1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/build/stlport/src/num_get_float.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,884 @@ 1.4 +/* 1.5 + * Copyright (c) 1999 1.6 + * Silicon Graphics Computer Systems, Inc. 1.7 + * 1.8 + * Copyright (c) 1999 1.9 + * Boris Fomitchev 1.10 + * 1.11 + * This material is provided "as is", with absolutely no warranty expressed 1.12 + * or implied. Any use is at your own risk. 1.13 + * 1.14 + * Permission to use or copy this software for any purpose is hereby granted 1.15 + * without fee, provided the above notices are retained on all copies. 1.16 + * Permission to modify the code and to distribute modified code is granted, 1.17 + * provided the above notices are retained, and a notice that the code was 1.18 + * modified is included with the above copyright notice. 1.19 + * 1.20 + */ 1.21 + 1.22 +#include "stlport_prefix.h" 1.23 + 1.24 +#include <limits> 1.25 +#include <locale> 1.26 +#include <istream> 1.27 + 1.28 +#if (defined (__GNUC__) && !defined (__sun) && !defined (__hpux)) || \ 1.29 + defined (__DMC__) 1.30 +# include <stdint.h> 1.31 +#endif 1.32 + 1.33 +#if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \ 1.34 + defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC) 1.35 + 1.36 +# if defined (__BORLANDC__) 1.37 +typedef unsigned int uint32_t; 1.38 +typedef unsigned __int64 uint64_t; 1.39 +# endif 1.40 + 1.41 +union _ll { 1.42 + uint64_t i64; 1.43 + struct { 1.44 +# if defined (_STLP_BIG_ENDIAN) 1.45 + uint32_t hi; 1.46 + uint32_t lo; 1.47 +# elif defined (_STLP_LITTLE_ENDIAN) 1.48 + uint32_t lo; 1.49 + uint32_t hi; 1.50 +# else 1.51 +# error Unknown endianess 1.52 +# endif 1.53 + } i32; 1.54 +}; 1.55 + 1.56 +# if defined (__linux__) && !defined (__ANDROID__) 1.57 +# include <ieee754.h> 1.58 +# else 1.59 +union ieee854_long_double { 1.60 + long double d; 1.61 + 1.62 + /* This is the IEEE 854 double-extended-precision format. */ 1.63 + struct { 1.64 + unsigned int mantissa1:32; 1.65 + unsigned int mantissa0:32; 1.66 + unsigned int exponent:15; 1.67 + unsigned int negative:1; 1.68 + unsigned int empty:16; 1.69 + } ieee; 1.70 +}; 1.71 + 1.72 +# define IEEE854_LONG_DOUBLE_BIAS 0x3fff 1.73 +# endif 1.74 +#endif 1.75 + 1.76 +_STLP_BEGIN_NAMESPACE 1.77 +_STLP_MOVE_TO_PRIV_NAMESPACE 1.78 + 1.79 +//---------------------------------------------------------------------- 1.80 +// num_get 1.81 + 1.82 +// Helper functions for _M_do_get_float. 