|
1 /* |
|
2 ** This file is in the public domain, so clarified as of |
|
3 ** 1996-06-05 by Arthur David Olson. |
|
4 */ |
|
5 |
|
6 #ifndef lint |
|
7 #ifndef NOID |
|
8 static char elsieid[] = "@(#)localtime.c 8.9"; |
|
9 #endif /* !defined NOID */ |
|
10 #endif /* !defined lint */ |
|
11 |
|
12 /* |
|
13 ** Leap second handling from Bradley White. |
|
14 ** POSIX-style TZ environment variable handling from Guy Harris. |
|
15 */ |
|
16 |
|
17 /*LINTLIBRARY*/ |
|
18 |
|
19 #include "private.h" |
|
20 #include "tzfile.h" |
|
21 #include "fcntl.h" |
|
22 #include "float.h" /* for FLT_MAX and DBL_MAX */ |
|
23 |
|
24 #ifndef TZ_ABBR_MAX_LEN |
|
25 #define TZ_ABBR_MAX_LEN 16 |
|
26 #endif /* !defined TZ_ABBR_MAX_LEN */ |
|
27 |
|
28 #ifndef TZ_ABBR_CHAR_SET |
|
29 #define TZ_ABBR_CHAR_SET \ |
|
30 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" |
|
31 #endif /* !defined TZ_ABBR_CHAR_SET */ |
|
32 |
|
33 #ifndef TZ_ABBR_ERR_CHAR |
|
34 #define TZ_ABBR_ERR_CHAR '_' |
|
35 #endif /* !defined TZ_ABBR_ERR_CHAR */ |
|
36 |
|
37 /* |
|
38 ** SunOS 4.1.1 headers lack O_BINARY. |
|
39 */ |
|
40 |
|
41 #ifdef O_BINARY |
|
42 #define OPEN_MODE (O_RDONLY | O_BINARY) |
|
43 #endif /* defined O_BINARY */ |
|
44 #ifndef O_BINARY |
|
45 #define OPEN_MODE O_RDONLY |
|
46 #endif /* !defined O_BINARY */ |
|
47 |
|
48 #ifndef WILDABBR |
|
49 /* |
|
50 ** Someone might make incorrect use of a time zone abbreviation: |
|
51 ** 1. They might reference tzname[0] before calling tzset (explicitly |
|
52 ** or implicitly). |
|
53 ** 2. They might reference tzname[1] before calling tzset (explicitly |
|
54 ** or implicitly). |
|
55 ** 3. They might reference tzname[1] after setting to a time zone |
|
56 ** in which Daylight Saving Time is never observed. |
|
57 ** 4. They might reference tzname[0] after setting to a time zone |
|
58 ** in which Standard Time is never observed. |
|
59 ** 5. They might reference tm.TM_ZONE after calling offtime. |
|
60 ** What's best to do in the above cases is open to debate; |
|
61 ** for now, we just set things up so that in any of the five cases |
|
62 ** WILDABBR is used. Another possibility: initialize tzname[0] to the |
|
63 ** string "tzname[0] used before set", and similarly for the other cases. |
|
64 ** And another: initialize tzname[0] to "ERA", with an explanation in the |
|
65 ** manual page of what this "time zone abbreviation" means (doing this so |
|
66 ** that tzname[0] has the "normal" length of three characters). |
|
67 */ |
|
68 #define WILDABBR " " |
|
69 #endif /* !defined WILDABBR */ |
|
70 |
|
71 static char wildabbr[] = WILDABBR; |
|
72 |
|
73 static const char gmt[] = "GMT"; |
|
74 |
|
75 /* |
|
76 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. |
|
77 ** We default to US rules as of 1999-08-17. |
|
78 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are |
|
79 ** implementation dependent; for historical reasons, US rules are a |
|
80 ** common default. |
|
81 */ |
|
82 #ifndef TZDEFRULESTRING |
|
83 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" |
|
84 #endif /* !defined TZDEFDST */ |
|
85 |
|
86 struct ttinfo { /* time type information */ |
|
87 long tt_gmtoff; /* UTC offset in seconds */ |
|
88 int tt_isdst; /* used to set tm_isdst */ |
|
89 int tt_abbrind; /* abbreviation list index */ |
|
90 int tt_ttisstd; /* TRUE if transition is std time */ |
|
91 int tt_ttisgmt; /* TRUE if transition is UTC */ |
|
92 }; |
|
93 |
|
94 struct lsinfo { /* leap second information */ |
|
95 time_t ls_trans; /* transition time */ |
|
96 long ls_corr; /* correction to apply */ |
|
97 }; |
|
98 |
|
99 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) |
|
100 |
|
101 #ifdef TZNAME_MAX |
|
102 #define MY_TZNAME_MAX TZNAME_MAX |
|
103 #endif /* defined TZNAME_MAX */ |
|
104 #ifndef TZNAME_MAX |
|
105 #define MY_TZNAME_MAX 255 |
|
106 #endif /* !defined TZNAME_MAX */ |
|
107 |
|
108 struct state { |
|
109 int leapcnt; |
|
110 int timecnt; |
|
111 int typecnt; |
|
112 int charcnt; |
|
113 int goback; |
|
114 int goahead; |
|
115 time_t ats[TZ_MAX_TIMES]; |
|
116 unsigned char types[TZ_MAX_TIMES]; |
|
117 struct ttinfo ttis[TZ_MAX_TYPES]; |
|
118 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), |
|
119 (2 * (MY_TZNAME_MAX + 1)))]; |
|
120 struct lsinfo lsis[TZ_MAX_LEAPS]; |
|
121 }; |
|
122 |
|
123 struct rule { |
|
124 int r_type; /* type of rule--see below */ |
|
125 int r_day; /* day number of rule */ |
|
126 int r_week; /* week number of rule */ |
|
127 int r_mon; /* month number of rule */ |
|
128 long r_time; /* transition time of rule */ |
|
129 }; |
|
130 |
|
131 #define JULIAN_DAY 0 /* Jn - Julian day */ |
|
132 #define DAY_OF_YEAR 1 /* n - day of year */ |
|
133 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ |
|
134 |
|
135 /* |
|
136 ** Prototypes for static functions. |
|
137 */ |
|
138 |
|
139 static long detzcode(const char * codep); |
|
140 static time_t detzcode64(const char * codep); |
|
141 static int differ_by_repeat(time_t t1, time_t t0); |
|
142 static const char * getzname(const char * strp); |
|
143 static const char * getqzname(const char * strp, const int delim); |
|
144 static const char * getnum(const char * strp, int * nump, int min, |
|
145 int max); |
|
146 static const char * getsecs(const char * strp, long * secsp); |
|
147 static const char * getoffset(const char * strp, long * offsetp); |
|
148 static const char * getrule(const char * strp, struct rule * rulep); |
|
149 static void gmtload(struct state * sp); |
|
150 static struct tm * gmtsub(const time_t * timep, long offset, |
|
151 struct tm * tmp); |
|
152 static struct tm * localsub(const time_t * timep, long offset, |
|
153 struct tm * tmp); |
|
154 static int increment_overflow(int * number, int delta); |
|
155 static int leaps_thru_end_of(int y); |
|
156 static int long_increment_overflow(long * number, int delta); |
|
157 static int long_normalize_overflow(long * tensptr, |
|
158 int * unitsptr, int base); |
|
159 static int normalize_overflow(int * tensptr, int * unitsptr, |
|
160 int base); |
|
161 static void settzname(void); |
|
162 static time_t time1(struct tm * tmp, |
|
163 struct tm * (*funcp)(const time_t *, |
|
164 long, struct tm *), |
|
165 long offset); |
|
166 static time_t time2(struct tm *tmp, |
|
167 struct tm * (*funcp)(const time_t *, |
|
168 long, struct tm*), |
|
169 long offset, int * okayp); |
|
170 static time_t time2sub(struct tm *tmp, |
|
171 struct tm * (*funcp)(const time_t *, |
|
172 long, struct tm*), |
|
173 long offset, int * okayp, int do_norm_secs); |
|
174 static struct tm * timesub(const time_t * timep, long offset, |
|
175 const struct state * sp, struct tm * tmp); |
|
176 static int tmcomp(const struct tm * atmp, |
|
177 const struct tm * btmp); |
|
178 static time_t transtime(time_t janfirst, int year, |
|
179 const struct rule * rulep, long offset); |
|
180 static int typesequiv(const struct state * sp, int a, int b); |
|
181 static int tzload(const char * name, struct state * sp, |
|
182 int doextend); |
|
183 static int tzparse(const char * name, struct state * sp, |
|
184 int lastditch); |
|
185 |
|
186 #ifdef ALL_STATE |
|
187 static struct state * lclptr; |
|
188 static struct state * gmtptr; |
|
189 #endif /* defined ALL_STATE */ |
|
190 |
|
191 #ifndef ALL_STATE |
|
192 static struct state lclmem; |
|
193 static struct state gmtmem; |
|
194 #define lclptr (&lclmem) |
|
195 #define gmtptr (&gmtmem) |
|
196 #endif /* State Farm */ |
|
197 |
|
198 #ifndef TZ_STRLEN_MAX |
|
199 #define TZ_STRLEN_MAX 255 |
|
200 #endif /* !defined TZ_STRLEN_MAX */ |
|
201 |
|
202 static char lcl_TZname[TZ_STRLEN_MAX + 1]; |
|
203 static int lcl_is_set; |
|
204 static int gmt_is_set; |
|
205 |
|
206 char * tzname[2] = { |
|
207 wildabbr, |
|
208 wildabbr |
|
209 }; |
|
210 |
|
211 /* |
|
212 ** Section 4.12.3 of X3.159-1989 requires that |
|
213 ** Except for the strftime function, these functions [asctime, |
|
214 ** ctime, gmtime, localtime] return values in one of two static |
|
