Wed, 31 Dec 2014 07:22:50 +0100
Correct previous dual key logic pending first delivery installment.
1 /*
2 **********************************************************************
3 * Copyright (C) 2005-2012, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 */
8 #include "unicode/utypes.h"
10 #if !UCONFIG_NO_CONVERSION
12 #include "csmatch.h"
13 #include "csrmbcs.h"
15 #include <math.h>
17 U_NAMESPACE_BEGIN
19 #define ARRAY_SIZE(array) (sizeof array / sizeof array[0])
21 #define min(x,y) (((x)<(y))?(x):(y))
23 static const uint16_t commonChars_sjis [] = {
24 // TODO: This set of data comes from the character frequency-
25 // of-occurence analysis tool. The data needs to be moved
26 // into a resource and loaded from there.
27 0x8140, 0x8141, 0x8142, 0x8145, 0x815b, 0x8169, 0x816a, 0x8175, 0x8176, 0x82a0,
28 0x82a2, 0x82a4, 0x82a9, 0x82aa, 0x82ab, 0x82ad, 0x82af, 0x82b1, 0x82b3, 0x82b5,
29 0x82b7, 0x82bd, 0x82be, 0x82c1, 0x82c4, 0x82c5, 0x82c6, 0x82c8, 0x82c9, 0x82cc,
30 0x82cd, 0x82dc, 0x82e0, 0x82e7, 0x82e8, 0x82e9, 0x82ea, 0x82f0, 0x82f1, 0x8341,
31 0x8343, 0x834e, 0x834f, 0x8358, 0x835e, 0x8362, 0x8367, 0x8375, 0x8376, 0x8389,
32 0x838a, 0x838b, 0x838d, 0x8393, 0x8e96, 0x93fa, 0x95aa};
34 static const uint16_t commonChars_euc_jp[] = {
35 // TODO: This set of data comes from the character frequency-
36 // of-occurence analysis tool. The data needs to be moved
37 // into a resource and loaded from there.
38 0xa1a1, 0xa1a2, 0xa1a3, 0xa1a6, 0xa1bc, 0xa1ca, 0xa1cb, 0xa1d6, 0xa1d7, 0xa4a2,
39 0xa4a4, 0xa4a6, 0xa4a8, 0xa4aa, 0xa4ab, 0xa4ac, 0xa4ad, 0xa4af, 0xa4b1, 0xa4b3,
40 0xa4b5, 0xa4b7, 0xa4b9, 0xa4bb, 0xa4bd, 0xa4bf, 0xa4c0, 0xa4c1, 0xa4c3, 0xa4c4,
41 0xa4c6, 0xa4c7, 0xa4c8, 0xa4c9, 0xa4ca, 0xa4cb, 0xa4ce, 0xa4cf, 0xa4d0, 0xa4de,
42 0xa4df, 0xa4e1, 0xa4e2, 0xa4e4, 0xa4e8, 0xa4e9, 0xa4ea, 0xa4eb, 0xa4ec, 0xa4ef,
43 0xa4f2, 0xa4f3, 0xa5a2, 0xa5a3, 0xa5a4, 0xa5a6, 0xa5a7, 0xa5aa, 0xa5ad, 0xa5af,
44 0xa5b0, 0xa5b3, 0xa5b5, 0xa5b7, 0xa5b8, 0xa5b9, 0xa5bf, 0xa5c3, 0xa5c6, 0xa5c7,
45 0xa5c8, 0xa5c9, 0xa5cb, 0xa5d0, 0xa5d5, 0xa5d6, 0xa5d7, 0xa5de, 0xa5e0, 0xa5e1,
46 0xa5e5, 0xa5e9, 0xa5ea, 0xa5eb, 0xa5ec, 0xa5ed, 0xa5f3, 0xb8a9, 0xb9d4, 0xbaee,
47 0xbbc8, 0xbef0, 0xbfb7, 0xc4ea, 0xc6fc, 0xc7bd, 0xcab8, 0xcaf3, 0xcbdc, 0xcdd1};
49 static const uint16_t commonChars_euc_kr[] = {
50 // TODO: This set of data comes from the character frequency-
51 // of-occurence analysis tool. The data needs to be moved
52 // into a resource and loaded from there.