1.83 + 1.84 +#if !defined (_STLP_NO_WCHAR_T) 1.85 +void _STLP_CALL 1.86 +_Initialize_get_float( const ctype<wchar_t>& ct, 1.87 + wchar_t& Plus, wchar_t& Minus, 1.88 + wchar_t& pow_e, wchar_t& pow_E, 1.89 + wchar_t* digits) { 1.90 + char ndigits[11] = "0123456789"; 1.91 + Plus = ct.widen('+'); 1.92 + Minus = ct.widen('-'); 1.93 + pow_e = ct.widen('e'); 1.94 + pow_E = ct.widen('E'); 1.95 + ct.widen(ndigits + 0, ndigits + 10, digits); 1.96 +} 1.97 +#endif /* WCHAR_T */ 1.98 + 1.99 +/* 1.100 + * __string_to_double is just lifted from atof, the difference being 1.101 + * that we just use '.' for the decimal point, rather than let it 1.102 + * be taken from the current C locale, which of course is not accessible 1.103 + * to us. 1.104 + */ 1.105 +#if defined (_STLP_MSVC) || defined (__BORLANDC__) || defined (__ICL) 1.106 +typedef unsigned long uint32; 1.107 +typedef unsigned __int64 uint64; 1.108 +# define ULL(x) x##Ui64 1.109 +#elif defined (__unix) || defined (__MINGW32__) || \ 1.110 + (defined (__DMC__) && (__LONGLONG)) || defined (__WATCOMC__) || \ 1.111 + defined (__ANDROID__) 1.112 +typedef uint32_t uint32; 1.113 +typedef uint64_t uint64; 1.114 +# define ULL(x) x##ULL 1.115 +#else 1.116 +# error There should be some unsigned 64-bit integer on the system! 1.117 +#endif 1.118 + 1.119 +// Multiplication of two 64-bit integers, giving a 128-bit result. 1.120 +// Taken from Algorithm M in Knuth section 4.3.1, with the loop 1.121 +// hand-unrolled. 1.122 +static void _Stl_mult64(const uint64 u, const uint64 v, 1.123 + uint64& high, uint64& low) { 1.124 + const uint64 low_mask = ULL(0xffffffff); 1.125 + const uint64 u0 = u & low_mask; 1.126 + const uint64 u1 = u >> 32; 1.127 + const uint64 v0 = v & low_mask; 1.128 + const uint64 v1 = v >> 32; 1.129 + 1.130 + uint64 t = u0 * v0; 1.131 + low = t & low_mask; 1.132 + 1.133 + t = u1 * v0 + (t >> 32); 1.134 + uint64 w1 = t & low_mask; 1.135 + uint64 w2 = t >> 32; 1.136 + 1.137 + uint64 x = u0 * v1 + w1; 1.138 + low += (x & low_mask) << 32; 1.139 + high = u1 * v1 + w2 + (x >> 32); 1.140 +} 1.141 + 1.142 +#if !defined (__linux__) || defined (__ANDROID__) 1.143 + 1.144 +# define bit11 ULL(0x7ff) 1.145 +# define exponent_mask (bit11 << 52) 1.146 + 1.147 +# if !defined (__GNUC__) || (__GNUC__ != 3) || (__GNUC_MINOR__ != 4) || \ 1.148 + (!defined (__CYGWIN__) && !defined (__MINGW32__)) 1.149 +//Generate bad code when compiled with -O2 option. 1.150 +inline 1.151 +# endif 1.152 +void _Stl_set_exponent(uint64 &val, uint64 exp) 1.153 +{ val = (val & ~exponent_mask) | ((exp & bit11) << 52); } 1.154 + 1.155 +#endif // __linux__ 1.156 + 1.157 +/* Power of ten fractions for tenscale*/ 1.158 +/* The constants are factored so that at most two constants 1.159 + * and two multiplies are needed. Furthermore, one of the constants 1.160 + * is represented exactly - 10**n where 1<= n <= 27. 