215 ** objects: a broken-down time structure and an array of char. |
|
216 ** Thanks to Paul Eggert for noting this. |
|
217 */ |
|
218 |
|
219 static struct tm tm; |
|
220 |
|
221 #ifdef USG_COMPAT |
|
222 time_t timezone = 0; |
|
223 int daylight = 0; |
|
224 #endif /* defined USG_COMPAT */ |
|
225 |
|
226 #ifdef ALTZONE |
|
227 time_t altzone = 0; |
|
228 #endif /* defined ALTZONE */ |
|
229 |
|
230 static long |
|
231 detzcode(codep) |
|
232 const char * const codep; |
|
233 { |
|
234 register long result; |
|
235 register int i; |
|
236 |
|
237 result = (codep[0] & 0x80) ? ~0L : 0; |
|
238 for (i = 0; i < 4; ++i) |
|
239 result = (result << 8) | (codep[i] & 0xff); |
|
240 return result; |
|
241 } |
|
242 |
|
243 static time_t |
|
244 detzcode64(codep) |
|
245 const char * const codep; |
|
246 { |
|
247 register time_t result; |
|
248 register int i; |
|
249 |
|
250 result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0; |
|
251 for (i = 0; i < 8; ++i) |
|
252 result = result * 256 + (codep[i] & 0xff); |
|
253 return result; |
|
254 } |
|
255 |
|
256 static void |
|
257 settzname(void) |
|
258 { |
|
259 register struct state * const sp = lclptr; |
|
260 register int i; |
|
261 |
|
262 tzname[0] = wildabbr; |
|
263 tzname[1] = wildabbr; |
|
264 #ifdef USG_COMPAT |
|
265 daylight = 0; |
|
266 timezone = 0; |
|
267 #endif /* defined USG_COMPAT */ |
|
268 #ifdef ALTZONE |
|
269 altzone = 0; |
|
270 #endif /* defined ALTZONE */ |
|
271 #ifdef ALL_STATE |
|
272 if (sp == NULL) { |
|
273 tzname[0] = tzname[1] = gmt; |
|
274 return; |
|
275 } |
|
276 #endif /* defined ALL_STATE */ |
|
277 for (i = 0; i < sp->typecnt; ++i) { |
|
278 register const struct ttinfo * const ttisp = &sp->ttis[i]; |
|
279 |
|
280 tzname[ttisp->tt_isdst] = |
|
281 &sp->chars[ttisp->tt_abbrind]; |
|
282 #ifdef USG_COMPAT |
|
283 if (ttisp->tt_isdst) |
|
284 daylight = 1; |
|
285 if (i == 0 || !ttisp->tt_isdst) |
|
286 timezone = -(ttisp->tt_gmtoff); |
|
287 #endif /* defined USG_COMPAT */ |
|
288 #ifdef ALTZONE |
|
289 if (i == 0 || ttisp->tt_isdst) |
|
290 altzone = -(ttisp->tt_gmtoff); |
|
291 #endif /* defined ALTZONE */ |
|
292 } |
|
293 /* |
|
294 ** And to get the latest zone names into tzname. . . |
|
295 */ |
|
296 for (i = 0; i < sp->timecnt; ++i) { |
|
297 register const struct ttinfo * const ttisp = |
|
298 &sp->ttis[ |
|
299 sp->types[i]]; |
|
300 |
|
301 tzname[ttisp->tt_isdst] = |
|
302 &sp->chars[ttisp->tt_abbrind]; |
|
303 } |
|
304 /* |
|
305 ** Finally, scrub the abbreviations. |
|
306 ** First, replace bogus characters. |
|
307 */ |
|
308 for (i = 0; i < sp->charcnt; ++i) |
|
309 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) |
|
310 sp->chars[i] = TZ_ABBR_ERR_CHAR; |
|
311 /* |
|
312 ** Second, truncate long abbreviations. |
|
313 */ |
|
314 for (i = 0; i < sp->typecnt; ++i) { |
|
315 register const struct ttinfo * const ttisp = &sp->ttis[i]; |
|
316 register char * cp = &sp->chars[ttisp->tt_abbrind]; |
|
317 |
|
318 if (strlen(cp) > TZ_ABBR_MAX_LEN && |
|
319 strcmp(cp, GRANDPARENTED) != 0) |
|
320 *(cp + TZ_ABBR_MAX_LEN) = '\0'; |
|
321 } |
|
322 } |
|
323 |
|
324 static int |
|
325 differ_by_repeat(t1, t0) |
|
326 const time_t t1; |
|
327 const time_t t0; |
|
328 { |
|
329 if (TYPE_INTEGRAL(time_t) && |
|
330 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) |
|
331 return 0; |
|
332 return t1 - t0 == SECSPERREPEAT; |
|
333 } |
|
334 |
|
335 static int |
|
336 tzload(name, sp, doextend) |
|
337 register const char * name; |
|
338 register struct state * const sp; |
|
339 register const int doextend; |
|
340 { |
|
341 register const char * p; |
|
342 register int i; |
|
343 register int fid; |
|
344 register int stored; |
|
345 register int nread; |
|
346 union { |
|
347 struct tzhead tzhead; |
|
348 char buf[2 * sizeof(struct tzhead) + |
|
349 2 * sizeof *sp + |
|
350 4 * TZ_MAX_TIMES]; |
|
351 } u; |
|
352 |
|
353 if (name == NULL && (name = TZDEFAULT) == NULL) |
|
354 return -1; |
|
355 { |
|
356 register int doaccess; |
|
357 /* |
|
358 ** Section 4.9.1 of the C standard says that |
|
359 ** "FILENAME_MAX expands to an integral constant expression |
|
360 ** that is the size needed for an array of char large enough |
|
361 ** to hold the longest file name string that the implementation |
|
362 ** guarantees can be opened." |
|
363 */ |
|
364 char fullname[FILENAME_MAX + 1]; |
|
365 |
|
366 if (name[0] == ':') |
|
367 ++name; |
|
368 doaccess = name[0] == '/'; |
|
369 if (!doaccess) { |
|
370 if ((p = TZDIR) == NULL) |
|
371 return -1; |
|
372 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) |
|
373 return -1; |
|
374 (void) strcpy(fullname, p); |
|
375 (void) strcat(fullname, "/"); |
|
376 (void) strcat(fullname, name); |
|
377 /* |
|
378 ** Set doaccess if '.' (as in "../") shows up in name. |
|
379 */ |
|
380 if (strchr(name, '.') != NULL) |
|
381 doaccess = TRUE; |
|
382 name = fullname; |
|
383 } |
|
384 if (doaccess && access(name, R_OK) != 0) |
|
385 return -1; |
|
386 if ((fid = open(name, OPEN_MODE)) == -1) |
|
387 return -1; |
|
388 } |
|
389 nread = read(fid, u.buf, sizeof u.buf); |
|
390 if (close(fid) < 0 || nread <= 0) |
|
391 return -1; |
|
392 for (stored = 4; stored <= 8; stored *= 2) { |
|
393 int ttisstdcnt; |
|
394 int ttisgmtcnt; |
|
395 |
|
396 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt); |
|
397 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt); |
|
398 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt); |
|
399 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt); |
|
400 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt); |
|
401 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt); |
|
402 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt; |
|
403 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || |
|
404 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || |
|
405 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || |
|
406 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || |
|
407 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || |
|
408 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) |
|
409 return -1; |
|
410 if (nread - (p - u.buf) < |
|
411 sp->timecnt * stored + /* ats */ |
|
412 sp->timecnt + /* types */ |
|
413 sp->typecnt * 6 + /* ttinfos */ |
|
414 sp->charcnt + /* chars */ |
|
415 sp->leapcnt * (stored + 4) + /* lsinfos */ |
|
416 ttisstdcnt + /* ttisstds */ |
|
417 ttisgmtcnt) /* ttisgmts */ |
|
418 return -1; |
|
419 for (i = 0; i < sp->timecnt; ++i) { |
|
420 sp->ats[i] = (stored == 4) ? |
|
421 detzcode(p) : detzcode64(p); |
|
422 p += stored; |
|
423 } |
|
424 for (i = 0; i < sp->timecnt; ++i) { |
|
425 sp->types[i] = (unsigned char) *p++; |
|
426 if (sp->types[i] >= sp->typecnt) |
|
427 return -1; |
|
428 } |
|
429 for (i = 0; i < sp->typecnt; ++i) { |
|
430 register struct ttinfo * ttisp; |
|
431 |
|
432 ttisp = &sp->ttis[i]; |
|
433 ttisp->tt_gmtoff = detzcode(p); |
|
434 p += 4; |
|
435 ttisp->tt_isdst = (unsigned char) *p++; |
|
436 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) |
|
437 return -1; |
|
438 ttisp->tt_abbrind = (unsigned char) *p++; |
|
439 if (ttisp->tt_abbrind < 0 || |
|
440 ttisp->tt_abbrind > sp->charcnt) |
|
441 return -1; |
|
442 } |
|
443 for (i = 0; i < sp->charcnt; ++i) |
|
444 sp->chars[i] = *p++; |
|
445 sp->chars[i] = '\0'; /* ensure '\0' at end */ |
|
446 for (i = 0; i < sp->leapcnt; ++i) { |
|
447 register struct lsinfo * lsisp; |
|
448 |
|
449 lsisp = &sp->lsis[i]; |
|
450 lsisp->ls_trans = (stored == 4) ? |
|
451 detzcode(p) : detzcode64(p); |
|
452 p += stored; |
|
453 lsisp->ls_corr = detzcode(p); |
|
454 p += 4; |
|
455 } |
|
456 for (i = 0; i < sp->typecnt; ++i) { |
|
457 register struct ttinfo * ttisp; |
|
458 |
|
459 ttisp = &sp->ttis[i]; |
|
460 if (ttisstdcnt == 0) |
|
461 ttisp->tt_ttisstd = FALSE; |
|
462 else { |
|
463 ttisp->tt_ttisstd = *p++; |
|
464 if (ttisp->tt_ttisstd != TRUE && |
|
465 ttisp->tt_ttisstd != FALSE) |
|
466 return -1; |
|
467 } |
|
468 } |
|
469 for (i = 0; i < sp->typecnt; ++i) { |
