intl/icu/source/tools/tzcode/localtime.c

Wed, 31 Dec 2014 07:22:50 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 07:22:50 +0100
branch
TOR_BUG_3246
changeset 4
fc2d59ddac77
permissions
-rw-r--r--

Correct previous dual key logic pending first delivery installment.

     1 /*
     2 ** This file is in the public domain, so clarified as of
     3 ** 1996-06-05 by Arthur David Olson.
     4 */
     6 #ifndef lint
     7 #ifndef NOID
     8 static char	elsieid[] = "@(#)localtime.c	8.9";
     9 #endif /* !defined NOID */
    10 #endif /* !defined lint */
    12 /*
    13 ** Leap second handling from Bradley White.
    14 ** POSIX-style TZ environment variable handling from Guy Harris.
    15 */
    17 /*LINTLIBRARY*/
    19 #include "private.h"
    20 #include "tzfile.h"
    21 #include "fcntl.h"
    22 #include "float.h"	/* for FLT_MAX and DBL_MAX */
    24 #ifndef TZ_ABBR_MAX_LEN
    25 #define TZ_ABBR_MAX_LEN	16
    26 #endif /* !defined TZ_ABBR_MAX_LEN */
    28 #ifndef TZ_ABBR_CHAR_SET
    29 #define TZ_ABBR_CHAR_SET \
    30 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
    31 #endif /* !defined TZ_ABBR_CHAR_SET */
    33 #ifndef TZ_ABBR_ERR_CHAR
    34 #define TZ_ABBR_ERR_CHAR	'_'
    35 #endif /* !defined TZ_ABBR_ERR_CHAR */
    37 /*
    38 ** SunOS 4.1.1 headers lack O_BINARY.
    39 */
    41 #ifdef O_BINARY
    42 #define OPEN_MODE	(O_RDONLY | O_BINARY)
    43 #endif /* defined O_BINARY */
    44 #ifndef O_BINARY
    45 #define OPEN_MODE	O_RDONLY
    46 #endif /* !defined O_BINARY */
    48 #ifndef WILDABBR
    49 /*
    50 ** Someone might make incorrect use of a time zone abbreviation:
    51 **	1.	They might reference tzname[0] before calling tzset (explicitly
    52 **		or implicitly).
    53 **	2.	They might reference tzname[1] before calling tzset (explicitly
    54 **		or implicitly).
    55 **	3.	They might reference tzname[1] after setting to a time zone
    56 **		in which Daylight Saving Time is never observed.
    57 **	4.	They might reference tzname[0] after setting to a time zone
    58 **		in which Standard Time is never observed.
    59 **	5.	They might reference tm.TM_ZONE after calling offtime.
    60 ** What's best to do in the above cases is open to debate;
    61 ** for now, we just set things up so that in any of the five cases
    62 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
    63 ** string "tzname[0] used before set", and similarly for the other cases.
    64 ** And another: initialize tzname[0] to "ERA", with an explanation in the
    65 ** manual page of what this "time zone abbreviation" means (doing this so
    66 ** that tzname[0] has the "normal" length of three characters).
    67 */
    68 #define WILDABBR	"   "
    69 #endif /* !defined WILDABBR */
    71 static char		wildabbr[] = WILDABBR;
    73 static const char	gmt[] = "GMT";
    75 /*
    76 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
    77 ** We default to US rules as of 1999-08-17.
    78 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
    79 ** implementation dependent; for historical reasons, US rules are a
    80 ** common default.
    81 */
    82 #ifndef TZDEFRULESTRING
    83 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
    84 #endif /* !defined TZDEFDST */
    86 struct ttinfo {				/* time type information */
    87 	long		tt_gmtoff;	/* UTC offset in seconds */
    88 	int		tt_isdst;	/* used to set tm_isdst */
    89 	int		tt_abbrind;	/* abbreviation list index */
    90 	int		tt_ttisstd;	/* TRUE if transition is std time */
    91 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    92 };
    94 struct lsinfo {				/* leap second information */
    95 	time_t		ls_trans;	/* transition time */
    96 	long		ls_corr;	/* correction to apply */
    97 };
    99 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
   101 #ifdef TZNAME_MAX
   102 #define MY_TZNAME_MAX	TZNAME_MAX
   103 #endif /* defined TZNAME_MAX */
   104 #ifndef TZNAME_MAX
   105 #define MY_TZNAME_MAX	255
   106 #endif /* !defined TZNAME_MAX */
   108 struct state {
   109 	int		leapcnt;
   110 	int		timecnt;
   111 	int		typecnt;
   112 	int		charcnt;
   113 	int		goback;
   114 	int		goahead;
   115 	time_t		ats[TZ_MAX_TIMES];
   116 	unsigned char	types[TZ_MAX_TIMES];
   117 	struct ttinfo	ttis[TZ_MAX_TYPES];
   118 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
   119 				(2 * (MY_TZNAME_MAX + 1)))];
   120 	struct lsinfo	lsis[TZ_MAX_LEAPS];
   121 };
   123 struct rule {
   124 	int		r_type;		/* type of rule--see below */
   125 	int		r_day;		/* day number of rule */
   126 	int		r_week;		/* week number of rule */
   127 	int		r_mon;		/* month number of rule */
   128 	long		r_time;		/* transition time of rule */
   129 };
   131 #define JULIAN_DAY		0	/* Jn - Julian day */
   132 #define DAY_OF_YEAR		1	/* n - day of year */
   133 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
   135 /*
   136 ** Prototypes for static functions.
   137 */
   139 static long		detzcode(const char * codep);
   140 static time_t		detzcode64(const char * codep);
   141 static int		differ_by_repeat(time_t t1, time_t t0);
   142 static const char *	getzname(const char * strp);
   143 static const char *	getqzname(const char * strp, const int delim);
   144 static const char *	getnum(const char * strp, int * nump, int min,
   145 				int max);
   146 static const char *	getsecs(const char * strp, long * secsp);
   147 static const char *	getoffset(const char * strp, long * offsetp);
   148 static const char *	getrule(const char * strp, struct rule * rulep);
   149 static void		gmtload(struct state * sp);
   150 static struct tm *	gmtsub(const time_t * timep, long offset,
   151 				struct tm * tmp);
   152 static struct tm *	localsub(const time_t * timep, long offset,
   153 				struct tm * tmp);
   154 static int		increment_overflow(int * number, int delta);
   155 static int		leaps_thru_end_of(int y);
   156 static int		long_increment_overflow(long * number, int delta);
   157 static int		long_normalize_overflow(long * tensptr,
   158 				int * unitsptr, int base);
   159 static int		normalize_overflow(int * tensptr, int * unitsptr,
   160 				int base);
   161 static void		settzname(void);
   162 static time_t		time1(struct tm * tmp,
   163 				struct tm * (*funcp)(const time_t *,
   164 				long, struct tm *),
   165 				long offset);
   166 static time_t		time2(struct tm *tmp,
   167 				struct tm * (*funcp)(const time_t *,
   168 				long, struct tm*),
   169 				long offset, int * okayp);
   170 static time_t		time2sub(struct tm *tmp,
   171 				struct tm * (*funcp)(const time_t *,
   172 				long, struct tm*),
   173 				long offset, int * okayp, int do_norm_secs);
   174 static struct tm *	timesub(const time_t * timep, long offset,
   175 				const struct state * sp, struct tm * tmp);
   176 static int		tmcomp(const struct tm * atmp,
   177 				const struct tm * btmp);
   178 static time_t		transtime(time_t janfirst, int year,
   179 				const struct rule * rulep, long offset);
   180 static int		typesequiv(const struct state * sp, int a, int b);
   181 static int		tzload(const char * name, struct state * sp,
   182 				int doextend);
   183 static int		tzparse(const char * name, struct state * sp,
   184 				int lastditch);
   186 #ifdef ALL_STATE
   187 static struct state *	lclptr;
   188 static struct state *	gmtptr;
   189 #endif /* defined ALL_STATE */
   191 #ifndef ALL_STATE
   192 static struct state	lclmem;
   193 static struct state	gmtmem;
   194 #define lclptr		(&lclmem)
   195 #define gmtptr		(&gmtmem)
   196 #endif /* State Farm */
   198 #ifndef TZ_STRLEN_MAX
   199 #define TZ_STRLEN_MAX 255
   200 #endif /* !defined TZ_STRLEN_MAX */
   202 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
   203 static int		lcl_is_set;
   204 static int		gmt_is_set;
   206 char *			tzname[2] = {
   207 	wildabbr,
   208 	wildabbr
   209 };
   211 /*
   212 ** Section 4.12.3 of X3.159-1989 requires that
   213 **	Except for the strftime function, these functions [asctime,
   214 **	ctime, gmtime, localtime] return values in one of two static
   215 **	objects: a broken-down time structure and an array of char.
   216 ** Thanks to Paul Eggert for noting this.