1.161 + */ 1.162 + 1.163 +static const uint64 _Stl_tenpow[80] = { 1.164 +ULL(0xa000000000000000), /* _Stl_tenpow[0]=(10**1)/(2**4) */ 1.165 +ULL(0xc800000000000000), /* _Stl_tenpow[1]=(10**2)/(2**7) */ 1.166 +ULL(0xfa00000000000000), /* _Stl_tenpow[2]=(10**3)/(2**10) */ 1.167 +ULL(0x9c40000000000000), /* _Stl_tenpow[3]=(10**4)/(2**14) */ 1.168 +ULL(0xc350000000000000), /* _Stl_tenpow[4]=(10**5)/(2**17) */ 1.169 +ULL(0xf424000000000000), /* _Stl_tenpow[5]=(10**6)/(2**20) */ 1.170 +ULL(0x9896800000000000), /* _Stl_tenpow[6]=(10**7)/(2**24) */ 1.171 +ULL(0xbebc200000000000), /* _Stl_tenpow[7]=(10**8)/(2**27) */ 1.172 +ULL(0xee6b280000000000), /* _Stl_tenpow[8]=(10**9)/(2**30) */ 1.173 +ULL(0x9502f90000000000), /* _Stl_tenpow[9]=(10**10)/(2**34) */ 1.174 +ULL(0xba43b74000000000), /* _Stl_tenpow[10]=(10**11)/(2**37) */ 1.175 +ULL(0xe8d4a51000000000), /* _Stl_tenpow[11]=(10**12)/(2**40) */ 1.176 +ULL(0x9184e72a00000000), /* _Stl_tenpow[12]=(10**13)/(2**44) */ 1.177 +ULL(0xb5e620f480000000), /* _Stl_tenpow[13]=(10**14)/(2**47) */ 1.178 +ULL(0xe35fa931a0000000), /* _Stl_tenpow[14]=(10**15)/(2**50) */ 1.179 +ULL(0x8e1bc9bf04000000), /* _Stl_tenpow[15]=(10**16)/(2**54) */ 1.180 +ULL(0xb1a2bc2ec5000000), /* _Stl_tenpow[16]=(10**17)/(2**57) */ 1.181 +ULL(0xde0b6b3a76400000), /* _Stl_tenpow[17]=(10**18)/(2**60) */ 1.182 +ULL(0x8ac7230489e80000), /* _Stl_tenpow[18]=(10**19)/(2**64) */ 1.183 +ULL(0xad78ebc5ac620000), /* _Stl_tenpow[19]=(10**20)/(2**67) */ 1.184 +ULL(0xd8d726b7177a8000), /* _Stl_tenpow[20]=(10**21)/(2**70) */ 1.185 +ULL(0x878678326eac9000), /* _Stl_tenpow[21]=(10**22)/(2**74) */ 1.186 +ULL(0xa968163f0a57b400), /* _Stl_tenpow[22]=(10**23)/(2**77) */ 1.187 +ULL(0xd3c21bcecceda100), /* _Stl_tenpow[23]=(10**24)/(2**80) */ 1.188 +ULL(0x84595161401484a0), /* _Stl_tenpow[24]=(10**25)/(2**84) */ 1.189 +ULL(0xa56fa5b99019a5c8), /* _Stl_tenpow[25]=(10**26)/(2**87) */ 1.190 +ULL(0xcecb8f27f4200f3a), /* _Stl_tenpow[26]=(10**27)/(2**90) */ 1.191 + 1.192 +ULL(0xd0cf4b50cfe20766), /* _Stl_tenpow[27]=(10**55)/(2**183) */ 1.193 +ULL(0xd2d80db02aabd62c), /* _Stl_tenpow[28]=(10**83)/(2**276) */ 1.194 +ULL(0xd4e5e2cdc1d1ea96), /* _Stl_tenpow[29]=(10**111)/(2**369) */ 1.195 +ULL(0xd6f8d7509292d603), /* _Stl_tenpow[30]=(10**139)/(2**462) */ 1.196 +ULL(0xd910f7ff28069da4), /* _Stl_tenpow[31]=(10**167)/(2**555) */ 1.197 +ULL(0xdb2e51bfe9d0696a), /* _Stl_tenpow[32]=(10**195)/(2**648) */ 1.198 +ULL(0xdd50f1996b947519), /* _Stl_tenpow[33]=(10**223)/(2**741) */ 1.199 +ULL(0xdf78e4b2bd342cf7), /* _Stl_tenpow[34]=(10**251)/(2**834) */ 1.200 +ULL(0xe1a63853bbd26451), /* _Stl_tenpow[35]=(10**279)/(2**927) */ 1.201 +ULL(0xe3d8f9e563a198e5), /* _Stl_tenpow[36]=(10**307)/(2**1020) */ 1.202 + 1.203 +// /* _Stl_tenpow[36]=(10**335)/(2**) */ 1.204 +// /* _Stl_tenpow[36]=(10**335)/(2**) */ 1.205 + 1.206 +ULL(0xfd87b5f28300ca0e), /* _Stl_tenpow[37]=(10**-28)/(2**-93) */ 1.207 +ULL(0xfb158592be068d2f), /* _Stl_tenpow[38]=(10**-56)/(2**-186) */ 1.208 +ULL(0xf8a95fcf88747d94), /* _Stl_tenpow[39]=(10**-84)/(2**-279) */ 1.209 +ULL(0xf64335bcf065d37d), /* _Stl_tenpow[40]=(10**-112)/(2**-372) */ 1.210 +ULL(0xf3e2f893dec3f126), /* _Stl_tenpow[41]=(10**-140)/(2**-465) */ 1.211 +ULL(0xf18899b1bc3f8ca2), /* _Stl_tenpow[42]=(10**-168)/(2**-558) */ 1.212 +ULL(0xef340a98172aace5), /* _Stl_tenpow[43]=(10**-196)/(2**-651) */ 1.213 +ULL(0xece53cec4a314ebe), /* _Stl_tenpow[44]=(10**-224)/(2**-744) */ 1.214 +ULL(0xea9c227723ee8bcb), /* _Stl_tenpow[45]=(10**-252)/(2**-837) */ 1.215 +ULL(0xe858ad248f5c22ca), /* _Stl_tenpow[46]=(10**-280)/(2**-930) */ 1.216 +ULL(0xe61acf033d1a45df), /* _Stl_tenpow[47]=(10**-308)/(2**-1023) */ 1.217 +ULL(0xe3e27a444d8d98b8), /* _Stl_tenpow[48]=(10**-336)/(2**-1116) */ 1.218 +ULL(0xe1afa13afbd14d6e) /* _Stl_tenpow[49]=(10**-364)/(2**-1209) */ 1.219 +}; 1.220 + 1.221 +static const short _Stl_twoexp[80] = { 1.222 +4,7,10,14,17,20,24,27,30,34,37,40,44,47,50,54,57,60,64,67,70,74,77,80,84,87,90, 1.223 +183,276,369,462,555,648,741,834,927,1020, 1.224 +-93,-186,-279,-372,-465,-558,-651,-744,-837,-930,-1023,-1116,-1209 1.225 +}; 1.226 + 1.227 +#define TEN_1 0 /* offset to 10 ** 1 */ 1.228 +#define TEN_27 26 /* offset to 10 ** 27 */ 1.229 +#define TEN_M28 37 /* offset to 10 ** -28 */ 1.230 +#define NUM_HI_P 11 1.231 +#define NUM_HI_N 13 1.232 + 1.233 +#define _Stl_HIBITULL (ULL(1) << 63) 1.234 + 1.235 +static void _Stl_norm_and_round(uint64& p, int& norm, uint64 prodhi, uint64 prodlo) { 1.236 + norm = 0; 1.237 + if ((prodhi & _Stl_HIBITULL) == 0) { 1.238 + /* leading bit is a zero 1.239 + * may have to normalize 1.240 + */ 1.241 + if ((prodhi == ~_Stl_HIBITULL) && 1.242 + ((prodlo >> 62) == 0x3)) { /* normalization followed by round 1.243 + * would cause carry to create 1.244 + * extra bit, so don't normalize 1.245 + */ 1.246 + p = _Stl_HIBITULL; 1.247 + return; 1.248 + } 1.249 + p = (prodhi << 1) | (prodlo >> 63); /* normalize */ 1.250 + norm = 1; 1.251 + prodlo <<= 1; 1.252 + } 1.253 + else { 1.254 + p = prodhi; 1.255 + } 1.256 + 1.257 + if ((prodlo & _Stl_HIBITULL) != 0) { /* first guard bit a one */ 1.258 + if (((p & 0x1) != 0) || 1.259 + prodlo != _Stl_HIBITULL ) { /* not borderline for round to even */ 1.260 + /* round */ 1.261 + ++p; 1.262 + if (p == 0) 1.263 + ++p; 1.264 + } 1.265 + } 1.266 +} 1.267 + 1.268 +// Convert a 64-bitb fraction * 10^exp to a 64-bit fraction * 2^bexp. 1.269 +// p: 64-bit fraction 1.270 +// exp: base-10 exponent 1.271 +// bexp: base-2 exponent (output parameter) 1.272 +static void _Stl_tenscale(uint64& p, int exp, int& bexp) { 