|
470 register struct ttinfo * ttisp; |
|
471 |
|
472 ttisp = &sp->ttis[i]; |
|
473 if (ttisgmtcnt == 0) |
|
474 ttisp->tt_ttisgmt = FALSE; |
|
475 else { |
|
476 ttisp->tt_ttisgmt = *p++; |
|
477 if (ttisp->tt_ttisgmt != TRUE && |
|
478 ttisp->tt_ttisgmt != FALSE) |
|
479 return -1; |
|
480 } |
|
481 } |
|
482 /* |
|
483 ** Out-of-sort ats should mean we're running on a |
|
484 ** signed time_t system but using a data file with |
|
485 ** unsigned values (or vice versa). |
|
486 */ |
|
487 for (i = 0; i < sp->timecnt - 2; ++i) |
|
488 if (sp->ats[i] > sp->ats[i + 1]) { |
|
489 ++i; |
|
490 if (TYPE_SIGNED(time_t)) { |
|
491 /* |
|
492 ** Ignore the end (easy). |
|
493 */ |
|
494 sp->timecnt = i; |
|
495 } else { |
|
496 /* |
|
497 ** Ignore the beginning (harder). |
|
498 */ |
|
499 register int j; |
|
500 |
|
501 for (j = 0; j + i < sp->timecnt; ++j) { |
|
502 sp->ats[j] = sp->ats[j + i]; |
|
503 sp->types[j] = sp->types[j + i]; |
|
504 } |
|
505 sp->timecnt = j; |
|
506 } |
|
507 break; |
|
508 } |
|
509 /* |
|
510 ** If this is an old file, we're done. |
|
511 */ |
|
512 if (u.tzhead.tzh_version[0] == '\0') |
|
513 break; |
|
514 nread -= p - u.buf; |
|
515 for (i = 0; i < nread; ++i) |
|
516 u.buf[i] = p[i]; |
|
517 /* |
|
518 ** If this is a narrow integer time_t system, we're done. |
|
519 */ |
|
520 if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t)) |
|
521 break; |
|
522 } |
|
523 if (doextend && nread > 2 && |
|
524 u.buf[0] == '\n' && u.buf[nread - 1] == '\n' && |
|
525 sp->typecnt + 2 <= TZ_MAX_TYPES) { |
|
526 struct state ts; |
|
527 register int result; |
|
528 |
|
529 u.buf[nread - 1] = '\0'; |
|
530 result = tzparse(&u.buf[1], &ts, FALSE); |
|
531 if (result == 0 && ts.typecnt == 2 && |
|
532 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { |
|
533 for (i = 0; i < 2; ++i) |
|
534 ts.ttis[i].tt_abbrind += |
|
535 sp->charcnt; |
|
536 for (i = 0; i < ts.charcnt; ++i) |
|
537 sp->chars[sp->charcnt++] = |
|
538 ts.chars[i]; |
|
539 i = 0; |
|
540 while (i < ts.timecnt && |
|
541 ts.ats[i] <= |
|
542 sp->ats[sp->timecnt - 1]) |
|
543 ++i; |
|
544 while (i < ts.timecnt && |
|
545 sp->timecnt < TZ_MAX_TIMES) { |
|
546 sp->ats[sp->timecnt] = |
|
547 ts.ats[i]; |
|
548 sp->types[sp->timecnt] = |
|
549 sp->typecnt + |
|
550 ts.types[i]; |
|
551 ++sp->timecnt; |
|
552 ++i; |
|
553 } |
|
554 sp->ttis[sp->typecnt++] = ts.ttis[0]; |
|
555 sp->ttis[sp->typecnt++] = ts.ttis[1]; |
|
556 } |
|
557 } |
|
558 sp->goback = sp->goahead = FALSE; |
|
559 if (sp->timecnt > 1) { |
|
560 for (i = 1; i < sp->timecnt; ++i) |
|
561 if (typesequiv(sp, sp->types[i], sp->types[0]) && |
|
562 differ_by_repeat(sp->ats[i], sp->ats[0])) { |
|
563 sp->goback = TRUE; |
|
564 break; |
|
565 } |
|
566 for (i = sp->timecnt - 2; i >= 0; --i) |
|
567 if (typesequiv(sp, sp->types[sp->timecnt - 1], |
|
568 sp->types[i]) && |
|
569 differ_by_repeat(sp->ats[sp->timecnt - 1], |
|
570 sp->ats[i])) { |
|
571 sp->goahead = TRUE; |
|
572 break; |
|
573 } |
|
574 } |
|
575 return 0; |
|
576 } |
|
577 |
|
578 static int |
|
579 typesequiv(sp, a, b) |
|
580 const struct state * const sp; |
|
581 const int a; |
|
582 const int b; |
|
583 { |
|
584 register int result; |
|
585 |
|
586 if (sp == NULL || |
|
587 a < 0 || a >= sp->typecnt || |
|
588 b < 0 || b >= sp->typecnt) |
|
589 result = FALSE; |
|
590 else { |
|
591 register const struct ttinfo * ap = &sp->ttis[a]; |
|
592 register const struct ttinfo * bp = &sp->ttis[b]; |
|
593 result = ap->tt_gmtoff == bp->tt_gmtoff && |
|
594 ap->tt_isdst == bp->tt_isdst && |
|
595 ap->tt_ttisstd == bp->tt_ttisstd && |
|
596 ap->tt_ttisgmt == bp->tt_ttisgmt && |
|
597 strcmp(&sp->chars[ap->tt_abbrind], |
|
598 &sp->chars[bp->tt_abbrind]) == 0; |
|
599 } |
|
600 return result; |
|
601 } |
|
602 |
|
603 static const int mon_lengths[2][MONSPERYEAR] = { |
|
604 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, |
|
605 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } |
|
606 }; |
|
607 |
|
608 static const int year_lengths[2] = { |
|
609 DAYSPERNYEAR, DAYSPERLYEAR |
|
610 }; |
|
611 |
|
612 /* |
|
613 ** Given a pointer into a time zone string, scan until a character that is not |
|
614 ** a valid character in a zone name is found. Return a pointer to that |
|
615 ** character. |
|
616 */ |
|
617 |
|
618 static const char * |
|
619 getzname(strp) |
|
620 register const char * strp; |
|
621 { |
|
622 register char c; |
|
623 |
|
624 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && |
|
625 c != '+') |
|
626 ++strp; |
|
627 return strp; |
|
628 } |
|
629 |
|
630 /* |
|
631 ** Given a pointer into an extended time zone string, scan until the ending |
|
632 ** delimiter of the zone name is located. Return a pointer to the delimiter. |
|
633 ** |
|
634 ** As with getzname above, the legal character set is actually quite |
|
635 ** restricted, with other characters producing undefined results. |
|
636 ** We don't do any checking here; checking is done later in common-case code. |
|
637 */ |
|
638 |
|
639 static const char * |
|
640 getqzname(register const char *strp, const int delim) |
|
641 { |
|
642 register int c; |
|
643 |
|
644 while ((c = *strp) != '\0' && c != delim) |
|
645 ++strp; |
|
646 return strp; |
|
647 } |
|
648 |
|
649 /* |
|
650 ** Given a pointer into a time zone string, extract a number from that string. |
|
651 ** Check that the number is within a specified range; if it is not, return |
|
652 ** NULL. |
|
653 ** Otherwise, return a pointer to the first character not part of the number. |
|
654 */ |
|
655 |
|
656 static const char * |
|
657 getnum(strp, nump, min, max) |
|
658 register const char * strp; |
|
659 int * const nump; |
|
660 const int min; |
|
661 const int max; |
|
662 { |
|
663 register char c; |
|
664 register int num; |
|
665 |
|
666 if (strp == NULL || !is_digit(c = *strp)) |
|
667 return NULL; |
|
668 num = 0; |
|
669 do { |
|
670 num = num * 10 + (c - '0'); |
|
671 if (num > max) |
|
672 return NULL; /* illegal value */ |
|
673 c = *++strp; |
|
674 } while (is_digit(c)); |
|
675 if (num < min) |
|
676 return NULL; /* illegal value */ |
|
677 *nump = num; |
|
678 return strp; |
|
679 } |
|
680 |
|
681 /* |
|
682 ** Given a pointer into a time zone string, extract a number of seconds, |
|
683 ** in hh[:mm[:ss]] form, from the string. |
|
684 ** If any error occurs, return NULL. |
|
685 ** Otherwise, return a pointer to the first character not part of the number |
|
686 ** of seconds. |
|
687 */ |
|
688 |
|
689 static const char * |
|
690 getsecs(strp, secsp) |
|
691 register const char * strp; |
|
692 long * const secsp; |
|
693 { |
|
694 int num; |
|
695 |
|
696 /* |
|
697 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like |
|
698 ** "M10.4.6/26", which does not conform to Posix, |
|
699 ** but which specifies the equivalent of |
|
700 ** ``02:00 on the first Sunday on or after 23 Oct''. |
|
701 */ |
|
702 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); |
|
703 if (strp == NULL) |
|
704 return NULL; |
|
705 *secsp = num * (long) SECSPERHOUR; |
|
706 if (*strp == ':') { |
|
707 ++strp; |
|
708 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); |
|
709 if (strp == NULL) |
|
710 return NULL; |
|
711 *secsp += num * SECSPERMIN; |
|
712 if (*strp == ':') { |
|
713 ++strp; |
|
714 /* `SECSPERMIN' allows for leap seconds. */ |
|
715 strp = getnum(strp, &num, 0, SECSPERMIN); |
|
716 if (strp == NULL) |
|
717 return NULL; |
|
718 *secsp += num; |
|
719 } |
|
720 } |
|
721 return strp; |
|
722 } |
|
723 |
|
724 /* |
|
725 ** Given a pointer into a time zone string, extract an offset, in |
|
726 ** [+-]hh[:mm[:ss]] form, from the string. |
|
727 ** If any error occurs, return NULL. |
|
728 ** Otherwise, return a pointer to the first character not part of the time. |
|
729 */ |
|
730 |
|
731 static const char * |
|
732 getoffset(strp, offsetp) |
|
733 register const char * strp; |
|
734 long * const offsetp; |
|
735 { |
|
736 register int neg = 0; |
|
737 |
|
738 if (*strp == '-') { |
