
444 |
|
445 UBool CharsetRecog_big5::match(InputText *det, CharsetMatch *results) const |
|
446 { |
|
447 int32_t confidence = match_mbcs(det, commonChars_big5, ARRAY_SIZE(commonChars_big5)); |
|
448 results->set(det, this, confidence); |
|
449 return (confidence > 0); |
|
450 } |
|
451 |
|
452 CharsetRecog_gb_18030::~CharsetRecog_gb_18030() |
|
453 { |
|
454 // nothing to do |
|
455 } |
|
456 |
|
457 UBool CharsetRecog_gb_18030::nextChar(IteratedChar* it, InputText* det) const { |
|
458 int32_t firstByte = 0; |
|
459 int32_t secondByte = 0; |
|
460 int32_t thirdByte = 0; |
|
461 int32_t fourthByte = 0; |
|
462 |
|
463 it->index = it->nextIndex; |
|
464 it->error = FALSE; |
|
465 firstByte = it->charValue = it->nextByte(det); |
|
466 |
|
467 if (firstByte < 0) { |
|
468 // Ran off the end of the input data |
|
469 return FALSE; |
|
470 } |
|
471 |
|
472 if (firstByte <= 0x80) { |
|
473 // single byte char |
|
474 return TRUE; |
|
475 } |
|
476 |
|
477 secondByte = it->nextByte(det); |
|
478 if (secondByte >= 0) { |
|
479 it->charValue = (it->charValue << 8) | secondByte; |
|
480 } |
|
481 // else we'll handle the error later. |
|
482 |
|
483 if (firstByte >= 0x81 && firstByte <= 0xFE) { |
|
484 // Two byte Char |
|
485 if ((secondByte >= 0x40 && secondByte <= 0x7E) || (secondByte >=80 && secondByte <= 0xFE)) { |
|
486 return TRUE; |
|
487 } |
|
488 |
|
489 // Four byte char |
|
490 if (secondByte >= 0x30 && secondByte <= 0x39) { |
|
491 thirdByte = it->nextByte(det); |
|
492 |
|
493 if (thirdByte >= 0x81 && thirdByte <= 0xFE) { |
|
494 fourthByte = it->nextByte(det); |
|
495 |
|
496 if (fourthByte >= 0x30 && fourthByte <= 0x39) { |
|
497 it->charValue = (it->charValue << 16) | (thirdByte << 8) | fourthByte; |
|
498 |
|
499 return TRUE; |
|
500 } |
|
501 } |
|
502 } |
|
503 |
|
504 // Something wasn't valid, or we ran out of data (-1). |
|
505 it->error = TRUE; |
|
506 } |
|
507 |
|
508 return TRUE; |
|
509 } |
|
510 |
|
511 const char *CharsetRecog_gb_18030::getName() const |
|
512 { |
|
513 return "GB18030"; |
|
514 } |
|
515 |
|
516 const char *CharsetRecog_gb_18030::getLanguage() const |
|
517 { |
|
518 return "zh"; |
|
519 } |
|
520 |
|
521 UBool CharsetRecog_gb_18030::match(InputText *det, CharsetMatch *results) const |
|
522 { |
|
523 int32_t confidence = match_mbcs(det, commonChars_gb_18030, ARRAY_SIZE(commonChars_gb_18030)); |
|
524 results->set(det, this, confidence); |
|
525 return (confidence > 0); |
|
526 } |
|
527 |
|
528 U_NAMESPACE_END |
|
529 #endif |