   217 */
   219 static struct tm	tm;
   221 #ifdef USG_COMPAT
   222 time_t			timezone = 0;
   223 int			daylight = 0;
   224 #endif /* defined USG_COMPAT */
   226 #ifdef ALTZONE
   227 time_t			altzone = 0;
   228 #endif /* defined ALTZONE */
   230 static long
   231 detzcode(codep)
   232 const char * const	codep;
   233 {
   234 	register long	result;
   235 	register int	i;
   237 	result = (codep[0] & 0x80) ? ~0L : 0;
   238 	for (i = 0; i < 4; ++i)
   239 		result = (result << 8) | (codep[i] & 0xff);
   240 	return result;
   241 }
   243 static time_t
   244 detzcode64(codep)
   245 const char * const	codep;
   246 {
   247 	register time_t	result;
   248 	register int	i;
   250 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
   251 	for (i = 0; i < 8; ++i)
   252 		result = result * 256 + (codep[i] & 0xff);
   253 	return result;
   254 }
   256 static void
   257 settzname(void)
   258 {
   259 	register struct state * const	sp = lclptr;
   260 	register int			i;
   262 	tzname[0] = wildabbr;
   263 	tzname[1] = wildabbr;
   264 #ifdef USG_COMPAT
   265 	daylight = 0;
   266 	timezone = 0;
   267 #endif /* defined USG_COMPAT */
   268 #ifdef ALTZONE
   269 	altzone = 0;
   270 #endif /* defined ALTZONE */
   271 #ifdef ALL_STATE
   272 	if (sp == NULL) {
   273 		tzname[0] = tzname[1] = gmt;
   274 		return;
   275 	}
   276 #endif /* defined ALL_STATE */
   277 	for (i = 0; i < sp->typecnt; ++i) {
   278 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
   280 		tzname[ttisp->tt_isdst] =
   281 			&sp->chars[ttisp->tt_abbrind];
   282 #ifdef USG_COMPAT
   283 		if (ttisp->tt_isdst)
   284 			daylight = 1;
   285 		if (i == 0 || !ttisp->tt_isdst)
   286 			timezone = -(ttisp->tt_gmtoff);
   287 #endif /* defined USG_COMPAT */
   288 #ifdef ALTZONE
   289 		if (i == 0 || ttisp->tt_isdst)
   290 			altzone = -(ttisp->tt_gmtoff);
   291 #endif /* defined ALTZONE */
   292 	}
   293 	/*
   294 	** And to get the latest zone names into tzname. . .
   295 	*/
   296 	for (i = 0; i < sp->timecnt; ++i) {
   297 		register const struct ttinfo * const	ttisp =
   298 							&sp->ttis[
   299 								sp->types[i]];
   301 		tzname[ttisp->tt_isdst] =
   302 			&sp->chars[ttisp->tt_abbrind];
   303 	}
   304 	/*
   305 	** Finally, scrub the abbreviations.
   306 	** First, replace bogus characters.
   307 	*/
   308 	for (i = 0; i < sp->charcnt; ++i)
   309 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
   310 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
   311 	/*
   312 	** Second, truncate long abbreviations.
   313 	*/
   314 	for (i = 0; i < sp->typecnt; ++i) {
   315 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
   316 		register char *				cp = &sp->chars[ttisp->tt_abbrind];
   318 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
   319 			strcmp(cp, GRANDPARENTED) != 0)
   320 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
   321 	}
   322 }
   324 static int
   325 differ_by_repeat(t1, t0)
   326 const time_t	t1;
   327 const time_t	t0;
   328 {
   329 	if (TYPE_INTEGRAL(time_t) &&
   330 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
   331 			return 0;
   332 	return t1 - t0 == SECSPERREPEAT;
   333 }
   335 static int
   336 tzload(name, sp, doextend)
   337 register const char *		name;
   338 register struct state * const	sp;
   339 register const int		doextend;
   340 {
   341 	register const char *		p;
   342 	register int			i;
   343 	register int			fid;
   344 	register int			stored;
   345 	register int			nread;
   346 	union {
   347 		struct tzhead	tzhead;
   348 		char		buf[2 * sizeof(struct tzhead) +
   349 					2 * sizeof *sp +
   350 					4 * TZ_MAX_TIMES];
   351 	} u;
   353 	if (name == NULL && (name = TZDEFAULT) == NULL)
   354 		return -1;
   355 	{
   356 		register int	doaccess;
   357 		/*
   358 		** Section 4.9.1 of the C standard says that
   359 		** "FILENAME_MAX expands to an integral constant expression
   360 		** that is the size needed for an array of char large enough
   361 		** to hold the longest file name string that the implementation
   362 		** guarantees can be opened."
   363 		*/
   364 		char		fullname[FILENAME_MAX + 1];
   366 		if (name[0] == ':')
   367 			++name;
   368 		doaccess = name[0] == '/';
   369 		if (!doaccess) {
   370 			if ((p = TZDIR) == NULL)
   371 				return -1;
   372 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
   373 				return -1;
   374 			(void) strcpy(fullname, p);
   375 			(void) strcat(fullname, "/");
   376 			(void) strcat(fullname, name);
   377 			/*
   378 			** Set doaccess if '.' (as in "../") shows up in name.
   379 			*/
   380 			if (strchr(name, '.') != NULL)
   381 				doaccess = TRUE;
   382 			name = fullname;
   383 		}
   384 		if (doaccess && access(name, R_OK) != 0)
   385 			return -1;
   386 		if ((fid = open(name, OPEN_MODE)) == -1)
   387 			return -1;
   388 	}
   389 	nread = read(fid, u.buf, sizeof u.buf);
   390 	if (close(fid) < 0 || nread <= 0)
   391 		return -1;
   392 	for (stored = 4; stored <= 8; stored *= 2) {
   393 		int		ttisstdcnt;
   394 		int		ttisgmtcnt;
   396 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
   397 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
   398 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
   399 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
   400 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
   401 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
   402 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
   403 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
   404 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
   405 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
   406 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
   407 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
   408 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
   409 				return -1;
   410 		if (nread - (p - u.buf) <
   411 			sp->timecnt * stored +		/* ats */
   412 			sp->timecnt +			/* types */
   413 			sp->typecnt * 6 +		/* ttinfos */
   414 			sp->charcnt +			/* chars */
   415 			sp->leapcnt * (stored + 4) +	/* lsinfos */
   416 			ttisstdcnt +			/* ttisstds */
   417 			ttisgmtcnt)			/* ttisgmts */
   418 				return -1;
   419 		for (i = 0; i < sp->timecnt; ++i) {
   420 			sp->ats[i] = (stored == 4) ?
   421 				detzcode(p) : detzcode64(p);
   422 			p += stored;
   423 		}
   424 		for (i = 0; i < sp->timecnt; ++i) {
   425 			sp->types[i] = (unsigned char) *p++;
   426 			if (sp->types[i] >= sp->typecnt)
   427 				return -1;
   428 		}
   429 		for (i = 0; i < sp->typecnt; ++i) {
   430 			register struct ttinfo *	ttisp;
   432 			ttisp = &sp->ttis[i];
   433 			ttisp->tt_gmtoff = detzcode(p);
   434 			p += 4;
   435 			ttisp->tt_isdst = (unsigned char) *p++;
   436 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
   437 				return -1;
   438 			ttisp->tt_abbrind = (unsigned char) *p++;
   439 			if (ttisp->tt_abbrind < 0 ||
   440 				ttisp->tt_abbrind > sp->charcnt)
   441 					return -1;
   442 		}
   443 		for (i = 0; i < sp->charcnt; ++i)
   444 			sp->chars[i] = *p++;
   445 		sp->chars[i] = '\0';	/* ensure '\0' at end */
   446 		for (i = 0; i < sp->leapcnt; ++i) {
   447 			register struct lsinfo *	lsisp;
   449 			lsisp = &sp->lsis[i];
   450 			lsisp->ls_trans = (stored == 4) ?
   451 				detzcode(p) : detzcode64(p);
   452 			p += stored;
   453 			lsisp->ls_corr = detzcode(p);
   454 			p += 4;
   455 		}
   456 		for (i = 0; i < sp->typecnt; ++i) {
   457 			register struct ttinfo *	ttisp;
   459 			ttisp = &sp->ttis[i];
   460 			if (ttisstdcnt == 0)
   461 				ttisp->tt_ttisstd = FALSE;
   462 			else {
   463 				ttisp->tt_ttisstd = *p++;
   464 				if (ttisp->tt_ttisstd != TRUE &&
   465 					ttisp->tt_ttisstd != FALSE)
   466 						return -1;
   467 			}
   468 		}
   469 		for (i = 0; i < sp->typecnt; ++i) {
   470 			register struct ttinfo *	ttisp;
   472 			ttisp = &sp->ttis[i];
   473 			if (ttisgmtcnt == 0)
   474 				ttisp->tt_ttisgmt = FALSE;
   475 			else {
   476 				ttisp->tt_ttisgmt = *p++;
   477 				if (ttisp->tt_ttisgmt != TRUE &&
   478 					ttisp->tt_ttisgmt != FALSE)
   479 						return -1;
   480 			}
   481 		}
   482 		/*
   483 		** Out-of-sort ats should mean we're running on a
   484 		** signed time_t system but using a data file with
   485 		** unsigned values (or vice versa).