1.273 + bexp = 0; 1.274 + 1.275 + if ( exp == 0 ) { /* no scaling needed */ 1.276 + return; 1.277 + } 1.278 + 1.279 + int exp_hi = 0, exp_lo = exp; /* exp = exp_hi*32 + exp_lo */ 1.280 + int tlo = TEN_1, thi; /* offsets in power of ten table */ 1.281 + int num_hi; /* number of high exponent powers */ 1.282 + 1.283 + if (exp > 0) { /* split exponent */ 1.284 + if (exp_lo > 27) { 1.285 + exp_lo++; 1.286 + while (exp_lo > 27) { 1.287 + exp_hi++; 1.288 + exp_lo -= 28; 1.289 + } 1.290 + } 1.291 + thi = TEN_27; 1.292 + num_hi = NUM_HI_P; 1.293 + } else { // exp < 0 1.294 + while (exp_lo < 0) { 1.295 + exp_hi++; 1.296 + exp_lo += 28; 1.297 + } 1.298 + thi = TEN_M28; 1.299 + num_hi = NUM_HI_N; 1.300 + } 1.301 + 1.302 + uint64 prodhi, prodlo; /* 128b product */ 1.303 + int norm; /* number of bits of normalization */ 1.304 + 1.305 + int hi, lo; /* offsets in power of ten table */ 1.306 + while (exp_hi) { /* scale */ 1.307 + hi = (min) (exp_hi, num_hi); /* only a few large powers of 10 */ 1.308 + exp_hi -= hi; /* could iterate in extreme case */ 1.309 + hi += thi-1; 1.310 + _Stl_mult64(p, _Stl_tenpow[hi], prodhi, prodlo); 1.311 + _Stl_norm_and_round(p, norm, prodhi, prodlo); 1.312 + bexp += _Stl_twoexp[hi] - norm; 1.313 + } 1.314 + 1.315 + if (exp_lo) { 1.316 + lo = tlo + exp_lo -1; 1.317 + _Stl_mult64(p, _Stl_tenpow[lo], prodhi, prodlo); 1.318 + _Stl_norm_and_round(p, norm, prodhi, prodlo); 1.319 + bexp += _Stl_twoexp[lo] - norm; 1.320 + } 1.321 + 1.322 + return; 1.323 +} 1.324 + 1.325 +// First argument is a buffer of values from 0 to 9, NOT ascii. 1.326 +// Second argument is number of digits in buffer, 1 <= digits <= 17. 1.327 +// Third argument is base-10 exponent. 1.328 + 1.329 +/* IEEE representation */ 1.330 +#if !defined (__linux__) || defined (__ANDROID__) 1.331 + 1.332 +union _Double_rep { 1.333 + uint64 ival; 1.334 + double val; 1.335 +}; 1.336 + 1.337 +static double _Stl_atod(char *buffer, ptrdiff_t ndigit, int dexp) { 1.338 + typedef numeric_limits<double> limits; 1.339 + _Double_rep drep; 1.340 + uint64 &value = drep.ival; /* Value develops as follows: 1.341 + * 1) decimal digits as an integer 1.342 + * 2) left adjusted fraction 1.343 + * 3) right adjusted fraction 1.344 + * 4) exponent and fraction 1.345 + */ 1.346 + 1.347 + uint32 guard; /* First guard bit */ 1.348 + uint64 rest; /* Remaining guard bits */ 1.349 + 1.350 + int bexp; /* binary exponent */ 1.351 + int nzero; /* number of non-zero bits */ 1.352 + int sexp; /* scaling exponent */ 1.353 + 1.354 + char *bufferend; /* pointer to char after last digit */ 1.355 + 1.356 + /* Convert the decimal digits to a binary integer. */ 1.357 + bufferend = buffer + ndigit; 1.358 + value = 0; 1.359 + 