|
739 neg = 1; |
|
740 ++strp; |
|
741 } else if (*strp == '+') |
|
742 ++strp; |
|
743 strp = getsecs(strp, offsetp); |
|
744 if (strp == NULL) |
|
745 return NULL; /* illegal time */ |
|
746 if (neg) |
|
747 *offsetp = -*offsetp; |
|
748 return strp; |
|
749 } |
|
750 |
|
751 /* |
|
752 ** Given a pointer into a time zone string, extract a rule in the form |
|
753 ** date[/time]. See POSIX section 8 for the format of "date" and "time". |
|
754 ** If a valid rule is not found, return NULL. |
|
755 ** Otherwise, return a pointer to the first character not part of the rule. |
|
756 */ |
|
757 |
|
758 static const char * |
|
759 getrule(strp, rulep) |
|
760 const char * strp; |
|
761 register struct rule * const rulep; |
|
762 { |
|
763 if (*strp == 'J') { |
|
764 /* |
|
765 ** Julian day. |
|
766 */ |
|
767 rulep->r_type = JULIAN_DAY; |
|
768 ++strp; |
|
769 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); |
|
770 } else if (*strp == 'M') { |
|
771 /* |
|
772 ** Month, week, day. |
|
773 */ |
|
774 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; |
|
775 ++strp; |
|
776 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); |
|
777 if (strp == NULL) |
|
778 return NULL; |
|
779 if (*strp++ != '.') |
|
780 return NULL; |
|
781 strp = getnum(strp, &rulep->r_week, 1, 5); |
|
782 if (strp == NULL) |
|
783 return NULL; |
|
784 if (*strp++ != '.') |
|
785 return NULL; |
|
786 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); |
|
787 } else if (is_digit(*strp)) { |
|
788 /* |
|
789 ** Day of year. |
|
790 */ |
|
791 rulep->r_type = DAY_OF_YEAR; |
|
792 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); |
|
793 } else return NULL; /* invalid format */ |
|
794 if (strp == NULL) |
|
795 return NULL; |
|
796 if (*strp == '/') { |
|
797 /* |
|
798 ** Time specified. |
|
799 */ |
|
800 ++strp; |
|
801 strp = getsecs(strp, &rulep->r_time); |
|
802 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ |
|
803 return strp; |
|
804 } |
|
805 |
|
806 /* |
|
807 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the |
|
808 ** year, a rule, and the offset from UTC at the time that rule takes effect, |
|
809 ** calculate the Epoch-relative time that rule takes effect. |
|
810 */ |
|
811 |
|
812 static time_t |
|
813 transtime(janfirst, year, rulep, offset) |
|
814 const time_t janfirst; |
|
815 const int year; |
|
816 register const struct rule * const rulep; |
|
817 const long offset; |
|
818 { |
|
819 register int leapyear; |
|
820 register time_t value; |
|
821 register int i; |
|
822 int d, m1, yy0, yy1, yy2, dow; |
|
823 |
|
824 INITIALIZE(value); |
|
825 leapyear = isleap(year); |
|
826 switch (rulep->r_type) { |
|
827 |
|
828 case JULIAN_DAY: |
|
829 /* |
|
830 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap |
|
831 ** years. |
|
832 ** In non-leap years, or if the day number is 59 or less, just |
|
833 ** add SECSPERDAY times the day number-1 to the time of |
|
834 ** January 1, midnight, to get the day. |
|
835 */ |
|
836 value = janfirst + (rulep->r_day - 1) * SECSPERDAY; |
|
837 if (leapyear && rulep->r_day >= 60) |
|
838 value += SECSPERDAY; |
|
839 break; |
|
840 |
|
841 case DAY_OF_YEAR: |
|
842 /* |
|
843 ** n - day of year. |
|
844 ** Just add SECSPERDAY times the day number to the time of |
|
845 ** January 1, midnight, to get the day. |
|
846 */ |
|
847 value = janfirst + rulep->r_day * SECSPERDAY; |
|
848 break; |
|
849 |
|
850 case MONTH_NTH_DAY_OF_WEEK: |
|
851 /* |
|
852 ** Mm.n.d - nth "dth day" of month m. |
|
853 */ |
|
854 value = janfirst; |
|
855 for (i = 0; i < rulep->r_mon - 1; ++i) |
|
856 value += mon_lengths[leapyear][i] * SECSPERDAY; |
|
857 |
|
858 /* |
|
859 ** Use Zeller's Congruence to get day-of-week of first day of |
|
860 ** month. |
|
861 */ |
|
862 m1 = (rulep->r_mon + 9) % 12 + 1; |
|
863 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; |
|
864 yy1 = yy0 / 100; |
|
865 yy2 = yy0 % 100; |
|
866 dow = ((26 * m1 - 2) / 10 + |
|
867 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; |
|
868 if (dow < 0) |
|
869 dow += DAYSPERWEEK; |
|
870 |
|
871 /* |
|
872 ** "dow" is the day-of-week of the first day of the month. Get |
|
873 ** the day-of-month (zero-origin) of the first "dow" day of the |
|
874 ** month. |
|
875 */ |
|
876 d = rulep->r_day - dow; |
|
877 if (d < 0) |
|
878 d += DAYSPERWEEK; |
|
879 for (i = 1; i < rulep->r_week; ++i) { |
|
880 if (d + DAYSPERWEEK >= |
|
881 mon_lengths[leapyear][rulep->r_mon - 1]) |
|
882 break; |
|
883 d += DAYSPERWEEK; |
|
884 } |
|
885 |
|
886 /* |
|
887 ** "d" is the day-of-month (zero-origin) of the day we want. |
|
888 */ |
|
889 value += d * SECSPERDAY; |
|
890 break; |
|
891 } |
|
892 |
|
893 /* |
|
894 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in |
|
895 ** question. To get the Epoch-relative time of the specified local |
|
896 ** time on that day, add the transition time and the current offset |
|
897 ** from UTC. |
|
898 */ |
|
899 return value + rulep->r_time + offset; |
|
900 } |
|
901 |
|
902 /* |
|
903 ** Given a POSIX section 8-style TZ string, fill in the rule tables as |
|
904 ** appropriate. |
|
905 */ |
|
906 |
|
907 static int |
|
908 tzparse(name, sp, lastditch) |
|
909 const char * name; |
|
910 register struct state * const sp; |
|
911 const int lastditch; |
|
912 { |
|
913 const char * stdname; |
|
914 const char * dstname; |
|
915 size_t stdlen; |
|
916 size_t dstlen; |
|
917 long stdoffset; |
|
918 long dstoffset; |
|
919 register time_t * atp; |
|
920 register unsigned char * typep; |
|
921 register char * cp; |
|
922 register int load_result; |
|
923 |
|
924 INITIALIZE(dstname); |
|
925 stdname = name; |
|
926 if (lastditch) { |
|
927 stdlen = strlen(name); /* length of standard zone name */ |
|
928 name += stdlen; |
|
929 if (stdlen >= sizeof sp->chars) |
|
930 stdlen = (sizeof sp->chars) - 1; |
|
931 stdoffset = 0; |
|
932 } else { |
|
933 if (*name == '<') { |
|
934 name++; |
|
935 stdname = name; |
|
936 name = getqzname(name, '>'); |
|
937 if (*name != '>') |
|
938 return (-1); |
|
939 stdlen = name - stdname; |
|
940 name++; |
|
941 } else { |
|
942 name = getzname(name); |
|
943 stdlen = name - stdname; |
|
944 } |
|
945 if (*name == '\0') |
|
946 return -1; |
|
947 name = getoffset(name, &stdoffset); |
|
948 if (name == NULL) |
|
949 return -1; |
|
950 } |
|
951 load_result = tzload(TZDEFRULES, sp, FALSE); |
|
952 if (load_result != 0) |
|
953 sp->leapcnt = 0; /* so, we're off a little */ |
|
954 if (*name != '\0') { |
|
955 if (*name == '<') { |
|
956 dstname = ++name; |
|
957 name = getqzname(name, '>'); |
|
958 if (*name != '>') |
|
959 return -1; |
|
960 dstlen = name - dstname; |
|
961 name++; |
|
962 } else { |
|
963 dstname = name; |
|
964 name = getzname(name); |
|
965 dstlen = name - dstname; /* length of DST zone name */ |
|
966 } |
|
967 if (*name != '\0' && *name != ',' && *name != ';') { |
|
968 name = getoffset(name, &dstoffset); |
|
969 if (name == NULL) |
|
970 return -1; |
|
971 } else dstoffset = stdoffset - SECSPERHOUR; |
|
972 if (*name == '\0' && load_result != 0) |
|
973 name = TZDEFRULESTRING; |
|
974 if (*name == ',' || *name == ';') { |
|
975 struct rule start; |
|
976 struct rule end; |
|
977 register int year; |
|
978 register time_t janfirst; |
|
979 time_t starttime; |
|
980 time_t endtime; |
|
981 |
|
982 ++name; |
|
983 if ((name = getrule(name, &start)) == NULL) |
|
984 return -1; |
|
985 if (*name++ != ',') |
|
986 return -1; |
|
987 if ((name = getrule(name, &end)) == NULL) |
|
988 return -1; |
|
989 if (*name != '\0') |
|
990 return -1; |
|
991 sp->typecnt = 2; /* standard time and DST */ |
|
992 /* |
|
993 ** Two transitions per year, from EPOCH_YEAR forward. |
|
994 */ |
|
995 sp->ttis[0].tt_gmtoff = -dstoffset; |
|
996 sp->ttis[0].tt_isdst = 1; |
|
997 sp->ttis[0].tt_abbrind = stdlen + 1; |
|
998 sp->ttis[1].tt_gmtoff = -stdoffset; |
|
999 sp->ttis[1].tt_isdst = 0; |
|
1000 sp->ttis[1].tt_abbrind = 0; |
|
1001 atp = sp->ats; |
|
1002 typep = sp->types; |
|
1003 janfirst = 0; |