53 0xb0a1, 0xb0b3, 0xb0c5, 0xb0cd, 0xb0d4, 0xb0e6, 0xb0ed, 0xb0f8, 0xb0fa, 0xb0fc,
54 0xb1b8, 0xb1b9, 0xb1c7, 0xb1d7, 0xb1e2, 0xb3aa, 0xb3bb, 0xb4c2, 0xb4cf, 0xb4d9,
55 0xb4eb, 0xb5a5, 0xb5b5, 0xb5bf, 0xb5c7, 0xb5e9, 0xb6f3, 0xb7af, 0xb7c2, 0xb7ce,
56 0xb8a6, 0xb8ae, 0xb8b6, 0xb8b8, 0xb8bb, 0xb8e9, 0xb9ab, 0xb9ae, 0xb9cc, 0xb9ce,
57 0xb9fd, 0xbab8, 0xbace, 0xbad0, 0xbaf1, 0xbbe7, 0xbbf3, 0xbbfd, 0xbcad, 0xbcba,
58 0xbcd2, 0xbcf6, 0xbdba, 0xbdc0, 0xbdc3, 0xbdc5, 0xbec6, 0xbec8, 0xbedf, 0xbeee,
59 0xbef8, 0xbefa, 0xbfa1, 0xbfa9, 0xbfc0, 0xbfe4, 0xbfeb, 0xbfec, 0xbff8, 0xc0a7,
60 0xc0af, 0xc0b8, 0xc0ba, 0xc0bb, 0xc0bd, 0xc0c7, 0xc0cc, 0xc0ce, 0xc0cf, 0xc0d6,
61 0xc0da, 0xc0e5, 0xc0fb, 0xc0fc, 0xc1a4, 0xc1a6, 0xc1b6, 0xc1d6, 0xc1df, 0xc1f6,
62 0xc1f8, 0xc4a1, 0xc5cd, 0xc6ae, 0xc7cf, 0xc7d1, 0xc7d2, 0xc7d8, 0xc7e5, 0xc8ad};
64 static const uint16_t commonChars_big5[] = {
65 // TODO: This set of data comes from the character frequency-
66 // of-occurence analysis tool. The data needs to be moved
67 // into a resource and loaded from there.
68 0xa140, 0xa141, 0xa142, 0xa143, 0xa147, 0xa149, 0xa175, 0xa176, 0xa440, 0xa446,
69 0xa447, 0xa448, 0xa451, 0xa454, 0xa457, 0xa464, 0xa46a, 0xa46c, 0xa477, 0xa4a3,
70 0xa4a4, 0xa4a7, 0xa4c1, 0xa4ce, 0xa4d1, 0xa4df, 0xa4e8, 0xa4fd, 0xa540, 0xa548,
71 0xa558, 0xa569, 0xa5cd, 0xa5e7, 0xa657, 0xa661, 0xa662, 0xa668, 0xa670, 0xa6a8,
72 0xa6b3, 0xa6b9, 0xa6d3, 0xa6db, 0xa6e6, 0xa6f2, 0xa740, 0xa751, 0xa759, 0xa7da,
73 0xa8a3, 0xa8a5, 0xa8ad, 0xa8d1, 0xa8d3, 0xa8e4, 0xa8fc, 0xa9c0, 0xa9d2, 0xa9f3,
74 0xaa6b, 0xaaba, 0xaabe, 0xaacc, 0xaafc, 0xac47, 0xac4f, 0xacb0, 0xacd2, 0xad59,
75 0xaec9, 0xafe0, 0xb0ea, 0xb16f, 0xb2b3, 0xb2c4, 0xb36f, 0xb44c, 0xb44e, 0xb54c,
76 0xb5a5, 0xb5bd, 0xb5d0, 0xb5d8, 0xb671, 0xb7ed, 0xb867, 0xb944, 0xbad8, 0xbb44,
77 0xbba1, 0xbdd1, 0xc2c4, 0xc3b9, 0xc440, 0xc45f};
79 static const uint16_t commonChars_gb_18030[] = {
80 // TODO: This set of data comes from the character frequency-
81 // of-occurence analysis tool. The data needs to be moved
82 // into a resource and loaded from there.