   486 		*/
   487 		for (i = 0; i < sp->timecnt - 2; ++i)
   488 			if (sp->ats[i] > sp->ats[i + 1]) {
   489 				++i;
   490 				if (TYPE_SIGNED(time_t)) {
   491 					/*
   492 					** Ignore the end (easy).
   493 					*/
   494 					sp->timecnt = i;
   495 				} else {
   496 					/*
   497 					** Ignore the beginning (harder).
   498 					*/
   499 					register int	j;
   501 					for (j = 0; j + i < sp->timecnt; ++j) {
   502 						sp->ats[j] = sp->ats[j + i];
   503 						sp->types[j] = sp->types[j + i];
   504 					}
   505 					sp->timecnt = j;
   506 				}
   507 				break;
   508 			}
   509 		/*
   510 		** If this is an old file, we're done.
   511 		*/
   512 		if (u.tzhead.tzh_version[0] == '\0')
   513 			break;
   514 		nread -= p - u.buf;
   515 		for (i = 0; i < nread; ++i)
   516 			u.buf[i] = p[i];
   517 		/*
   518 		** If this is a narrow integer time_t system, we're done.
   519 		*/
   520 		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
   521 			break;
   522 	}
   523 	if (doextend && nread > 2 &&
   524 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
   525 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
   526 			struct state	ts;
   527 			register int	result;
   529 			u.buf[nread - 1] = '\0';
   530 			result = tzparse(&u.buf[1], &ts, FALSE);
   531 			if (result == 0 && ts.typecnt == 2 &&
   532 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
   533 					for (i = 0; i < 2; ++i)
   534 						ts.ttis[i].tt_abbrind +=
   535 							sp->charcnt;
   536 					for (i = 0; i < ts.charcnt; ++i)
   537 						sp->chars[sp->charcnt++] =
   538 							ts.chars[i];
   539 					i = 0;
   540 					while (i < ts.timecnt &&
   541 						ts.ats[i] <=
   542 						sp->ats[sp->timecnt - 1])
   543 							++i;
   544 					while (i < ts.timecnt &&
   545 					    sp->timecnt < TZ_MAX_TIMES) {
   546 						sp->ats[sp->timecnt] =
   547 							ts.ats[i];
   548 						sp->types[sp->timecnt] =
   549 							sp->typecnt +
   550 							ts.types[i];
   551 						++sp->timecnt;
   552 						++i;
   553 					}
   554 					sp->ttis[sp->typecnt++] = ts.ttis[0];
   555 					sp->ttis[sp->typecnt++] = ts.ttis[1];
   556 			}
   557 	}
   558 	sp->goback = sp->goahead = FALSE;
   559 	if (sp->timecnt > 1) {
   560 		for (i = 1; i < sp->timecnt; ++i)
   561 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
   562 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
   563 					sp->goback = TRUE;
   564 					break;
   565 				}
   566 		for (i = sp->timecnt - 2; i >= 0; --i)
   567 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
   568 				sp->types[i]) &&
   569 				differ_by_repeat(sp->ats[sp->timecnt - 1],
   570 				sp->ats[i])) {
   571 					sp->goahead = TRUE;
   572 					break;
   573 		}
   574 	}
   575 	return 0;
   576 }
   578 static int
   579 typesequiv(sp, a, b)
   580 const struct state * const	sp;
   581 const int			a;
   582 const int			b;
   583 {
   584 	register int	result;
   586 	if (sp == NULL ||
   587 		a < 0 || a >= sp->typecnt ||
   588 		b < 0 || b >= sp->typecnt)
   589 			result = FALSE;
   590 	else {
   591 		register const struct ttinfo *	ap = &sp->ttis[a];
   592 		register const struct ttinfo *	bp = &sp->ttis[b];
   593 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
   594 			ap->tt_isdst == bp->tt_isdst &&
   595 			ap->tt_ttisstd == bp->tt_ttisstd &&
   596 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
   597 			strcmp(&sp->chars[ap->tt_abbrind],
   598 			&sp->chars[bp->tt_abbrind]) == 0;
   599 	}
   600 	return result;
   601 }
   603 static const int	mon_lengths[2][MONSPERYEAR] = {
   604 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
   605 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
   606 };
   608 static const int	year_lengths[2] = {
   609 	DAYSPERNYEAR, DAYSPERLYEAR
   610 };
   612 /*
   613 ** Given a pointer into a time zone string, scan until a character that is not
   614 ** a valid character in a zone name is found. Return a pointer to that
   615 ** character.
   616 */
   618 static const char *
   619 getzname(strp)
   620 register const char *	strp;
   621 {
   622 	register char	c;
   624 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
   625 		c != '+')
   626 			++strp;
   627 	return strp;
   628 }
   630 /*
   631 ** Given a pointer into an extended time zone string, scan until the ending
   632 ** delimiter of the zone name is located. Return a pointer to the delimiter.
   633 **
   634 ** As with getzname above, the legal character set is actually quite
   635 ** restricted, with other characters producing undefined results.
   636 ** We don't do any checking here; checking is done later in common-case code.
   637 */
   639 static const char *
   640 getqzname(register const char *strp, const int delim)
   641 {
   642 	register int	c;
   644 	while ((c = *strp) != '\0' && c != delim)
   645 		++strp;
   646 	return strp;
   647 }
   649 /*
   650 ** Given a pointer into a time zone string, extract a number from that string.
   651 ** Check that the number is within a specified range; if it is not, return
   652 ** NULL.
   653 ** Otherwise, return a pointer to the first character not part of the number.
   654 */
   656 static const char *
   657 getnum(strp, nump, min, max)
   658 register const char *	strp;
   659 int * const		nump;
   660 const int		min;
   661 const int		max;
   662 {
   663 	register char	c;
   664 	register int	num;
   666 	if (strp == NULL || !is_digit(c = *strp))
   667 		return NULL;
   668 	num = 0;
   669 	do {
   670 		num = num * 10 + (c - '0');
   671 		if (num > max)
   672 			return NULL;	/* illegal value */
   673 		c = *++strp;
   674 	} while (is_digit(c));
   675 	if (num < min)
   676 		return NULL;		/* illegal value */
   677 	*nump = num;
   678 	return strp;
   679 }
   681 /*
   682 ** Given a pointer into a time zone string, extract a number of seconds,
   683 ** in hh[:mm[:ss]] form, from the string.
   684 ** If any error occurs, return NULL.
   685 ** Otherwise, return a pointer to the first character not part of the number
   686 ** of seconds.
   687 */
   689 static const char *
   690 getsecs(strp, secsp)
   691 register const char *	strp;
   692 long * const		secsp;
   693 {
   694 	int	num;
   696 	/*
   697 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
   698 	** "M10.4.6/26", which does not conform to Posix,
   699 	** but which specifies the equivalent of
   700 	** ``02:00 on the first Sunday on or after 23 Oct''.
   701 	*/
   702 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
   703 	if (strp == NULL)
   704 		return NULL;
   705 	*secsp = num * (long) SECSPERHOUR;
   706 	if (*strp == ':') {
   707 		++strp;
   708 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
   709 		if (strp == NULL)
   710 			return NULL;
   711 		*secsp += num * SECSPERMIN;
   712 		if (*strp == ':') {
   713 			++strp;
   714 			/* `SECSPERMIN' allows for leap seconds. */
   715 			strp = getnum(strp, &num, 0, SECSPERMIN);
   716 			if (strp == NULL)
   717 				return NULL;
   718 			*secsp += num;
   719 		}
   720 	}
   721 	return strp;
   722 }
   724 /*
   725 ** Given a pointer into a time zone string, extract an offset, in
   726 ** [+-]hh[:mm[:ss]] form, from the string.
   727 ** If any error occurs, return NULL.
   728 ** Otherwise, return a pointer to the first character not part of the time.
   729 */
   731 static const char *
   732 getoffset(strp, offsetp)
   733 register const char *	strp;
   734 long * const		offsetp;
   735 {
   736 	register int	neg = 0;
   738 	if (*strp == '-') {
   739 		neg = 1;
   740 		++strp;
   741 	} else if (*strp == '+')
   742 		++strp;
   743 	strp = getsecs(strp, offsetp);
   744 	if (strp == NULL)
   745 		return NULL;		/* illegal time */
   746 	if (neg)
   747 		*offsetp = -*offsetp;
   748 	return strp;
   749 }
   751 /*
   752 ** Given a pointer into a time zone string, extract a rule in the form
   753 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
   754 ** If a valid rule is not found, return NULL.