1.360 + while (buffer < bufferend) { 1.361 + value *= 10; 1.362 + value += *buffer++; 1.363 + } 1.364 + 1.365 + /* Check for zero and treat it as a special case */ 1.366 + if (value == 0) { 1.367 + return 0.0; 1.368 + } 1.369 + 1.370 + /* Normalize value */ 1.371 + bexp = 64; /* convert from 64b int to fraction */ 1.372 + 1.373 + /* Count number of non-zeroes in value */ 1.374 + nzero = 0; 1.375 + if ((value >> 32) != 0) { nzero = 32; } //*TY 03/25/2000 - added explicit comparison to zero to avoid uint64 to bool conversion operator 1.376 + if ((value >> (16 + nzero)) != 0) { nzero += 16; } 1.377 + if ((value >> ( 8 + nzero)) != 0) { nzero += 8; } 1.378 + if ((value >> ( 4 + nzero)) != 0) { nzero += 4; } 1.379 + if ((value >> ( 2 + nzero)) != 0) { nzero += 2; } 1.380 + if ((value >> ( 1 + nzero)) != 0) { nzero += 1; } 1.381 + if ((value >> ( nzero)) != 0) { nzero += 1; } 1.382 + 1.383 + /* Normalize */ 1.384 + value <<= /*(uint64)*/ (64 - nzero); //*TY 03/25/2000 - removed extraneous cast to uint64 1.385 + bexp -= 64 - nzero; 1.386 + 1.387 + /* At this point we have a 64b fraction and a binary exponent 1.388 + * but have yet to incorporate the decimal exponent. 1.389 + */ 1.390 + 1.391 + /* multiply by 10^dexp */ 1.392 + _Stl_tenscale(value, dexp, sexp); 1.393 + bexp += sexp; 1.394 + 1.395 + if (bexp <= -1022) { /* HI denorm or underflow */ 1.396 + bexp += 1022; 1.397 + if (bexp < -53) { /* guaranteed underflow */ 1.398 + value = 0; 1.399 + } 1.400 + else { /* denorm or possible underflow */ 1.401 + int lead0 = 12 - bexp; /* 12 sign and exponent bits */ 1.402 + 1.403 + /* we must special case right shifts of more than 63 */ 1.404 + if (lead0 > 64) { 1.405 + rest = value; 1.406 + guard = 0; 1.407 + value = 0; 1.408 + } 1.409 + else if (lead0 == 64) { 1.410 + rest = value & ((ULL(1)<< 63)-1); 1.411 + guard = (uint32) ((value>> 63) & 1 ); 1.412 + value = 0; 1.413 + } 1.414 + else { 1.415 + rest = value & (((ULL(1) << lead0)-1)-1); 1.416 + guard = (uint32) (((value>> lead0)-1) & 1); 1.417 + value >>= /*(uint64)*/ lead0; /* exponent is zero */ 1.418 + } 1.419 + 1.420 + /* Round */ 1.421 + if (guard && ((value & 1) || rest) ) { 1.422 + ++value; 1.423 + if (value == (ULL(1) << (limits::digits - 1))) { /* carry created normal number */ 1.424 + value = 0; 1.425 + _Stl_set_exponent(value, 1); 1.426 + } 1.427 + } 1.428 + } 1.429 + } 1.430 + else { /* not zero or denorm */ 1.431 + /* Round to 53 bits */ 1.432 + rest = value & ((1 << 10) - 1); 1.433 + value >>= 10; 1.434 + guard = (uint32) value & 1; 1.435 + value >>= 1; 1.436 + 1.437 + /* value&1 guard rest Action 1.438 + * 1.439 + * dc 0 dc none 1.440 + * 1 1 dc round 1.441 + * 0 1 0 none 1.442 + * 0 1 !