|
1004 sp->timecnt = 0; |
|
1005 for (year = EPOCH_YEAR; |
|
1006 sp->timecnt + 2 <= TZ_MAX_TIMES; |
|
1007 ++year) { |
|
1008 time_t newfirst; |
|
1009 |
|
1010 starttime = transtime(janfirst, year, &start, |
|
1011 stdoffset); |
|
1012 endtime = transtime(janfirst, year, &end, |
|
1013 dstoffset); |
|
1014 if (starttime > endtime) { |
|
1015 *atp++ = endtime; |
|
1016 *typep++ = 1; /* DST ends */ |
|
1017 *atp++ = starttime; |
|
1018 *typep++ = 0; /* DST begins */ |
|
1019 } else { |
|
1020 *atp++ = starttime; |
|
1021 *typep++ = 0; /* DST begins */ |
|
1022 *atp++ = endtime; |
|
1023 *typep++ = 1; /* DST ends */ |
|
1024 } |
|
1025 sp->timecnt += 2; |
|
1026 newfirst = janfirst; |
|
1027 newfirst += year_lengths[isleap(year)] * |
|
1028 SECSPERDAY; |
|
1029 if (newfirst <= janfirst) |
|
1030 break; |
|
1031 janfirst = newfirst; |
|
1032 } |
|
1033 } else { |
|
1034 register long theirstdoffset; |
|
1035 register long theirdstoffset; |
|
1036 register long theiroffset; |
|
1037 register int isdst; |
|
1038 register int i; |
|
1039 register int j; |
|
1040 |
|
1041 if (*name != '\0') |
|
1042 return -1; |
|
1043 /* |
|
1044 ** Initial values of theirstdoffset and theirdstoffset. |
|
1045 */ |
|
1046 theirstdoffset = 0; |
|
1047 for (i = 0; i < sp->timecnt; ++i) { |
|
1048 j = sp->types[i]; |
|
1049 if (!sp->ttis[j].tt_isdst) { |
|
1050 theirstdoffset = |
|
1051 -sp->ttis[j].tt_gmtoff; |
|
1052 break; |
|
1053 } |
|
1054 } |
|
1055 theirdstoffset = 0; |
|
1056 for (i = 0; i < sp->timecnt; ++i) { |
|
1057 j = sp->types[i]; |
|
1058 if (sp->ttis[j].tt_isdst) { |
|
1059 theirdstoffset = |
|
1060 -sp->ttis[j].tt_gmtoff; |
|
1061 break; |
|
1062 } |
|
1063 } |
|
1064 /* |
|
1065 ** Initially we're assumed to be in standard time. |
|
1066 */ |
|
1067 isdst = FALSE; |
|
1068 theiroffset = theirstdoffset; |
|
1069 /* |
|
1070 ** Now juggle transition times and types |
|
1071 ** tracking offsets as you do. |
|
1072 */ |
|
1073 for (i = 0; i < sp->timecnt; ++i) { |
|
1074 j = sp->types[i]; |
|
1075 sp->types[i] = sp->ttis[j].tt_isdst; |
|
1076 if (sp->ttis[j].tt_ttisgmt) { |
|
1077 /* No adjustment to transition time */ |
|
1078 } else { |
|
1079 /* |
|
1080 ** If summer time is in effect, and the |
|
1081 ** transition time was not specified as |
|
1082 ** standard time, add the summer time |
|
1083 ** offset to the transition time; |
|
1084 ** otherwise, add the standard time |
|
1085 ** offset to the transition time. |
|
1086 */ |
|
1087 /* |
|
1088 ** Transitions from DST to DDST |
|
1089 ** will effectively disappear since |
|
1090 ** POSIX provides for only one DST |
|
1091 ** offset. |
|
1092 */ |
|
1093 if (isdst && !sp->ttis[j].tt_ttisstd) { |
|
1094 sp->ats[i] += dstoffset - |
|
1095 theirdstoffset; |
|
1096 } else { |
|
1097 sp->ats[i] += stdoffset - |
|
1098 theirstdoffset; |
|
1099 } |
|
1100 } |
|
1101 theiroffset = -sp->ttis[j].tt_gmtoff; |
|
1102 if (sp->ttis[j].tt_isdst) |
|
1103 theirdstoffset = theiroffset; |
|
1104 else theirstdoffset = theiroffset; |
|
1105 } |
|
1106 /* |
|
1107 ** Finally, fill in ttis. |
|
1108 ** ttisstd and ttisgmt need not be handled. |
|
1109 */ |
|
1110 sp->ttis[0].tt_gmtoff = -stdoffset; |
|
1111 sp->ttis[0].tt_isdst = FALSE; |
|
1112 sp->ttis[0].tt_abbrind = 0; |
|
1113 sp->ttis[1].tt_gmtoff = -dstoffset; |
|
1114 sp->ttis[1].tt_isdst = TRUE; |
|
1115 sp->ttis[1].tt_abbrind = stdlen + 1; |
|
1116 sp->typecnt = 2; |
|
1117 } |
|
1118 } else { |
|
1119 dstlen = 0; |
|
1120 sp->typecnt = 1; /* only standard time */ |
|
1121 sp->timecnt = 0; |
|
1122 sp->ttis[0].tt_gmtoff = -stdoffset; |
|
1123 sp->ttis[0].tt_isdst = 0; |
|
1124 sp->ttis[0].tt_abbrind = 0; |
|
1125 } |
|
1126 sp->charcnt = stdlen + 1; |
|
1127 if (dstlen != 0) |
|
1128 sp->charcnt += dstlen + 1; |
|
1129 if ((size_t) sp->charcnt > sizeof sp->chars) |
|
1130 return -1; |
|
1131 cp = sp->chars; |
|
1132 (void) strncpy(cp, stdname, stdlen); |
|
1133 cp += stdlen; |
|
1134 *cp++ = '\0'; |
|
1135 if (dstlen != 0) { |
|
1136 (void) strncpy(cp, dstname, dstlen); |
|
1137 *(cp + dstlen) = '\0'; |
|
1138 } |
|
1139 return 0; |
|
1140 } |
|
1141 |
|
1142 static void |
|
1143 gmtload(sp) |
|
1144 struct state * const sp; |
|
1145 { |
|
1146 if (tzload(gmt, sp, TRUE) != 0) |
|
1147 (void) tzparse(gmt, sp, TRUE); |
|
1148 } |
|
1149 |
|
1150 #ifndef STD_INSPIRED |
|
1151 /* |
|
1152 ** A non-static declaration of tzsetwall in a system header file |
|
1153 ** may cause a warning about this upcoming static declaration... |
|
1154 */ |
|
1155 static |
|
1156 #endif /* !defined STD_INSPIRED */ |
|
1157 void |
|
1158 tzsetwall(void) |
|
1159 { |
|
1160 if (lcl_is_set < 0) |
|
1161 return; |
|
1162 lcl_is_set = -1; |
|
1163 |
|
1164 #ifdef ALL_STATE |
|
1165 if (lclptr == NULL) { |
|
1166 lclptr = (struct state *) malloc(sizeof *lclptr); |
|
1167 if (lclptr == NULL) { |
|
1168 settzname(); /* all we can do */ |
|
1169 return; |
|
1170 } |
|
1171 } |
|
1172 #endif /* defined ALL_STATE */ |
|
1173 if (tzload((char *) NULL, lclptr, TRUE) != 0) |
|
1174 gmtload(lclptr); |
|
1175 settzname(); |
|
1176 } |
|
1177 |
|
1178 void |
|
1179 tzset(void) |
|
1180 { |
|
1181 register const char * name; |
|
1182 |
|
1183 name = getenv("TZ"); |
|
1184 if (name == NULL) { |
|
1185 tzsetwall(); |
|
1186 return; |
|
1187 } |
|
1188 |
|
1189 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) |
|
1190 return; |
|
1191 lcl_is_set = strlen(name) < sizeof lcl_TZname; |
|
1192 if (lcl_is_set) |
|
1193 (void) strcpy(lcl_TZname, name); |
|
1194 |
|
1195 #ifdef ALL_STATE |
|
1196 if (lclptr == NULL) { |
|
1197 lclptr = (struct state *) malloc(sizeof *lclptr); |
|
1198 if (lclptr == NULL) { |
|
1199 settzname(); /* all we can do */ |
|
1200 return; |
|
1201 } |
|
1202 } |
|
1203 #endif /* defined ALL_STATE */ |
|
1204 if (*name == '\0') { |
|
1205 /* |
|
1206 ** User wants it fast rather than right. |
|
1207 */ |
|
1208 lclptr->leapcnt = 0; /* so, we're off a little */ |
|
1209 lclptr->timecnt = 0; |
|
1210 lclptr->typecnt = 0; |
|
1211 lclptr->ttis[0].tt_isdst = 0; |
|
1212 lclptr->ttis[0].tt_gmtoff = 0; |
|
1213 lclptr->ttis[0].tt_abbrind = 0; |
|
1214 (void) strcpy(lclptr->chars, gmt); |
|
1215 } else if (tzload(name, lclptr, TRUE) != 0) |
|
1216 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) |
|
1217 (void) gmtload(lclptr); |
|
1218 settzname(); |
|
1219 } |
|
1220 |
|
1221 /* |
|
1222 ** The easy way to behave "as if no library function calls" localtime |
|
1223 ** is to not call it--so we drop its guts into "localsub", which can be |
|
1224 ** freely called. (And no, the PANS doesn't require the above behavior-- |
|
1225 ** but it *is* desirable.) |
|
1226 ** |
|
1227 ** The unused offset argument is for the benefit of mktime variants. |
|
1228 */ |
|
1229 |
|
1230 /*ARGSUSED*/ |
|
1231 static struct tm * |
|
1232 localsub(timep, offset, tmp) |
|
1233 const time_t * const timep; |
|
1234 const long offset; |
|
1235 struct tm * const tmp; |
|
1236 { |
|
1237 register struct state * sp; |
|
1238 register const struct ttinfo * ttisp; |
|
1239 register int i; |
|
1240 register struct tm * result; |
|
1241 const time_t t = *timep; |
|
1242 |
|
1243 sp = lclptr; |
|
1244 #ifdef ALL_STATE |
|
1245 if (sp == NULL) |
|
1246 return gmtsub(timep, offset, tmp); |
|
1247 #endif /* defined ALL_STATE */ |
|
1248 if ((sp->goback && t < sp->ats[0]) || |
|
1249 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { |
|
1250 time_t newt = t; |
|
1251 register time_t seconds; |
|
1252 register time_t tcycles; |
|
1253 register int_fast64_t icycles; |
|
1254 |
|
1255 if (t < sp->ats[0]) |
|
1256 seconds = sp->ats[0] - t; |
|
1257 else seconds = t - sp->ats[sp->timecnt - 1]; |
|
1258 --seconds; |
|
1259 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; |
|
1260 ++tcycles; |
|
1261 icycles = tcycles; |
|
1262 if (tcycles - icycles >= 1 || icycles - tcycles >= 1) |
|
1263 return NULL; |
|
1264 seconds = icycles; |
|
1265 seconds *= YEARSPERREPEAT; |
|
1266 seconds *= AVGSECSPERYEAR; |
|