   755 ** Otherwise, return a pointer to the first character not part of the rule.
   756 */
   758 static const char *
   759 getrule(strp, rulep)
   760 const char *			strp;
   761 register struct rule * const	rulep;
   762 {
   763 	if (*strp == 'J') {
   764 		/*
   765 		** Julian day.
   766 		*/
   767 		rulep->r_type = JULIAN_DAY;
   768 		++strp;
   769 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
   770 	} else if (*strp == 'M') {
   771 		/*
   772 		** Month, week, day.
   773 		*/
   774 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
   775 		++strp;
   776 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
   777 		if (strp == NULL)
   778 			return NULL;
   779 		if (*strp++ != '.')
   780 			return NULL;
   781 		strp = getnum(strp, &rulep->r_week, 1, 5);
   782 		if (strp == NULL)
   783 			return NULL;
   784 		if (*strp++ != '.')
   785 			return NULL;
   786 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
   787 	} else if (is_digit(*strp)) {
   788 		/*
   789 		** Day of year.
   790 		*/
   791 		rulep->r_type = DAY_OF_YEAR;
   792 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
   793 	} else	return NULL;		/* invalid format */
   794 	if (strp == NULL)
   795 		return NULL;
   796 	if (*strp == '/') {
   797 		/*
   798 		** Time specified.
   799 		*/
   800 		++strp;
   801 		strp = getsecs(strp, &rulep->r_time);
   802 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
   803 	return strp;
   804 }
   806 /*
   807 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
   808 ** year, a rule, and the offset from UTC at the time that rule takes effect,
   809 ** calculate the Epoch-relative time that rule takes effect.
   810 */
   812 static time_t
   813 transtime(janfirst, year, rulep, offset)
   814 const time_t				janfirst;
   815 const int				year;
   816 register const struct rule * const	rulep;
   817 const long				offset;
   818 {
   819 	register int	leapyear;
   820 	register time_t	value;
   821 	register int	i;
   822 	int		d, m1, yy0, yy1, yy2, dow;
   824 	INITIALIZE(value);
   825 	leapyear = isleap(year);
   826 	switch (rulep->r_type) {
   828 	case JULIAN_DAY:
   829 		/*
   830 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
   831 		** years.
   832 		** In non-leap years, or if the day number is 59 or less, just
   833 		** add SECSPERDAY times the day number-1 to the time of
   834 		** January 1, midnight, to get the day.
   835 		*/
   836 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
   837 		if (leapyear && rulep->r_day >= 60)
   838 			value += SECSPERDAY;
   839 		break;
   841 	case DAY_OF_YEAR:
   842 		/*
   843 		** n - day of year.
   844 		** Just add SECSPERDAY times the day number to the time of
   845 		** January 1, midnight, to get the day.
   846 		*/
   847 		value = janfirst + rulep->r_day * SECSPERDAY;
   848 		break;
   850 	case MONTH_NTH_DAY_OF_WEEK:
   851 		/*
   852 		** Mm.n.d - nth "dth day" of month m.
   853 		*/
   854 		value = janfirst;
   855 		for (i = 0; i < rulep->r_mon - 1; ++i)
   856 			value += mon_lengths[leapyear][i] * SECSPERDAY;
   858 		/*
   859 		** Use Zeller's Congruence to get day-of-week of first day of
   860 		** month.
   861 		*/
   862 		m1 = (rulep->r_mon + 9) % 12 + 1;
   863 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
   864 		yy1 = yy0 / 100;
   865 		yy2 = yy0 % 100;
   866 		dow = ((26 * m1 - 2) / 10 +
   867 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
   868 		if (dow < 0)
   869 			dow += DAYSPERWEEK;
   871 		/*
   872 		** "dow" is the day-of-week of the first day of the month. Get
   873 		** the day-of-month (zero-origin) of the first "dow" day of the
   874 		** month.
   875 		*/
   876 		d = rulep->r_day - dow;
   877 		if (d < 0)
   878 			d += DAYSPERWEEK;
   879 		for (i = 1; i < rulep->r_week; ++i) {
   880 			if (d + DAYSPERWEEK >=
   881 				mon_lengths[leapyear][rulep->r_mon - 1])
   882 					break;
   883 			d += DAYSPERWEEK;
   884 		}
   886 		/*
   887 		** "d" is the day-of-month (zero-origin) of the day we want.
   888 		*/
   889 		value += d * SECSPERDAY;
   890 		break;
   891 	}
   893 	/*
   894 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
   895 	** question. To get the Epoch-relative time of the specified local
   896 	** time on that day, add the transition time and the current offset
   897 	** from UTC.
   898 	*/
   899 	return value + rulep->r_time + offset;
   900 }
   902 /*
   903 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
   904 ** appropriate.
   905 */
   907 static int
   908 tzparse(name, sp, lastditch)
   909 const char *			name;
   910 register struct state * const	sp;
   911 const int			lastditch;
   912 {
   913 	const char *			stdname;
   914 	const char *			dstname;
   915 	size_t				stdlen;
   916 	size_t				dstlen;
   917 	long				stdoffset;
   918 	long				dstoffset;
   919 	register time_t *		atp;
   920 	register unsigned char *	typep;
   921 	register char *			cp;
   922 	register int			load_result;
   924 	INITIALIZE(dstname);
   925 	stdname = name;
   926 	if (lastditch) {
   927 		stdlen = strlen(name);	/* length of standard zone name */
   928 		name += stdlen;
   929 		if (stdlen >= sizeof sp->chars)
   930 			stdlen = (sizeof sp->chars) - 1;
   931 		stdoffset = 0;
   932 	} else {
   933 		if (*name == '<') {
   934 			name++;
   935 			stdname = name;
   936 			name = getqzname(name, '>');
   937 			if (*name != '>')
   938 				return (-1);
   939 			stdlen = name - stdname;
   940 			name++;
   941 		} else {
   942 			name = getzname(name);
   943 			stdlen = name - stdname;
   944 		}
   945 		if (*name == '\0')
   946 			return -1;
   947 		name = getoffset(name, &stdoffset);
   948 		if (name == NULL)
   949 			return -1;
   950 	}
   951 	load_result = tzload(TZDEFRULES, sp, FALSE);
   952 	if (load_result != 0)
   953 		sp->leapcnt = 0;		/* so, we're off a little */
   954 	if (*name != '\0') {
   955 		if (*name == '<') {
   956 			dstname = ++name;
   957 			name = getqzname(name, '>');
   958 			if (*name != '>')
   959 				return -1;
   960 			dstlen = name - dstname;
   961 			name++;
   962 		} else {
   963 			dstname = name;
   964 			name = getzname(name);
   965 			dstlen = name - dstname; /* length of DST zone name */
   966 		}
   967 		if (*name != '\0' && *name != ',' && *name != ';') {
   968 			name = getoffset(name, &dstoffset);
   969 			if (name == NULL)
   970 				return -1;
   971 		} else	dstoffset = stdoffset - SECSPERHOUR;
   972 		if (*name == '\0' && load_result != 0)
   973 			name = TZDEFRULESTRING;
   974 		if (*name == ',' || *name == ';') {
   975 			struct rule	start;
   976 			struct rule	end;
   977 			register int	year;
   978 			register time_t	janfirst;
   979 			time_t		starttime;
   980 			time_t		endtime;
   982 			++name;
   983 			if ((name = getrule(name, &start)) == NULL)
   984 				return -1;
   985 			if (*name++ != ',')
   986 				return -1;
   987 			if ((name = getrule(name, &end)) == NULL)
   988 				return -1;
   989 			if (*name != '\0')
   990 				return -1;
   991 			sp->typecnt = 2;	/* standard time and DST */
   992 			/*
   993 			** Two transitions per year, from EPOCH_YEAR forward.
   994 			*/
   995 			sp->ttis[0].tt_gmtoff = -dstoffset;
   996 			sp->ttis[0].tt_isdst = 1;
   997 			sp->ttis[0].tt_abbrind = stdlen + 1;
   998 			sp->ttis[1].tt_gmtoff = -stdoffset;
   999 			sp->ttis[1].tt_isdst = 0;
  1000 			sp->ttis[1].tt_abbrind = 0;
  1001 			atp = sp->ats;
  1002 			typep = sp->types;
  1003 			janfirst = 0;
  1004 			sp->timecnt = 0;
  1005 			for (year = EPOCH_YEAR;
  1006 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
  1007 			    ++year) {
  1008 			    	time_t	newfirst;
  1010 				starttime = transtime(janfirst, year, &start,
  1011 					stdoffset);
  1012 				endtime = transtime(janfirst, year, &end,
  1013 					dstoffset);
  1014 				if (starttime > endtime) {
  1015 					*atp++ = endtime;
  1016 					*typep++ = 1;	/* DST ends */
  1017 					*atp++ = starttime;
  1018 					*typep++ = 0;	/* DST begins */
  1019 				} else {
  1020 					*atp++ = starttime;
  1021 					*typep++ = 0;	/* DST begins */
  1022 					*atp++ = endtime;
  1023 					*typep++ = 1;	/* DST ends */
  1025 				sp->timecnt += 2;
  1026 				newfirst = janfirst;
  1027 				newfirst += year_lengths[isleap(year)] *
  1028 					SECSPERDAY;
  1029 				if (newfirst <= janfirst)
  1030 					break;
  1031 				janfirst = newfirst;
  1033 		} else {
  1034 			register long	theirstdoffset;
  1035 			register long	theirdstoffset;
  1036 			register long	theiroffset;
  1037 			register int	isdst;
  1038 			register int	i;
  1039 			register int	j;
  1041 			if (*name != '\0')
  1042 				return -1;
  1043 			/*
  1044 			** Initial values of theirstdoffset and theirdstoffset.