83 0xa1a1, 0xa1a2, 0xa1a3, 0xa1a4, 0xa1b0, 0xa1b1, 0xa1f1, 0xa1f3, 0xa3a1, 0xa3ac,
84 0xa3ba, 0xb1a8, 0xb1b8, 0xb1be, 0xb2bb, 0xb3c9, 0xb3f6, 0xb4f3, 0xb5bd, 0xb5c4,
85 0xb5e3, 0xb6af, 0xb6d4, 0xb6e0, 0xb7a2, 0xb7a8, 0xb7bd, 0xb7d6, 0xb7dd, 0xb8b4,
86 0xb8df, 0xb8f6, 0xb9ab, 0xb9c9, 0xb9d8, 0xb9fa, 0xb9fd, 0xbacd, 0xbba7, 0xbbd6,
87 0xbbe1, 0xbbfa, 0xbcbc, 0xbcdb, 0xbcfe, 0xbdcc, 0xbecd, 0xbedd, 0xbfb4, 0xbfc6,
88 0xbfc9, 0xc0b4, 0xc0ed, 0xc1cb, 0xc2db, 0xc3c7, 0xc4dc, 0xc4ea, 0xc5cc, 0xc6f7,
89 0xc7f8, 0xc8ab, 0xc8cb, 0xc8d5, 0xc8e7, 0xc9cf, 0xc9fa, 0xcab1, 0xcab5, 0xcac7,
90 0xcad0, 0xcad6, 0xcaf5, 0xcafd, 0xccec, 0xcdf8, 0xceaa, 0xcec4, 0xced2, 0xcee5,
91 0xcfb5, 0xcfc2, 0xcfd6, 0xd0c2, 0xd0c5, 0xd0d0, 0xd0d4, 0xd1a7, 0xd2aa, 0xd2b2,
92 0xd2b5, 0xd2bb, 0xd2d4, 0xd3c3, 0xd3d0, 0xd3fd, 0xd4c2, 0xd4da, 0xd5e2, 0xd6d0};
94 static int32_t binarySearch(const uint16_t *array, int32_t len, uint16_t value)
95 {
96 int32_t start = 0, end = len-1;
97 int32_t mid = (start+end)/2;
99 while(start <= end) {
100 if(array[mid] == value) {
101 return mid;
102 }
104 if(array[mid] < value){
105 start = mid+1;
106 } else {
107 end = mid-1;
108 }
110 mid = (start+end)/2;
111 }
113 return -1;
114 }
116 IteratedChar::IteratedChar() :
117 charValue(0), index(-1), nextIndex(0), error(FALSE), done(FALSE)
118 {
119 // nothing else to do.
120 }
122 /*void IteratedChar::reset()
123 {
124 charValue = 0;
125 index = -1;
126 nextIndex = 0;
127 error = FALSE;
128 done = FALSE;
129 }*/
131 int32_t IteratedChar::nextByte(InputText *det)
132 {
133 if (nextIndex >= det->fRawLength) {
134 done = TRUE;
136 return -1;
137 }
139 return det->fRawInput[nextIndex++];
140 }
142 CharsetRecog_mbcs::~CharsetRecog_mbcs()
143 {
144 // nothing to do.
145 }
147 int32_t CharsetRecog_mbcs::match_mbcs(InputText *det, const uint16_t commonChars[], int32_t commonCharsLen) const {
148 int32_t singleByteCharCount = 0;
149 int32_t doubleByteCharCount = 0;
150 int32_t commonCharCount = 0;
151 int32_t badCharCount = 0;
152 int32_t totalCharCount = 0;
153 int32_t confidence = 0;
154 IteratedChar iter;
156 while (nextChar(&iter, det)) {
157 totalCharCount++;
159 if (iter.error) {
160 badCharCount++;
161 } else {
162 if (iter.charValue <= 0xFF) {
163 singleByteCharCount++;
164 } else {
165 doubleByteCharCount++;
167 if (commonChars != 0) {
168 if (binarySearch(commonChars, commonCharsLen, iter.charValue) >= 0){
169 commonCharCount += 1;
170 }
171 }
172 }
173 }
176 if (badCharCount >= 2 && badCharCount*5 >= doubleByteCharCount) {
177 // Bail out early if the byte data is not matching the encoding scheme.
178 // break detectBlock;
179 return confidence;
180 }
181 }
183 if (doubleByteCharCount <= 10 && badCharCount == 0) {
184 // Not many multi-byte chars.
185 if (doubleByteCharCount == 0 && totalCharCount < 10) {
186 // There weren't any multibyte sequences, and there was a low density of non-ASCII single bytes.
187 // We don't have enough data to have any confidence.
188 // Statistical analysis of single byte non-ASCII charcters would probably help here.
189 confidence = 0;
190 }
191 else {
192 // ASCII or ISO file? It's probably not our encoding,
193 // but is not incompatible with our encoding, so don't give it a zero.
194 confidence = 10;
195 }
197 return confidence;
198 }
200 //
201 // No match if there are too many characters that don't fit the encoding scheme.
202 // (should we have zero tolerance for these?)
203 //
204 if (doubleByteCharCount < 20*badCharCount) {
205 confidence = 0;
207 return confidence;
208 }
210 if (commonChars == 0) {
211 // We have no statistics on frequently occuring characters.