1267 if (t < sp->ats[0]) |
|
1268 newt += seconds; |
|
1269 else newt -= seconds; |
|
1270 if (newt < sp->ats[0] || |
|
1271 newt > sp->ats[sp->timecnt - 1]) |
|
1272 return NULL; /* "cannot happen" */ |
|
1273 result = localsub(&newt, offset, tmp); |
|
1274 if (result == tmp) { |
|
1275 register time_t newy; |
|
1276 |
|
1277 newy = tmp->tm_year; |
|
1278 if (t < sp->ats[0]) |
|
1279 newy -= icycles * YEARSPERREPEAT; |
|
1280 else newy += icycles * YEARSPERREPEAT; |
|
1281 tmp->tm_year = newy; |
|
1282 if (tmp->tm_year != newy) |
|
1283 return NULL; |
|
1284 } |
|
1285 return result; |
|
1286 } |
|
1287 if (sp->timecnt == 0 || t < sp->ats[0]) { |
|
1288 i = 0; |
|
1289 while (sp->ttis[i].tt_isdst) |
|
1290 if (++i >= sp->typecnt) { |
|
1291 i = 0; |
|
1292 break; |
|
1293 } |
|
1294 } else { |
|
1295 register int lo = 1; |
|
1296 register int hi = sp->timecnt; |
|
1297 |
|
1298 while (lo < hi) { |
|
1299 register int mid = (lo + hi) >> 1; |
|
1300 |
|
1301 if (t < sp->ats[mid]) |
|
1302 hi = mid; |
|
1303 else lo = mid + 1; |
|
1304 } |
|
1305 i = (int) sp->types[lo - 1]; |
|
1306 } |
|
1307 ttisp = &sp->ttis[i]; |
|
1308 /* |
|
1309 ** To get (wrong) behavior that's compatible with System V Release 2.0 |
|
1310 ** you'd replace the statement below with |
|
1311 ** t += ttisp->tt_gmtoff; |
|
1312 ** timesub(&t, 0L, sp, tmp); |
|
1313 */ |
|
1314 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); |
|
1315 tmp->tm_isdst = ttisp->tt_isdst; |
|
1316 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; |
|
1317 #ifdef TM_ZONE |
|
1318 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; |
|
1319 #endif /* defined TM_ZONE */ |
|
1320 return result; |
|
1321 } |
|
1322 |
|
1323 struct tm * |
|
1324 localtime(timep) |
|
1325 const time_t * const timep; |
|
1326 { |
|
1327 tzset(); |
|
1328 return localsub(timep, 0L, &tm); |
|
1329 } |
|
1330 |
|
1331 /* |
|
1332 ** Re-entrant version of localtime. |
|
1333 */ |
|
1334 |
|
1335 struct tm * |
|
1336 localtime_r(timep, tmp) |
|
1337 const time_t * const timep; |
|
1338 struct tm * tmp; |
|
1339 { |
|
1340 return localsub(timep, 0L, tmp); |
|
1341 } |
|
1342 |
|
1343 /* |
|
1344 ** gmtsub is to gmtime as localsub is to localtime. |
|
1345 */ |
|
1346 |
|
1347 static struct tm * |
|
1348 gmtsub(timep, offset, tmp) |
|
1349 const time_t * const timep; |
|
1350 const long offset; |
|
1351 struct tm * const tmp; |
|
1352 { |
|
1353 register struct tm * result; |
|
1354 |
|
1355 if (!gmt_is_set) { |
|
1356 gmt_is_set = TRUE; |
|
1357 #ifdef ALL_STATE |
|
1358 gmtptr = (struct state *) malloc(sizeof *gmtptr); |
|
1359 if (gmtptr != NULL) |
|
1360 #endif /* defined ALL_STATE */ |
|
1361 gmtload(gmtptr); |
|
1362 } |
|
1363 result = timesub(timep, offset, gmtptr, tmp); |
|
1364 #ifdef TM_ZONE |
|
1365 /* |
|
1366 ** Could get fancy here and deliver something such as |
|
1367 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, |
|
1368 ** but this is no time for a treasure hunt. |
|
1369 */ |
|
1370 if (offset != 0) |
|
1371 tmp->TM_ZONE = wildabbr; |
|
1372 else { |
|
1373 #ifdef ALL_STATE |
|
1374 if (gmtptr == NULL) |
|
1375 tmp->TM_ZONE = gmt; |
|
1376 else tmp->TM_ZONE = gmtptr->chars; |
|
1377 #endif /* defined ALL_STATE */ |
|
1378 #ifndef ALL_STATE |
|
1379 tmp->TM_ZONE = gmtptr->chars; |
|
1380 #endif /* State Farm */ |
|
1381 } |
|
1382 #endif /* defined TM_ZONE */ |
|
1383 return result; |
|
1384 } |
|
1385 |
|
1386 struct tm * |
|
1387 gmtime(timep) |
|
1388 const time_t * const timep; |
|
1389 { |
|
1390 return gmtsub(timep, 0L, &tm); |
|
1391 } |
|
1392 |
|
1393 /* |
|
1394 * Re-entrant version of gmtime. |
|
1395 */ |
|
1396 |
|
1397 struct tm * |
|
1398 gmtime_r(timep, tmp) |
|
1399 const time_t * const timep; |
|
1400 struct tm * tmp; |
|
1401 { |
|
1402 return gmtsub(timep, 0L, tmp); |
|
1403 } |
|
1404 |
|
1405 #ifdef STD_INSPIRED |
|
1406 |
|
1407 struct tm * |
|
1408 offtime(timep, offset) |
|
1409 const time_t * const timep; |
|
1410 const long offset; |
|
1411 { |
|
1412 return gmtsub(timep, offset, &tm); |
|
1413 } |
|
1414 |
|
1415 #endif /* defined STD_INSPIRED */ |
|
1416 |
|
1417 /* |
|
1418 ** Return the number of leap years through the end of the given year |
|
1419 ** where, to make the math easy, the answer for year zero is defined as zero. |
|
1420 */ |
|
1421 |
|
1422 static int |
|
1423 leaps_thru_end_of(y) |
|
1424 register const int y; |
|
1425 { |
|
1426 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : |
|
1427 -(leaps_thru_end_of(-(y + 1)) + 1); |
|
1428 } |
|
1429 |
|
1430 static struct tm * |
|
1431 timesub(timep, offset, sp, tmp) |
|
1432 const time_t * const timep; |
|
1433 const long offset; |
|
1434 register const struct state * const sp; |
|
1435 register struct tm * const tmp; |
|
1436 { |
|
1437 register const struct lsinfo * lp; |
|
1438 register time_t tdays; |
|
1439 register int idays; /* unsigned would be so 2003 */ |
|
1440 register long rem; |
|
1441 int y; |
|
1442 register const int * ip; |
|
1443 register long corr; |
|
1444 register int hit; |
|
1445 register int i; |
|
1446 |
|
1447 corr = 0; |
|
1448 hit = 0; |
|
1449 #ifdef ALL_STATE |
|
1450 i = (sp == NULL) ? 0 : sp->leapcnt; |
|
1451 #endif /* defined ALL_STATE */ |
|
1452 #ifndef ALL_STATE |
|
1453 i = sp->leapcnt; |
|
1454 #endif /* State Farm */ |
|
1455 while (--i >= 0) { |
|
1456 lp = &sp->lsis[i]; |
|
1457 if (*timep >= lp->ls_trans) { |
|
1458 if (*timep == lp->ls_trans) { |
|
1459 hit = ((i == 0 && lp->ls_corr > 0) || |
|
1460 lp->ls_corr > sp->lsis[i - 1].ls_corr); |
|
1461 if (hit) |
|
1462 while (i > 0 && |
|
1463 sp->lsis[i].ls_trans == |
|
1464 sp->lsis[i - 1].ls_trans + 1 && |
|
1465 sp->lsis[i].ls_corr == |
|
1466 sp->lsis[i - 1].ls_corr + 1) { |
|
1467 ++hit; |
|
1468 --i; |
|
1469 } |
|
1470 } |
|
1471 corr = lp->ls_corr; |
|
1472 break; |
|
1473 } |
|
1474 } |
|
1475 y = EPOCH_YEAR; |
|
1476 tdays = *timep / SECSPERDAY; |
|
1477 rem = *timep - tdays * SECSPERDAY; |
|
1478 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { |
|
1479 int newy; |
|
1480 register time_t tdelta; |
|
1481 register int idelta; |
|
1482 register int leapdays; |
|
1483 |
|
1484 tdelta = tdays / DAYSPERLYEAR; |
|
1485 idelta = tdelta; |
|
1486 if (tdelta - idelta >= 1 || idelta - tdelta >= 1) |
|
1487 return NULL; |
|
1488 if (idelta == 0) |
|
1489 idelta = (tdays < 0) ? -1 : 1; |
|
1490 newy = y; |
|
1491 if (increment_overflow(&newy, idelta)) |
|
1492 return NULL; |
|
1493 leapdays = leaps_thru_end_of(newy - 1) - |
|
1494 leaps_thru_end_of(y - 1); |
|
1495 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; |
|
1496 tdays -= leapdays; |
|
1497 y = newy; |
|
1498 } |
|
1499 { |
|
1500 register long seconds; |
|
1501 |
|
1502 seconds = tdays * SECSPERDAY + 0.5; |
|
1503 tdays = seconds / SECSPERDAY; |
|
1504 rem += seconds - tdays * SECSPERDAY; |
|
1505 } |
|
1506 /* |
|
1507 ** Given the range, we can now fearlessly cast... |
|
1508 */ |
|
1509 idays = tdays; |
|
1510 rem += offset - corr; |
|
1511 while (rem < 0) { |
|
1512 rem += SECSPERDAY; |
|
1513 --idays; |
|
1514 } |
|
1515 while (rem >= SECSPERDAY) { |
|
1516 rem -= SECSPERDAY; |
|
1517 ++idays; |
|
1518 } |
|
1519 while (idays < 0) { |
|
1520 if (increment_overflow(&y, -1)) |
|
1521 return NULL; |
|
1522 idays += year_lengths[isleap(y)]; |
|
1523 } |
|
1524 while (idays >= year_lengths[isleap(y)]) { |
|
1525 idays -= year_lengths[isleap(y)]; |
|
1526 if (increment_overflow(&y, 1)) |
|
1527 return NULL; |
|
1528 } |
|
1529 tmp->tm_year = y; |
|
1530 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) |
|
1531 return NULL; |
|
1532 tmp->tm_yday = idays; |
|
1533 /* |
|
1534 ** The "extra" mods below avoid overflow problems. |
|
1535 */ |
|
1536 tmp->tm_wday = EPOCH_WDAY + |
|
1537 ((y - EPOCH_YEAR) % DAYSPERWEEK) * |
|
1538 (DAYSPERNYEAR % DAYSPERWEEK) + |
|
1539 leaps_thru_end_of(y - 1) - |
|
1540 leaps_thru_end_of(EPOCH_YEAR - 1) + |
|
1541 idays; |
|
1542 tmp->tm_wday %= DAYSPERWEEK; |
|
1543 if (tmp->tm_wday < 0) |
|
1544 tmp->tm_wday += DAYSPERWEEK; |