  1045 			*/
  1046 			theirstdoffset = 0;
  1047 			for (i = 0; i < sp->timecnt; ++i) {
  1048 				j = sp->types[i];
  1049 				if (!sp->ttis[j].tt_isdst) {
  1050 					theirstdoffset =
  1051 						-sp->ttis[j].tt_gmtoff;
  1052 					break;
  1055 			theirdstoffset = 0;
  1056 			for (i = 0; i < sp->timecnt; ++i) {
  1057 				j = sp->types[i];
  1058 				if (sp->ttis[j].tt_isdst) {
  1059 					theirdstoffset =
  1060 						-sp->ttis[j].tt_gmtoff;
  1061 					break;
  1064 			/*
  1065 			** Initially we're assumed to be in standard time.
  1066 			*/
  1067 			isdst = FALSE;
  1068 			theiroffset = theirstdoffset;
  1069 			/*
  1070 			** Now juggle transition times and types
  1071 			** tracking offsets as you do.
  1072 			*/
  1073 			for (i = 0; i < sp->timecnt; ++i) {
  1074 				j = sp->types[i];
  1075 				sp->types[i] = sp->ttis[j].tt_isdst;
  1076 				if (sp->ttis[j].tt_ttisgmt) {
  1077 					/* No adjustment to transition time */
  1078 				} else {
  1079 					/*
  1080 					** If summer time is in effect, and the
  1081 					** transition time was not specified as
  1082 					** standard time, add the summer time
  1083 					** offset to the transition time;
  1084 					** otherwise, add the standard time
  1085 					** offset to the transition time.
  1086 					*/
  1087 					/*
  1088 					** Transitions from DST to DDST
  1089 					** will effectively disappear since
  1090 					** POSIX provides for only one DST
  1091 					** offset.
  1092 					*/
  1093 					if (isdst && !sp->ttis[j].tt_ttisstd) {
  1094 						sp->ats[i] += dstoffset -
  1095 							theirdstoffset;
  1096 					} else {
  1097 						sp->ats[i] += stdoffset -
  1098 							theirstdoffset;
  1101 				theiroffset = -sp->ttis[j].tt_gmtoff;
  1102 				if (sp->ttis[j].tt_isdst)
  1103 					theirdstoffset = theiroffset;
  1104 				else	theirstdoffset = theiroffset;
  1106 			/*
  1107 			** Finally, fill in ttis.
  1108 			** ttisstd and ttisgmt need not be handled.
  1109 			*/
  1110 			sp->ttis[0].tt_gmtoff = -stdoffset;
  1111 			sp->ttis[0].tt_isdst = FALSE;
  1112 			sp->ttis[0].tt_abbrind = 0;
  1113 			sp->ttis[1].tt_gmtoff = -dstoffset;
  1114 			sp->ttis[1].tt_isdst = TRUE;
  1115 			sp->ttis[1].tt_abbrind = stdlen + 1;
  1116 			sp->typecnt = 2;
  1118 	} else {
  1119 		dstlen = 0;
  1120 		sp->typecnt = 1;		/* only standard time */
  1121 		sp->timecnt = 0;
  1122 		sp->ttis[0].tt_gmtoff = -stdoffset;
  1123 		sp->ttis[0].tt_isdst = 0;
  1124 		sp->ttis[0].tt_abbrind = 0;
  1126 	sp->charcnt = stdlen + 1;
  1127 	if (dstlen != 0)
  1128 		sp->charcnt += dstlen + 1;
  1129 	if ((size_t) sp->charcnt > sizeof sp->chars)
  1130 		return -1;
  1131 	cp = sp->chars;
  1132 	(void) strncpy(cp, stdname, stdlen);
  1133 	cp += stdlen;
  1134 	*cp++ = '\0';
  1135 	if (dstlen != 0) {
  1136 		(void) strncpy(cp, dstname, dstlen);
  1137 		*(cp + dstlen) = '\0';
  1139 	return 0;
  1142 static void
  1143 gmtload(sp)
  1144 struct state * const	sp;
  1146 	if (tzload(gmt, sp, TRUE) != 0)
  1147 		(void) tzparse(gmt, sp, TRUE);
  1150 #ifndef STD_INSPIRED
  1151 /*
  1152 ** A non-static declaration of tzsetwall in a system header file
  1153 ** may cause a warning about this upcoming static declaration...
  1154 */
  1155 static
  1156 #endif /* !defined STD_INSPIRED */
  1157 void
  1158 tzsetwall(void)
  1160 	if (lcl_is_set < 0)
  1161 		return;
  1162 	lcl_is_set = -1;
  1164 #ifdef ALL_STATE
  1165 	if (lclptr == NULL) {
  1166 		lclptr = (struct state *) malloc(sizeof *lclptr);
  1167 		if (lclptr == NULL) {
  1168 			settzname();	/* all we can do */
  1169 			return;
  1172 #endif /* defined ALL_STATE */
  1173 	if (tzload((char *) NULL, lclptr, TRUE) != 0)
  1174 		gmtload(lclptr);
  1175 	settzname();
  1178 void
  1179 tzset(void)
  1181 	register const char *	name;
  1183 	name = getenv("TZ");
  1184 	if (name == NULL) {
  1185 		tzsetwall();
  1186 		return;
  1189 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
  1190 		return;
  1191 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
  1192 	if (lcl_is_set)
  1193 		(void) strcpy(lcl_TZname, name);
  1195 #ifdef ALL_STATE
  1196 	if (lclptr == NULL) {
  1197 		lclptr = (struct state *) malloc(sizeof *lclptr);
  1198 		if (lclptr == NULL) {
  1199 			settzname();	/* all we can do */
  1200 			return;
  1203 #endif /* defined ALL_STATE */
  1204 	if (*name == '\0') {
  1205 		/*
  1206 		** User wants it fast rather than right.
  1207 		*/
  1208 		lclptr->leapcnt = 0;		/* so, we're off a little */
  1209 		lclptr->timecnt = 0;
  1210 		lclptr->typecnt = 0;
  1211 		lclptr->ttis[0].tt_isdst = 0;
  1212 		lclptr->ttis[0].tt_gmtoff = 0;
  1213 		lclptr->ttis[0].tt_abbrind = 0;
  1214 		(void) strcpy(lclptr->chars, gmt);
  1215 	} else if (tzload(name, lclptr, TRUE) != 0)
  1216 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
  1217 			(void) gmtload(lclptr);
  1218 	settzname();
  1221 /*
  1222 ** The easy way to behave "as if no library function calls" localtime
  1223 ** is to not call it--so we drop its guts into "localsub", which can be
  1224 ** freely called. (And no, the PANS doesn't require the above behavior--
  1225 ** but it *is* desirable.)
  1226 **
  1227 ** The unused offset argument is for the benefit of mktime variants.