212 // Assess confidence purely on having a reasonable number of
213 // multi-byte characters (the more the better)
214 confidence = 30 + doubleByteCharCount - 20*badCharCount;
216 if (confidence > 100) {
217 confidence = 100;
218 }
219 } else {
220 //
221 // Frequency of occurence statistics exist.
222 //
224 double maxVal = log((double)doubleByteCharCount / 4); /*(float)?*/
225 double scaleFactor = 90.0 / maxVal;
226 confidence = (int32_t)(log((double)commonCharCount+1) * scaleFactor + 10.0);
228 confidence = min(confidence, 100);
229 }
231 if (confidence < 0) {
232 confidence = 0;
233 }
235 return confidence;
236 }
238 CharsetRecog_sjis::~CharsetRecog_sjis()
239 {
240 // nothing to do
241 }
243 UBool CharsetRecog_sjis::nextChar(IteratedChar* it, InputText* det) const {
244 it->index = it->nextIndex;
245 it->error = FALSE;
247 int32_t firstByte = it->charValue = it->nextByte(det);
249 if (firstByte < 0) {
250 return FALSE;
251 }
253 if (firstByte <= 0x7F || (firstByte > 0xA0 && firstByte <= 0xDF)) {
254 return TRUE;
255 }
257 int32_t secondByte = it->nextByte(det);
258 if (secondByte >= 0) {
259 it->charValue = (firstByte << 8) | secondByte;
260 }
261 // else we'll handle the error later.
263 if (! ((secondByte >= 0x40 && secondByte <= 0x7F) || (secondByte >= 0x80 && secondByte <= 0xFE))) {
264 // Illegal second byte value.
265 it->error = TRUE;
266 }
268 return TRUE;
269 }
271 UBool CharsetRecog_sjis::match(InputText* det, CharsetMatch *results) const {
272 int32_t confidence = match_mbcs(det, commonChars_sjis, ARRAY_SIZE(commonChars_sjis));
273 results->set(det, this, confidence);
274 return (confidence > 0);
275 }
277 const char *CharsetRecog_sjis::getName() const
278 {
279 return "Shift_JIS";
280 }
282 const char *CharsetRecog_sjis::getLanguage() const
283 {
284 return "ja";
285 }
287 CharsetRecog_euc::~CharsetRecog_euc()
288 {
289 // nothing to do
290 }
292 UBool CharsetRecog_euc::nextChar(IteratedChar* it, InputText* det) const {
293 int32_t firstByte = 0;
294 int32_t secondByte = 0;
295 int32_t thirdByte = 0;
297 it->index = it->nextIndex;
298 it->error = FALSE;
299 firstByte = it->charValue = it->nextByte(det);
301 if (firstByte < 0) {
302 // Ran off the end of the input data
303 return FALSE;
304 }
306 if (firstByte <= 0x8D) {
307 // single byte char
308 return TRUE;
309 }
311 secondByte = it->nextByte(det);
312 if (secondByte >= 0) {
313 it->charValue = (it->charValue << 8) | secondByte;
314 }
315 // else we'll handle the error later.
317 if (firstByte >= 0xA1 && firstByte <= 0xFE) {
318 // Two byte Char
319 if (secondByte < 0xA1) {
320 it->error = TRUE;
321 }
323 return TRUE;
324 }
326 if (firstByte == 0x8E) {
327 // Code Set 2.
328 // In EUC-JP, total char size is 2 bytes, only one byte of actual char value.
329 // In EUC-TW, total char size is 4 bytes, three bytes contribute to char value.
330 // We don't know which we've got.
331 // Treat it like EUC-JP. If the data really was EUC-TW, the following two
332 // bytes will look like a well formed 2 byte char.
333 if (secondByte < 0xA1) {
334 it->error = TRUE;
335 }
337 return TRUE;
338 }
340 if (firstByte == 0x8F) {
341 // Code set 3.
342 // Three byte total char size, two bytes of actual char value.
343 thirdByte = it->nextByte(det);
344 it->charValue = (it->charValue << 8) | thirdByte;
346 if (thirdByte < 0xa1) {
347 // Bad second byte or ran off the end of the input data with a non-ASCII first byte.