|
1545 tmp->tm_hour = (int) (rem / SECSPERHOUR); |
|
1546 rem %= SECSPERHOUR; |
|
1547 tmp->tm_min = (int) (rem / SECSPERMIN); |
|
1548 /* |
|
1549 ** A positive leap second requires a special |
|
1550 ** representation. This uses "... ??:59:60" et seq. |
|
1551 */ |
|
1552 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; |
|
1553 ip = mon_lengths[isleap(y)]; |
|
1554 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) |
|
1555 idays -= ip[tmp->tm_mon]; |
|
1556 tmp->tm_mday = (int) (idays + 1); |
|
1557 tmp->tm_isdst = 0; |
|
1558 #ifdef TM_GMTOFF |
|
1559 tmp->TM_GMTOFF = offset; |
|
1560 #endif /* defined TM_GMTOFF */ |
|
1561 return tmp; |
|
1562 } |
|
1563 |
|
1564 char * |
|
1565 ctime(timep) |
|
1566 const time_t * const timep; |
|
1567 { |
|
1568 /* |
|
1569 ** Section 4.12.3.2 of X3.159-1989 requires that |
|
1570 ** The ctime function converts the calendar time pointed to by timer |
|
1571 ** to local time in the form of a string. It is equivalent to |
|
1572 ** asctime(localtime(timer)) |
|
1573 */ |
|
1574 return asctime(localtime(timep)); |
|
1575 } |
|
1576 |
|
1577 char * |
|
1578 ctime_r(timep, buf) |
|
1579 const time_t * const timep; |
|
1580 char * buf; |
|
1581 { |
|
1582 struct tm mytm; |
|
1583 |
|
1584 return asctime_r(localtime_r(timep, &mytm), buf); |
|
1585 } |
|
1586 |
|
1587 /* |
|
1588 ** Adapted from code provided by Robert Elz, who writes: |
|
1589 ** The "best" way to do mktime I think is based on an idea of Bob |
|
1590 ** Kridle's (so its said...) from a long time ago. |
|
1591 ** It does a binary search of the time_t space. Since time_t's are |
|
1592 ** just 32 bits, its a max of 32 iterations (even at 64 bits it |
|
1593 ** would still be very reasonable). |
|
1594 */ |
|
1595 |
|
1596 #ifndef WRONG |
|
1597 #define WRONG (-1) |
|
1598 #endif /* !defined WRONG */ |
|
1599 |
|
1600 /* |
|
1601 ** Simplified normalize logic courtesy Paul Eggert. |
|
1602 */ |
|
1603 |
|
1604 static int |
|
1605 increment_overflow(number, delta) |
|
1606 int * number; |
|
1607 int delta; |
|
1608 { |
|
1609 int number0; |
|
1610 |
|
1611 number0 = *number; |
|
1612 *number += delta; |
|
1613 return (*number < number0) != (delta < 0); |
|
1614 } |
|
1615 |
|
1616 static int |
|
1617 long_increment_overflow(number, delta) |
|
1618 long * number; |
|
1619 int delta; |
|
1620 { |
|
1621 long number0; |
|
1622 |
|
1623 number0 = *number; |
|
1624 *number += delta; |
|
1625 return (*number < number0) != (delta < 0); |
|
1626 } |
|
1627 |
|
1628 static int |
|
1629 normalize_overflow(tensptr, unitsptr, base) |
|
1630 int * const tensptr; |
|
1631 int * const unitsptr; |
|
1632 const int base; |
|
1633 { |
|
1634 register int tensdelta; |
|
1635 |
|
1636 tensdelta = (*unitsptr >= 0) ? |
|
1637 (*unitsptr / base) : |
|
1638 (-1 - (-1 - *unitsptr) / base); |
|
1639 *unitsptr -= tensdelta * base; |
|
1640 return increment_overflow(tensptr, tensdelta); |
|
1641 } |
|
1642 |
|
1643 static int |
|
1644 long_normalize_overflow(tensptr, unitsptr, base) |
|
1645 long * const tensptr; |
|
1646 int * const unitsptr; |
|
1647 const int base; |
|
1648 { |
|
1649 register int tensdelta; |
|
1650 |
|
1651 tensdelta = (*unitsptr >= 0) ? |
|
1652 (*unitsptr / base) : |
|
1653 (-1 - (-1 - *unitsptr) / base); |
|
1654 *unitsptr -= tensdelta * base; |
|
1655 return long_increment_overflow(tensptr, tensdelta); |
|
1656 } |
|
1657 |
|
1658 static int |
|
1659 tmcomp(atmp, btmp) |
|
1660 register const struct tm * const atmp; |
|
1661 register const struct tm * const btmp; |
|
1662 { |
|
1663 register int result; |
|
1664 |
|
1665 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && |
|
1666 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && |
|
1667 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && |
|
1668 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && |
|
1669 (result = (atmp->tm_min - btmp->tm_min)) == 0) |
|
1670 result = atmp->tm_sec - btmp->tm_sec; |
|
1671 return result; |
|
1672 } |
|
1673 |
|
1674 static time_t |
|
1675 time2sub(tmp, funcp, offset, okayp, do_norm_secs) |
|
1676 struct tm * const tmp; |
|
1677 struct tm * (* const funcp)(const time_t*, long, struct tm*); |
|
1678 const long offset; |
|
1679 int * const okayp; |
|
1680 const int do_norm_secs; |
|
1681 { |
|
1682 register const struct state * sp; |
|
1683 register int dir; |
|
1684 register int i, j; |
|
1685 register int saved_seconds; |
|
1686 register long li; |
|
1687 register time_t lo; |
|
1688 register time_t hi; |
|
1689 long y; |
|
1690 time_t newt; |
|
1691 time_t t; |
|
1692 struct tm yourtm, mytm; |
|
1693 |
|
1694 *okayp = FALSE; |
|
1695 yourtm = *tmp; |
|
1696 if (do_norm_secs) { |
|
1697 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, |
|
1698 SECSPERMIN)) |
|
1699 return WRONG; |
|
1700 } |
|
1701 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) |
|
1702 return WRONG; |
|
1703 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) |
|
1704 return WRONG; |
|
1705 y = yourtm.tm_year; |
|
1706 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) |
|
1707 return WRONG; |
|
1708 /* |
|
1709 ** Turn y into an actual year number for now. |
|
1710 ** It is converted back to an offset from TM_YEAR_BASE later. |
|
1711 */ |
|
1712 if (long_increment_overflow(&y, TM_YEAR_BASE)) |
|
1713 return WRONG; |
|
1714 while (yourtm.tm_mday <= 0) { |
|
1715 if (long_increment_overflow(&y, -1)) |
|
1716 return WRONG; |
|
1717 li = y + (1 < yourtm.tm_mon); |
|
1718 yourtm.tm_mday += year_lengths[isleap(li)]; |
|
1719 } |
|
1720 while (yourtm.tm_mday > DAYSPERLYEAR) { |
|
1721 li = y + (1 < yourtm.tm_mon); |
|
1722 yourtm.tm_mday -= year_lengths[isleap(li)]; |
|
1723 if (long_increment_overflow(&y, 1)) |
|
1724 return WRONG; |
|
1725 } |
|
1726 for ( ; ; ) { |
|
1727 i = mon_lengths[isleap(y)][yourtm.tm_mon]; |
|
1728 if (yourtm.tm_mday <= i) |
|
1729 break; |
|
1730 yourtm.tm_mday -= i; |
|
1731 if (++yourtm.tm_mon >= MONSPERYEAR) { |
|
1732 yourtm.tm_mon = 0; |
|
1733 if (long_increment_overflow(&y, 1)) |
|
1734 return WRONG; |
|
1735 } |
|
1736 } |
|
1737 if (long_increment_overflow(&y, -TM_YEAR_BASE)) |
|
1738 return WRONG; |
|
1739 yourtm.tm_year = y; |
|
1740 if (yourtm.tm_year != y) |
|
1741 return WRONG; |
|
1742 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) |
|
1743 saved_seconds = 0; |
|
1744 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { |
|
1745 /* |
|
1746 ** We can't set tm_sec to 0, because that might push the |
|
1747 ** time below the minimum representable time. |
|
1748 ** Set tm_sec to 59 instead. |
|
1749 ** This assumes that the minimum representable time is |
|
1750 ** not in the same minute that a leap second was deleted from, |
|
1751 ** which is a safer assumption than using 58 would be. |
|
1752 */ |
|
1753 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) |
|
1754 return WRONG; |
|
1755 saved_seconds = yourtm.tm_sec; |
|
1756 yourtm.tm_sec = SECSPERMIN - 1; |
|
1757 } else { |
|
1758 saved_seconds = yourtm.tm_sec; |
|
1759 yourtm.tm_sec = 0; |
|
1760 } |
|
1761 /* |
|
1762 ** Do a binary search (this works whatever time_t's type is). |
|
1763 */ |
|
1764 if (!TYPE_SIGNED(time_t)) { |
|
1765 lo = 0; |
|
1766 hi = lo - 1; |
|
1767 } else if (!TYPE_INTEGRAL(time_t)) { |
|
1768 if (sizeof(time_t) > sizeof(float)) |
|
1769 hi = (time_t) DBL_MAX; |
|
1770 else hi = (time_t) FLT_MAX; |
|
1771 lo = -hi; |
|
1772 } else { |
|
1773 lo = 1; |
|
1774 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) |
|
1775 lo *= 2; |
|
1776 hi = -(lo + 1); |
|
1777 } |
|
1778 for ( ; ; ) { |
|
1779 t = lo / 2 + hi / 2; |
|
1780 if (t < lo) |
|
1781 t = lo; |
|
1782 else if (t > hi) |
|
1783 t = hi; |
|
1784 if ((*funcp)(&t, offset, &mytm) == NULL) { |
|
1785 /* |
|
1786 ** Assume that t is too extreme to be represented in |
|
1787 ** a struct tm; arrange things so that it is less |
|
1788 ** extreme on the next pass. |
|
1789 */ |
|
1790 dir = (t > 0) ? 1 : -1; |
|
1791 } else dir = tmcomp(&mytm, &yourtm); |
|
1792 if (dir != 0) { |