  1228 */
  1230 /*ARGSUSED*/
  1231 static struct tm *
  1232 localsub(timep, offset, tmp)
  1233 const time_t * const	timep;
  1234 const long		offset;
  1235 struct tm * const	tmp;
  1237 	register struct state *		sp;
  1238 	register const struct ttinfo *	ttisp;
  1239 	register int			i;
  1240 	register struct tm *		result;
  1241 	const time_t			t = *timep;
  1243 	sp = lclptr;
  1244 #ifdef ALL_STATE
  1245 	if (sp == NULL)
  1246 		return gmtsub(timep, offset, tmp);
  1247 #endif /* defined ALL_STATE */
  1248 	if ((sp->goback && t < sp->ats[0]) ||
  1249 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
  1250 			time_t			newt = t;
  1251 			register time_t		seconds;
  1252 			register time_t		tcycles;
  1253 			register int_fast64_t	icycles;
  1255 			if (t < sp->ats[0])
  1256 				seconds = sp->ats[0] - t;
  1257 			else	seconds = t - sp->ats[sp->timecnt - 1];
  1258 			--seconds;
  1259 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
  1260 			++tcycles;
  1261 			icycles = tcycles;
  1262 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
  1263 				return NULL;
  1264 			seconds = icycles;
  1265 			seconds *= YEARSPERREPEAT;
  1266 			seconds *= AVGSECSPERYEAR;
  1267 			if (t < sp->ats[0])
  1268 				newt += seconds;
  1269 			else	newt -= seconds;
  1270 			if (newt < sp->ats[0] ||
  1271 				newt > sp->ats[sp->timecnt - 1])
  1272 					return NULL;	/* "cannot happen" */
  1273 			result = localsub(&newt, offset, tmp);
  1274 			if (result == tmp) {
  1275 				register time_t	newy;
  1277 				newy = tmp->tm_year;
  1278 				if (t < sp->ats[0])
  1279 					newy -= icycles * YEARSPERREPEAT;
  1280 				else	newy += icycles * YEARSPERREPEAT;
  1281 				tmp->tm_year = newy;
  1282 				if (tmp->tm_year != newy)
  1283 					return NULL;
  1285 			return result;
  1287 	if (sp->timecnt == 0 || t < sp->ats[0]) {
  1288 		i = 0;
  1289 		while (sp->ttis[i].tt_isdst)
  1290 			if (++i >= sp->typecnt) {
  1291 				i = 0;
  1292 				break;
  1294 	} else {
  1295 		register int	lo = 1;
  1296 		register int	hi = sp->timecnt;
  1298 		while (lo < hi) {
  1299 			register int	mid = (lo + hi) >> 1;
  1301 			if (t < sp->ats[mid])
  1302 				hi = mid;
  1303 			else	lo = mid + 1;
  1305 		i = (int) sp->types[lo - 1];
  1307 	ttisp = &sp->ttis[i];
  1308 	/*
  1309 	** To get (wrong) behavior that's compatible with System V Release 2.0
  1310 	** you'd replace the statement below with
  1311 	**	t += ttisp->tt_gmtoff;
  1312 	**	timesub(&t, 0L, sp, tmp);
  1313 	*/
  1314 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
  1315 	tmp->tm_isdst = ttisp->tt_isdst;
  1316 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
  1317 #ifdef TM_ZONE
  1318 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
  1319 #endif /* defined TM_ZONE */
  1320 	return result;
  1323 struct tm *
  1324 localtime(timep)
  1325 const time_t * const	timep;
  1327 	tzset();
  1328 	return localsub(timep, 0L, &tm);
  1331 /*
  1332 ** Re-entrant version of localtime.
  1333 */
  1335 struct tm *
  1336 localtime_r(timep, tmp)
  1337 const time_t * const	timep;
  1338 struct tm *		tmp;
  1340 	return localsub(timep, 0L, tmp);
  1343 /*
  1344 ** gmtsub is to gmtime as localsub is to localtime.
  1345 */
  1347 static struct tm *
  1348 gmtsub(timep, offset, tmp)
  1349 const time_t * const	timep;
  1350 const long		offset;
  1351 struct tm * const	tmp;
  1353 	register struct tm *	result;
  1355 	if (!gmt_is_set) {
  1356 		gmt_is_set = TRUE;
  1357 #ifdef ALL_STATE
  1358 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
  1359 		if (gmtptr != NULL)
  1360 #endif /* defined ALL_STATE */
  1361 			gmtload(gmtptr);
  1363 	result = timesub(timep, offset, gmtptr, tmp);
  1364 #ifdef TM_ZONE
  1365 	/*
  1366 	** Could get fancy here and deliver something such as
  1367 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
  1368 	** but this is no time for a treasure hunt.
  1369 	*/
  1370 	if (offset != 0)
  1371 		tmp->TM_ZONE = wildabbr;
  1372 	else {
  1373 #ifdef ALL_STATE
  1374 		if (gmtptr == NULL)
  1375 			tmp->TM_ZONE = gmt;
  1376 		else	tmp->TM_ZONE = gmtptr->chars;
  1377 #endif /* defined ALL_STATE */
  1378 #ifndef ALL_STATE
  1379 		tmp->TM_ZONE = gmtptr->chars;
  1380 #endif /* State Farm */
  1382 #endif /* defined TM_ZONE */
  1383 	return result;
  1386 struct tm *
  1387 gmtime(timep)
  1388 const time_t * const	timep;
  1390 	return gmtsub(timep, 0L, &tm);
  1393 /*
  1394 * Re-entrant version of gmtime.
  1395 */
  1397 struct tm *
  1398 gmtime_r(timep, tmp)
  1399 const time_t * const	timep;
  1400 struct tm *		tmp;
  1402 	return gmtsub(timep, 0L, tmp);
  1405 #ifdef STD_INSPIRED
  1407 struct tm *
  1408 offtime(timep, offset)
  1409 const time_t * const	timep;
  1410 const long		offset;
  1412 	return gmtsub(timep, offset, &tm);
  1415 #endif /* defined STD_INSPIRED */
  1417 /*
  1418 ** Return the number of leap years through the end of the given year
  1419 ** where, to make the math easy, the answer for year zero is defined as zero.
  1420 */
  1422 static int
  1423 leaps_thru_end_of(y)
  1424 register const int	y;
  1426 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
  1427 		-(leaps_thru_end_of(-(y + 1)) + 1);
  1430 static struct tm *
  1431 timesub(timep, offset, sp, tmp)
  1432 const time_t * const			timep;
  1433 const long				offset;
  1434 register const struct state * const	sp;
  1435 register struct tm * const		tmp;
  1437 	register const struct lsinfo *	lp;
  1438 	register time_t			tdays;
  1439 	register int			idays;	/* unsigned would be so 2003 */
  1440 	register long			rem;
  1441 	int				y;
  1442 	register const int *		ip;
  1443 	register long			corr;
  1444 	register int			hit;
  1445 	register int			i;
  1447 	corr = 0;
  1448 	hit = 0;
  1449 #ifdef ALL_STATE
  1450 	i = (sp == NULL) ? 0 : sp->leapcnt;
  1451 #endif /* defined ALL_STATE */
  1452 #ifndef ALL_STATE
  1453 	i = sp->leapcnt;
  1454 #endif /* State Farm */
  1455 	while (--i >= 0) {
  1456 		lp = &sp->lsis[i];
  1457 		if (*timep >= lp->ls_trans) {
  1458 			if (*timep == lp->ls_trans) {
  1459 				hit = ((i == 0 && lp->ls_corr > 0) ||
  1460 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
  1461 				if (hit)
  1462 					while (i > 0 &&
  1463 						sp->lsis[i].ls_trans ==
  1464 						sp->lsis[i - 1].ls_trans + 1 &&
  1465 						sp->lsis[i].ls_corr ==
  1466 						sp->lsis[i - 1].ls_corr + 1) {
  1467 							++hit;
  1468 							--i;
  1471 			corr = lp->ls_corr;
  1472 			break;
  1475 	y = EPOCH_YEAR;
  1476 	tdays = *timep / SECSPERDAY;
  1477 	rem = *timep - tdays * SECSPERDAY;
  1478 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
  1479 		int		newy;
  1480 		register time_t	tdelta;
  1481 		register int	idelta;
  1482 		register int	leapdays;
  1484 		tdelta = tdays / DAYSPERLYEAR;
  1485 		idelta = tdelta;
  1486 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
  1487 			return NULL;
  1488 		if (idelta == 0)
  1489 			idelta = (tdays < 0) ? -1 : 1;
  1490 		newy = y;
  1491 		if (increment_overflow(&newy, idelta))
  1492 			return NULL;
  1493 		leapdays = leaps_thru_end_of(newy - 1) -
  1494 			leaps_thru_end_of(y - 1);
  1495 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
  1496 		tdays -= leapdays;
  1497 		y = newy;
  1500 		register long	seconds;
  1502 		seconds = tdays * SECSPERDAY + 0.5;
  1503 		tdays = seconds / SECSPERDAY;
  1504 		rem += seconds - tdays * SECSPERDAY;
  1506 	/*
  1507 	** Given the range, we can now fearlessly cast...
  1508 	*/
  1509 	idays = tdays;
  1510 	rem += offset - corr;
  1511 	while (rem < 0) {
  1512 		rem += SECSPERDAY;
  1513 		--idays;
  1515 	while (rem >= SECSPERDAY) {
  1516 		rem -= SECSPERDAY;
  1517 		++idays;
  1519 	while (idays < 0) {
  1520 		if (increment_overflow(&y, -1))
  1521 			return NULL;
  1522 		idays += year_lengths[isleap(y)];
  1524 	while (idays >= year_lengths[isleap(y)]) {
  1525 		idays -= year_lengths[isleap(y)];
  1526 		if (increment_overflow(&y, 1))
  1527 			return NULL;
  1529 	tmp->tm_year = y;
  1530 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
  1531 		return NULL;
  1532 	tmp->tm_yday = idays;
  1533 	/*
  1534 	** The "extra" mods below avoid overflow problems.