348 it->error = TRUE;
349 }
350 }
352 return TRUE;
354 }
356 CharsetRecog_euc_jp::~CharsetRecog_euc_jp()
357 {
358 // nothing to do
359 }
361 const char *CharsetRecog_euc_jp::getName() const
362 {
363 return "EUC-JP";
364 }
366 const char *CharsetRecog_euc_jp::getLanguage() const
367 {
368 return "ja";
369 }
371 UBool CharsetRecog_euc_jp::match(InputText *det, CharsetMatch *results) const
372 {
373 int32_t confidence = match_mbcs(det, commonChars_euc_jp, ARRAY_SIZE(commonChars_euc_jp));
374 results->set(det, this, confidence);
375 return (confidence > 0);
376 }
378 CharsetRecog_euc_kr::~CharsetRecog_euc_kr()
379 {
380 // nothing to do
381 }
383 const char *CharsetRecog_euc_kr::getName() const
384 {
385 return "EUC-KR";
386 }
388 const char *CharsetRecog_euc_kr::getLanguage() const
389 {
390 return "ko";
391 }
393 UBool CharsetRecog_euc_kr::match(InputText *det, CharsetMatch *results) const
394 {
395 int32_t confidence = match_mbcs(det, commonChars_euc_kr, ARRAY_SIZE(commonChars_euc_kr));
396 results->set(det, this, confidence);
397 return (confidence > 0);
398 }
400 CharsetRecog_big5::~CharsetRecog_big5()
401 {
402 // nothing to do
403 }
405 UBool CharsetRecog_big5::nextChar(IteratedChar* it, InputText* det) const
406 {
407 int32_t firstByte;
409 it->index = it->nextIndex;
410 it->error = FALSE;
411 firstByte = it->charValue = it->nextByte(det);
413 if (firstByte < 0) {
414 return FALSE;
415 }
417 if (firstByte <= 0x7F || firstByte == 0xFF) {
418 // single byte character.
419 return TRUE;
420 }
422 int32_t secondByte = it->nextByte(det);
423 if (secondByte >= 0) {
424 it->charValue = (it->charValue << 8) | secondByte;
425 }
426 // else we'll handle the error later.
428 if (secondByte < 0x40 || secondByte == 0x7F || secondByte == 0xFF) {
429 it->error = TRUE;
430 }
432 return TRUE;
433 }
435 const char *CharsetRecog_big5::getName() const
436 {
437 return "Big5";
438 }
440 const char *CharsetRecog_big5::getLanguage() const
441 {
442 return "zh";
443 }
445 UBool CharsetRecog_big5::match(InputText *det, CharsetMatch *results) const
446 {
447 int32_t confidence = match_mbcs(det, commonChars_big5, ARRAY_SIZE(commonChars_big5));
448 results->set(det, this, confidence);
449 return (confidence > 0);
450 }
452 CharsetRecog_gb_18030::~CharsetRecog_gb_18030()
453 {
454 // nothing to do
455 }
457 UBool CharsetRecog_gb_18030::nextChar(IteratedChar* it, InputText* det) const {
458 int32_t firstByte = 0;
459 int32_t secondByte = 0;
460 int32_t thirdByte = 0;
461 int32_t fourthByte = 0;
463 it->index = it->nextIndex;
464 it->error = FALSE;
465 firstByte = it->charValue = it->nextByte(det);
467 if (firstByte < 0) {
468 // Ran off the end of the input data
469 return FALSE;
470 }
472 if (firstByte <= 0x80) {
473 // single byte char
474 return TRUE;
475 }
477 secondByte = it->nextByte(det);
478 if (secondByte >= 0) {
479 it->charValue = (it->charValue << 8) | secondByte;
480 }
481 // else we'll handle the error later.
483 if (firstByte >= 0x81 && firstByte <= 0xFE) {
484 // Two byte Char
485 if ((secondByte >= 0x40 && secondByte <= 0x7E) || (secondByte >=80 && secondByte <= 0xFE)) {
486 return TRUE;
487 }
489 // Four byte char
490 if (secondByte >= 0x30 && secondByte <= 0x39) {
491 thirdByte = it->nextByte(det);
493 if (thirdByte >= 0x81 && thirdByte <= 0xFE) {
494 fourthByte = it->nextByte(det);
496 if (fourthByte >= 0x30 && fourthByte <= 0x39) {
497 it->charValue = (it->charValue << 16) | (thirdByte << 8) | fourthByte;
499 return TRUE;
500 }
501 }
502 }
504 // Something wasn't valid, or we ran out of data (-1).
505 it->error = TRUE;
506 }
508 return TRUE;
509 }
511 const char *CharsetRecog_gb_18030::getName() const
512 {
513 return "GB18030";
514 }
516 const char *CharsetRecog_gb_18030::getLanguage() const
517 {
518 return "zh";
519 }
521 UBool CharsetRecog_gb_18030::match(InputText *det, CharsetMatch *results) const
522 {
523 int32_t confidence = match_mbcs(det, commonChars_gb_18030, ARRAY_SIZE(commonChars_gb_18030));
524 results->set(det, this, confidence);
525 return (confidence > 0);
526 }
528 U_NAMESPACE_END
529 #endif