|
1793 if (t == lo) { |
|
1794 ++t; |
|
1795 if (t <= lo) |
|
1796 return WRONG; |
|
1797 ++lo; |
|
1798 } else if (t == hi) { |
|
1799 --t; |
|
1800 if (t >= hi) |
|
1801 return WRONG; |
|
1802 --hi; |
|
1803 } |
|
1804 if (lo > hi) |
|
1805 return WRONG; |
|
1806 if (dir > 0) |
|
1807 hi = t; |
|
1808 else lo = t; |
|
1809 continue; |
|
1810 } |
|
1811 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) |
|
1812 break; |
|
1813 /* |
|
1814 ** Right time, wrong type. |
|
1815 ** Hunt for right time, right type. |
|
1816 ** It's okay to guess wrong since the guess |
|
1817 ** gets checked. |
|
1818 */ |
|
1819 sp = (const struct state *) |
|
1820 ((funcp == localsub) ? lclptr : gmtptr); |
|
1821 #ifdef ALL_STATE |
|
1822 if (sp == NULL) |
|
1823 return WRONG; |
|
1824 #endif /* defined ALL_STATE */ |
|
1825 for (i = sp->typecnt - 1; i >= 0; --i) { |
|
1826 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) |
|
1827 continue; |
|
1828 for (j = sp->typecnt - 1; j >= 0; --j) { |
|
1829 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) |
|
1830 continue; |
|
1831 newt = t + sp->ttis[j].tt_gmtoff - |
|
1832 sp->ttis[i].tt_gmtoff; |
|
1833 if ((*funcp)(&newt, offset, &mytm) == NULL) |
|
1834 continue; |
|
1835 if (tmcomp(&mytm, &yourtm) != 0) |
|
1836 continue; |
|
1837 if (mytm.tm_isdst != yourtm.tm_isdst) |
|
1838 continue; |
|
1839 /* |
|
1840 ** We have a match. |
|
1841 */ |
|
1842 t = newt; |
|
1843 goto label; |
|
1844 } |
|
1845 } |
|
1846 return WRONG; |
|
1847 } |
|
1848 label: |
|
1849 newt = t + saved_seconds; |
|
1850 if ((newt < t) != (saved_seconds < 0)) |
|
1851 return WRONG; |
|
1852 t = newt; |
|
1853 if ((*funcp)(&t, offset, tmp)) |
|
1854 *okayp = TRUE; |
|
1855 return t; |
|
1856 } |
|
1857 |
|
1858 static time_t |
|
1859 time2(tmp, funcp, offset, okayp) |
|
1860 struct tm * const tmp; |
|
1861 struct tm * (* const funcp)(const time_t*, long, struct tm*); |
|
1862 const long offset; |
|
1863 int * const okayp; |
|
1864 { |
|
1865 time_t t; |
|
1866 |
|
1867 /* |
|
1868 ** First try without normalization of seconds |
|
1869 ** (in case tm_sec contains a value associated with a leap second). |
|
1870 ** If that fails, try with normalization of seconds. |
|
1871 */ |
|
1872 t = time2sub(tmp, funcp, offset, okayp, FALSE); |
|
1873 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE); |
|
1874 } |
|
1875 |
|
1876 static time_t |
|
1877 time1(tmp, funcp, offset) |
|
1878 struct tm * const tmp; |
|
1879 struct tm * (* const funcp)(const time_t *, long, struct tm *); |
|
1880 const long offset; |
|
1881 { |
|
1882 register time_t t; |
|
1883 register const struct state * sp; |
|
1884 register int samei, otheri; |
|
1885 register int sameind, otherind; |
|
1886 register int i; |
|
1887 register int nseen; |
|
1888 int seen[TZ_MAX_TYPES]; |
|
1889 int types[TZ_MAX_TYPES]; |
|
1890 int okay; |
|
1891 |
|
1892 if (tmp->tm_isdst > 1) |
|
1893 tmp->tm_isdst = 1; |
|
1894 t = time2(tmp, funcp, offset, &okay); |
|
1895 #ifdef PCTS |
|
1896 /* |
|
1897 ** PCTS code courtesy Grant Sullivan. |
|
1898 */ |
|
1899 if (okay) |
|
1900 return t; |
|
1901 if (tmp->tm_isdst < 0) |
|
1902 tmp->tm_isdst = 0; /* reset to std and try again */ |
|
1903 #endif /* defined PCTS */ |
|
1904 #ifndef PCTS |
|
1905 if (okay || tmp->tm_isdst < 0) |
|
1906 return t; |
|
1907 #endif /* !defined PCTS */ |
|
1908 /* |
|
1909 ** We're supposed to assume that somebody took a time of one type |
|
1910 ** and did some math on it that yielded a "struct tm" that's bad. |
|
1911 ** We try to divine the type they started from and adjust to the |
|
1912 ** type they need. |
|
1913 */ |
|
1914 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr); |
|
1915 #ifdef ALL_STATE |
|
1916 if (sp == NULL) |
|
1917 return WRONG; |
|
1918 #endif /* defined ALL_STATE */ |
|
1919 for (i = 0; i < sp->typecnt; ++i) |
|
1920 seen[i] = FALSE; |
|
1921 nseen = 0; |
|
1922 for (i = sp->timecnt - 1; i >= 0; --i) |
|
1923 if (!seen[sp->types[i]]) { |
|
1924 seen[sp->types[i]] = TRUE; |
|
1925 types[nseen++] = sp->types[i]; |
|
1926 } |
|
1927 for (sameind = 0; sameind < nseen; ++sameind) { |
|
1928 samei = types[sameind]; |
|
1929 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) |
|
1930 continue; |
|
1931 for (otherind = 0; otherind < nseen; ++otherind) { |
|
1932 otheri = types[otherind]; |
|
1933 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) |
|
1934 continue; |
|
1935 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - |
|
1936 sp->ttis[samei].tt_gmtoff; |
|
1937 tmp->tm_isdst = !tmp->tm_isdst; |
|
1938 t = time2(tmp, funcp, offset, &okay); |
|
1939 if (okay) |
|
1940 return t; |
|
1941 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - |
|
1942 sp->ttis[samei].tt_gmtoff; |
|
1943 tmp->tm_isdst = !tmp->tm_isdst; |
|
1944 } |
|
1945 } |
|
1946 return WRONG; |
|
1947 } |
|
1948 |
|
1949 time_t |
|
1950 mktime(tmp) |
|
1951 struct tm * const tmp; |
|
1952 { |
|
1953 tzset(); |
|
1954 return time1(tmp, localsub, 0L); |
|
1955 } |
|
1956 |
|
1957 #ifdef STD_INSPIRED |
|
1958 |
|
1959 time_t |
|
1960 timelocal(tmp) |
|
1961 struct tm * const tmp; |
|
1962 { |
|
1963 tmp->tm_isdst = -1; /* in case it wasn't initialized */ |
|
1964 return mktime(tmp); |
|
1965 } |
|
1966 |
|
1967 time_t |
|
1968 timegm(tmp) |
|
1969 struct tm * const tmp; |
|
1970 { |
|
1971 tmp->tm_isdst = 0; |
|
1972 return time1(tmp, gmtsub, 0L); |
|
1973 } |
|
1974 |
|
1975 time_t |
|
1976 timeoff(tmp, offset) |
|
1977 struct tm * const tmp; |
|
1978 const long offset; |
|
1979 { |
|
1980 tmp->tm_isdst = 0; |
|
1981 return time1(tmp, gmtsub, offset); |
|
1982 } |
|
1983 |
|
1984 #endif /* defined STD_INSPIRED */ |
|
1985 |
|
1986 #ifdef CMUCS |
|
1987 |
|
1988 /* |
|
1989 ** The following is supplied for compatibility with |
|
1990 ** previous versions of the CMUCS runtime library. |
|
1991 */ |
|
1992 |
|
1993 long |
|
1994 gtime(tmp) |
|
1995 struct tm * const tmp; |
|
1996 { |
|
1997 const time_t t = mktime(tmp); |
|
1998 |
|
1999 if (t == WRONG) |
|
2000 return -1; |
|
2001 return t; |
|
2002 } |
|
2003 |
|
2004 #endif /* defined CMUCS */ |
|
2005 |
|
2006 /* |
|
2007 ** XXX--is the below the right way to conditionalize?? |
|
2008 */ |
|
2009 |
|
2010 #ifdef STD_INSPIRED |
|
2011 |
|
2012 /* |
|
2013 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 |
|
2014 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which |
|
2015 ** is not the case if we are accounting for leap seconds. |
|
2016 ** So, we provide the following conversion routines for use |
|
2017 ** when exchanging timestamps with POSIX conforming systems. |
|
2018 */ |
|
2019 |
|
2020 static long |
|
2021 leapcorr(timep) |
|
2022 time_t * timep; |
|
2023 { |
|
2024 register struct state * sp; |
|
2025 register struct lsinfo * lp; |
|
2026 register int i; |
|
2027 |
|
2028 sp = lclptr; |
|
2029 i = sp->leapcnt; |
|
2030 while (--i >= 0) { |
|
2031 lp = &sp->lsis[i]; |
|
2032 if (*timep >= lp->ls_trans) |
|
2033 return lp->ls_corr; |
|
2034 } |
|
2035 return 0; |
|
2036 } |
|
2037 |
|
2038 time_t |
|
2039 time2posix(t) |
|
2040 time_t t; |
|
2041 { |
|
2042 tzset(); |
|
2043 return t - leapcorr(&t); |
|
2044 } |
|
2045 |
|
2046 time_t |
|
2047 posix2time(t) |
|
2048 time_t t; |
|
2049 { |
|
2050 time_t x; |
|
2051 time_t y; |
|
2052 |
|
2053 tzset(); |
|
2054 /* |
|
2055 ** For a positive leap second hit, the result |
|
2056 ** is not unique. For a negative leap second |
|
2057 ** hit, the corresponding time doesn't exist, |
|
2058 ** so we return an adjacent second. |
|
2059 */ |
|
2060 x = t + leapcorr(&t); |
|
2061 y = x - leapcorr(&x); |
|
2062 if (y < t) { |
|
2063 do { |
|
2064 x++; |
|
2065 y = x - leapcorr(&x); |
|
2066 } while (y < t); |
|
2067 if (t != y) |
|
2068 return x - 1; |
|
2069 } else if (y > t) { |
|
2070 do { |
|
2071 --x; |
|
2072 y = x - leapcorr(&x); |
|
2073 } while (y > t); |
|
2074 if (t != y) |
|
2075 return x + 1; |
|
2076 } |
|
2077 return x; |
|
2078 } |
|
2079 |
|
2080 #endif /* defined STD_INSPIRED */ |