  1535 	*/
  1536 	tmp->tm_wday = EPOCH_WDAY +
  1537 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
  1538 		(DAYSPERNYEAR % DAYSPERWEEK) +
  1539 		leaps_thru_end_of(y - 1) -
  1540 		leaps_thru_end_of(EPOCH_YEAR - 1) +
  1541 		idays;
  1542 	tmp->tm_wday %= DAYSPERWEEK;
  1543 	if (tmp->tm_wday < 0)
  1544 		tmp->tm_wday += DAYSPERWEEK;
  1545 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
  1546 	rem %= SECSPERHOUR;
  1547 	tmp->tm_min = (int) (rem / SECSPERMIN);
  1548 	/*
  1549 	** A positive leap second requires a special
  1550 	** representation. This uses "... ??:59:60" et seq.
  1551 	*/
  1552 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
  1553 	ip = mon_lengths[isleap(y)];
  1554 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
  1555 		idays -= ip[tmp->tm_mon];
  1556 	tmp->tm_mday = (int) (idays + 1);
  1557 	tmp->tm_isdst = 0;
  1558 #ifdef TM_GMTOFF
  1559 	tmp->TM_GMTOFF = offset;
  1560 #endif /* defined TM_GMTOFF */
  1561 	return tmp;
  1564 char *
  1565 ctime(timep)
  1566 const time_t * const	timep;
  1568 /*
  1569 ** Section 4.12.3.2 of X3.159-1989 requires that
  1570 **	The ctime function converts the calendar time pointed to by timer
  1571 **	to local time in the form of a string. It is equivalent to
  1572 **		asctime(localtime(timer))
  1573 */
  1574 	return asctime(localtime(timep));
  1577 char *
  1578 ctime_r(timep, buf)
  1579 const time_t * const	timep;
  1580 char *			buf;
  1582 	struct tm	mytm;
  1584 	return asctime_r(localtime_r(timep, &mytm), buf);
  1587 /*
  1588 ** Adapted from code provided by Robert Elz, who writes:
  1589 **	The "best" way to do mktime I think is based on an idea of Bob
  1590 **	Kridle's (so its said...) from a long time ago.
  1591 **	It does a binary search of the time_t space. Since time_t's are
  1592 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
  1593 **	would still be very reasonable).
  1594 */
  1596 #ifndef WRONG
  1597 #define WRONG	(-1)
  1598 #endif /* !defined WRONG */
  1600 /*
  1601 ** Simplified normalize logic courtesy Paul Eggert.
  1602 */
  1604 static int
  1605 increment_overflow(number, delta)
  1606 int *	number;
  1607 int	delta;
  1609 	int	number0;
  1611 	number0 = *number;
  1612 	*number += delta;
  1613 	return (*number < number0) != (delta < 0);
  1616 static int
  1617 long_increment_overflow(number, delta)
  1618 long *	number;
  1619 int	delta;
  1621 	long	number0;
  1623 	number0 = *number;
  1624 	*number += delta;
  1625 	return (*number < number0) != (delta < 0);
  1628 static int
  1629 normalize_overflow(tensptr, unitsptr, base)
  1630 int * const	tensptr;
  1631 int * const	unitsptr;
  1632 const int	base;
  1634 	register int	tensdelta;
  1636 	tensdelta = (*unitsptr >= 0) ?
  1637 		(*unitsptr / base) :
  1638 		(-1 - (-1 - *unitsptr) / base);
  1639 	*unitsptr -= tensdelta * base;
  1640 	return increment_overflow(tensptr, tensdelta);
  1643 static int
  1644 long_normalize_overflow(tensptr, unitsptr, base)
  1645 long * const	tensptr;
  1646 int * const	unitsptr;
  1647 const int	base;
  1649 	register int	tensdelta;
  1651 	tensdelta = (*unitsptr >= 0) ?
  1652 		(*unitsptr / base) :
  1653 		(-1 - (-1 - *unitsptr) / base);
  1654 	*unitsptr -= tensdelta * base;
  1655 	return long_increment_overflow(tensptr, tensdelta);
  1658 static int
  1659 tmcomp(atmp, btmp)
  1660 register const struct tm * const atmp;
  1661 register const struct tm * const btmp;
  1663 	register int	result;
  1665 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
  1666 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
  1667 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
  1668 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
  1669 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
  1670 			result = atmp->tm_sec - btmp->tm_sec;
  1671 	return result;
  1674 static time_t
  1675 time2sub(tmp, funcp, offset, okayp, do_norm_secs)
  1676 struct tm * const	tmp;
  1677 struct tm * (* const	funcp)(const time_t*, long, struct tm*);
  1678 const long		offset;
  1679 int * const		okayp;
  1680 const int		do_norm_secs;
  1682 	register const struct state *	sp;
  1683 	register int			dir;
  1684 	register int			i, j;
  1685 	register int			saved_seconds;
  1686 	register long			li;
  1687 	register time_t			lo;
  1688 	register time_t			hi;
  1689 	long				y;
  1690 	time_t				newt;
  1691 	time_t				t;
  1692 	struct tm			yourtm, mytm;
  1694 	*okayp = FALSE;
  1695 	yourtm = *tmp;
  1696 	if (do_norm_secs) {
  1697 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
  1698 			SECSPERMIN))
  1699 				return WRONG;
  1701 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
  1702 		return WRONG;
  1703 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
  1704 		return WRONG;
  1705 	y = yourtm.tm_year;
  1706 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
  1707 		return WRONG;
  1708 	/*
  1709 	** Turn y into an actual year number for now.
  1710 	** It is converted back to an offset from TM_YEAR_BASE later.
  1711 	*/
  1712 	if (long_increment_overflow(&y, TM_YEAR_BASE))
  1713 		return WRONG;
  1714 	while (yourtm.tm_mday <= 0) {
  1715 		if (long_increment_overflow(&y, -1))
  1716 			return WRONG;
  1717 		li = y + (1 < yourtm.tm_mon);
  1718 		yourtm.tm_mday += year_lengths[isleap(li)];
  1720 	while (yourtm.tm_mday > DAYSPERLYEAR) {
  1721 		li = y + (1 < yourtm.tm_mon);
  1722 		yourtm.tm_mday -= year_lengths[isleap(li)];
  1723 		if (long_increment_overflow(&y, 1))
  1724 			return WRONG;
  1726 	for ( ; ; ) {
  1727 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
  1728 		if (yourtm.tm_mday <= i)
  1729 			break;
  1730 		yourtm.tm_mday -= i;
  1731 		if (++yourtm.tm_mon >= MONSPERYEAR) {
  1732 			yourtm.tm_mon = 0;
  1733 			if (long_increment_overflow(&y, 1))
  1734 				return WRONG;
  1737 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
  1738 		return WRONG;
  1739 	yourtm.tm_year = y;
  1740 	if (yourtm.tm_year != y)
  1741 		return WRONG;
  1742 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
  1743 		saved_seconds = 0;
  1744 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
  1745 		/*
  1746 		** We can't set tm_sec to 0, because that might push the
  1747 		** time below the minimum representable time.
  1748 		** Set tm_sec to 59 instead.
  1749 		** This assumes that the minimum representable time is
  1750 		** not in the same minute that a leap second was deleted from,
  1751 		** which is a safer assumption than using 58 would be.
  1752 		*/
  1753 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
  1754 			return WRONG;
  1755 		saved_seconds = yourtm.tm_sec;
  1756 		yourtm.tm_sec = SECSPERMIN - 1;
  1757 	} else {
  1758 		saved_seconds = yourtm.tm_sec;
  1759 		yourtm.tm_sec = 0;
  1761 	/*
  1762 	** Do a binary search (this works whatever time_t's type is).
  1763 	*/
  1764 	if (!TYPE_SIGNED(time_t)) {
  1765 		lo = 0;
  1766 		hi = lo - 1;
  1767 	} else if (!TYPE_INTEGRAL(time_t)) {
  1768 		if (sizeof(time_t) > sizeof(float))
  1769 			hi = (time_t) DBL_MAX;
  1770 		else	hi = (time_t) FLT_MAX;
  1771 		lo = -hi;
  1772 	} else {
  1773 		lo = 1;
  1774 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
  1775 			lo *= 2;
  1776 		hi = -(lo + 1);
  1778 	for ( ; ; ) {
  1779 		t = lo / 2 + hi / 2;
  1780 		if (t < lo)
  1781 			t = lo;
  1782 		else if (t > hi)
  1783 			t = hi;
  1784 		if ((*funcp)(&t, offset, &mytm) == NULL) {
  1785 			/*
  1786 			** Assume that t is too extreme to be represented in
  1787 			** a struct tm; arrange things so that it is less
  1788 			** extreme on the next pass.
  1789 			*/
  1790 			dir = (t > 0) ? 1 : -1;
  1791 		} else	dir = tmcomp(&mytm, &yourtm);
  1792 		if (dir != 0) {
  1793 			if (t == lo) {
  1794 				++t;
  1795 				if (t <= lo)
  1796 					return WRONG;
  1797 				++lo;
  1798 			} else if (t == hi) {
  1799 				--t;
  1800 				if (t >= hi)
  1801 					return WRONG;
  1802 				--hi;
  1804 			if (lo > hi)
  1805 				return WRONG;
  1806 			if (dir > 0)
  1807 				hi = t;
  1808 			else	lo = t;
  1809 			continue;
  1811 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
  1812 			break;
  1813 		/*
  1814 		** Right time, wrong type.
  1815 		** Hunt for right time, right type.
  1816 		** It's okay to guess wrong since the guess
  1817 		** gets checked.
  1818 		*/
  1819 		sp = (const struct state *)
  1820 			((funcp == localsub) ? lclptr : gmtptr);
  1821 #ifdef ALL_STATE
  1822 		if (sp == NULL)
  1823 			return WRONG;
  1824 #endif /* defined ALL_STATE */
  1825 		for (i = sp->typecnt - 1; i >= 0; --i) {
  1826 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
  1827 				continue;
  1828 			for (j = sp->typecnt - 1; j >= 0; --j) {
  1829 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
  1830 					continue;
  1831 				newt = t + sp->ttis[j].tt_gmtoff -
  1832 					sp->ttis[i].tt_gmtoff;
  1833 				if ((*funcp)(&newt, offset, &mytm) == NULL)
  1834 					continue;
  1835 				if (tmcomp(&mytm, &yourtm) != 0)
  1836 					continue;
  1837 				if (mytm.tm_isdst != yourtm.tm_isdst)
  1838 					continue;
  1839 				/*
  1840 				** We have a match.
  1841 				*/
  1842 				t = newt;
  1843 				goto label;
  1846 		return WRONG;
  1848 label:
  1849 	newt = t + saved_seconds;
  1850 	if ((newt < t) != (saved_seconds < 0))
  1851 		return WRONG;
  1852 	t = newt;
  1853 	if ((*funcp)(&t, offset, tmp))
  1854 		*okayp = TRUE;
  1855 	return t;
  1858 static time_t
  1859 time2(tmp, funcp, offset, okayp)
  1860 struct tm * const	tmp;
  1861 struct tm * (* const	funcp)(const time_t*, long, struct tm*);
  1862 const long		offset;
  1863 int * const		okayp;
  1865 	time_t	t;
  1867 	/*
  1868 	** First try without normalization of seconds
  1869 	** (in case tm_sec contains a value associated with a leap second).
  1870 	** If that fails, try with normalization of seconds.
  1871 	*/
  1872 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
  1873 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
  1876 static time_t
  1877 time1(tmp, funcp, offset)
  1878 struct tm * const	tmp;
  1879 struct tm * (* const	funcp)(const time_t *, long, struct tm *);
  1880 const long		offset;
  1882 	register time_t			t;
  1883 	register const struct state *	sp;
  1884 	register int			samei, otheri;
  1885 	register int			sameind, otherind;
  1886 	register int			i;
  1887 	register int			nseen;
  1888 	int				seen[TZ_MAX_TYPES];
  1889 	int				types[TZ_MAX_TYPES];
  1890 	int				okay;
  1892 	if (tmp->tm_isdst > 1)
  1893 		tmp->tm_isdst = 1;
  1894 	t = time2(tmp, funcp, offset, &okay);
  1895 #ifdef PCTS
  1896 	/*
  1897 	** PCTS code courtesy Grant Sullivan.
  1898 	*/
  1899 	if (okay)
  1900 		return t;
  1901 	if (tmp->tm_isdst < 0)
  1902 		tmp->tm_isdst = 0;	/* reset to std and try again */
  1903 #endif /* defined PCTS */
  1904 #ifndef PCTS
  1905 	if (okay || tmp->tm_isdst < 0)
  1906 		return t;
  1907 #endif /* !defined PCTS */
  1908 	/*
  1909 	** We're supposed to assume that somebody took a time of one type
  1910 	** and did some math on it that yielded a "struct tm" that's bad.
  1911 	** We try to divine the type they started from and adjust to the
  1912 	** type they need.
  1913 	*/
  1914 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
  1915 #ifdef ALL_STATE
  1916 	if (sp == NULL)
  1917 		return WRONG;
  1918 #endif /* defined ALL_STATE */
  1919 	for (i = 0; i < sp->typecnt; ++i)
  1920 		seen[i] = FALSE;
  1921 	nseen = 0;
  1922 	for (i = sp->timecnt - 1; i >= 0; --i)
  1923 		if (!seen[sp->types[i]]) {
  1924 			seen[sp->types[i]] = TRUE;
  1925 			types[nseen++] = sp->types[i];
  1927 	for (sameind = 0; sameind < nseen; ++sameind) {
  1928 		samei = types[sameind];
  1929 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
  1930 			continue;
  1931 		for (otherind = 0; otherind < nseen; ++otherind) {
  1932 			otheri = types[otherind];
  1933 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
  1934 				continue;
  1935 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
  1936 					sp->ttis[samei].tt_gmtoff;
  1937 			tmp->tm_isdst = !tmp->tm_isdst;
  1938 			t = time2(tmp, funcp, offset, &okay);
  1939 			if (okay)
  1940 				return t;
  1941 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
  1942 					sp->ttis[samei].tt_gmtoff;
  1943 			tmp->tm_isdst = !tmp->tm_isdst;
  1946 	return WRONG;
  1949 time_t
  1950 mktime(tmp)
  1951 struct tm * const	tmp;
  1953 	tzset();
  1954 	return time1(tmp, localsub, 0L);
  1957 #ifdef STD_INSPIRED
  1959 time_t
  1960 timelocal(tmp)
  1961 struct tm * const	tmp;
  1963 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
  1964 	return mktime(tmp);
  1967 time_t
  1968 timegm(tmp)
  1969 struct tm * const	tmp;
  1971 	tmp->tm_isdst = 0;
  1972 	return time1(tmp, gmtsub, 0L);
  1975 time_t
  1976 timeoff(tmp, offset)
  1977 struct tm * const	tmp;
  1978 const long		offset;
  1980 	tmp->tm_isdst = 0;
  1981 	return time1(tmp, gmtsub, offset);
  1984 #endif /* defined STD_INSPIRED */
  1986 #ifdef CMUCS
  1988 /*
  1989 ** The following is supplied for compatibility with
  1990 ** previous versions of the CMUCS runtime library.
  1991 */
  1993 long
  1994 gtime(tmp)
  1995 struct tm * const	tmp;
  1997 	const time_t	t = mktime(tmp);
  1999 	if (t == WRONG)
  2000 		return -1;
  2001 	return t;
  2004 #endif /* defined CMUCS */
  2006 /*
  2007 ** XXX--is the below the right way to conditionalize??
  2008 */
  2010 #ifdef STD_INSPIRED
  2012 /*
  2013 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
  2014 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
  2015 ** is not the case if we are accounting for leap seconds.
  2016 ** So, we provide the following conversion routines for use
  2017 ** when exchanging timestamps with POSIX conforming systems.
  2018 */
  2020 static long
  2021 leapcorr(timep)
  2022 time_t *	timep;
  2024 	register struct state *		sp;
  2025 	register struct lsinfo *	lp;
  2026 	register int			i;
  2028 	sp = lclptr;
  2029 	i = sp->leapcnt;
  2030 	while (--i >= 0) {
  2031 		lp = &sp->lsis[i];
  2032 		if (*timep >= lp->ls_trans)
  2033 			return lp->ls_corr;
  2035 	return 0;
  2038 time_t
  2039 time2posix(t)
  2040 time_t	t;
  2042 	tzset();
  2043 	return t - leapcorr(&t);
  2046 time_t
  2047 posix2time(t)
  2048 time_t	t;
  2050 	time_t	x;
  2051 	time_t	y;
  2053 	tzset();
  2054 	/*
  2055 	** For a positive leap second hit, the result
  2056 	** is not unique. For a negative leap second
  2057 	** hit, the corresponding time doesn't exist,
  2058 	** so we return an adjacent second.
  2059 	*/
  2060 	x = t + leapcorr(&t);
  2061 	y = x - leapcorr(&x);
  2062 	if (y < t) {
  2063 		do {
  2064 			x++;
  2065 			y = x - leapcorr(&x);
  2066 		} while (y < t);
  2067 		if (t != y)
  2068 			return x - 1;
  2069 	} else if (y > t) {
  2070 		do {
  2071 			--x;
  2072 			y = x - leapcorr(&x);
  2073 		} while (y > t);
  2074 		if (t != y)
  2075 			return x + 1;
  2077 	return x;
  2080 #endif /* defined STD_INSPIRED */

mercurial