=0 round 1.443 + */ 1.444 + if (guard) { 1.445 + if (((value&1)!=0) || (rest!=0)) { 1.446 + ++value; /* round */ 1.447 + if ((value >> 53) != 0) { /* carry all the way across */ 1.448 + value >>= 1; /* renormalize */ 1.449 + ++bexp; 1.450 + } 1.451 + } 1.452 + } 1.453 + /* 1.454 + * Check for overflow 1.455 + * IEEE Double Precision Format 1.456 + * (From Table 7-8 of Kane and Heinrich) 1.457 + * 1.458 + * Fraction bits 52 1.459 + * Emax +1023 1.460 + * Emin -1022 1.461 + * Exponent bias +1023 1.462 + * Exponent bits 11 1.463 + * Integer bit hidden 1.464 + * Total width in bits 64 1.465 + */ 1.466 + 1.467 + if (bexp > limits::max_exponent) { /* overflow */ 1.468 + return limits::infinity(); 1.469 + } 1.470 + else { /* value is normal */ 1.471 + value &= ~(ULL(1) << (limits::digits - 1)); /* hide hidden bit */ 1.472 + _Stl_set_exponent(value, bexp + 1022); /* add bias */ 1.473 + } 1.474 + } 1.475 + 1.476 + _STLP_STATIC_ASSERT(sizeof(uint64) >= sizeof(double)) 1.477 + return drep.val; 1.478 +} 1.479 + 1.480 +#endif 1.481 + 1.482 +#if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \ 1.483 + defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC) 1.484 + 1.485 +template <class D, class IEEE, int M, int BIAS> 1.486 +D _Stl_atodT(char *buffer, ptrdiff_t ndigit, int dexp) 1.487 +{ 1.488 + typedef numeric_limits<D> limits; 1.489 + 1.490 + /* Convert the decimal digits to a binary integer. */ 1.491 + char *bufferend = buffer + ndigit; /* pointer to char after last digit */ 1.492 + _ll vv; 1.493 + vv.i64 = 0L; 1.494 + 1.495 + while ( buffer < bufferend ) { 1.496 + vv.i64 *= 10; 1.497 + vv.i64 += *buffer++; 1.498 + } 1.499 + 1.500 + if ( vv.i64 == ULL(0) ) { /* Check for zero and treat it as a special case */ 1.501 + return D(0.0); 1.502 + } 1.503 + 1.504 + /* Normalize value */ 1.505 + 1.506 + int bexp = 64; /* convert from 64b int to fraction */ 1.507 + 1.508 + /* Count number of non-zeroes in value */ 1.509 + int nzero = 0; 1.510 + if ((vv.i64 >> 32) != 0) { nzero = 32; } 1.511 + if ((vv.i64 >> (16 + nzero)) != 0) { nzero += 16; } 1.512 + if ((vv.i64 >> ( 8 + nzero)) != 0) { nzero += 8; } 1.513 + if ((vv.i64 >> ( 4 + nzero)) != 0) { nzero += 4; } 1.514 + if ((vv.i64 >> ( 2 + nzero)) != 0) { nzero += 2; } 1.515 + if ((vv.i64 >> ( 1 + nzero)) != 0) { nzero += 1; } 1.516 + if ((vv.i64 >> ( nzero)) != 0) { nzero += 1; } 1.517 + 1.518 + /* Normalize */ 1.519 + nzero = 64 - nzero; 1.520 + vv.i64 <<= nzero; // * TY 03/25/2000 - removed extraneous cast to uint64 1.521 + bexp -= nzero; 1.522 + 1.523 + /* At this point we have a 64b fraction and a binary exponent 1.524 + * but have yet to incorporate the decimal exponent. 1.525 + */ 1.526 + 1.527 + /* multiply by 10^dexp */ 1.528 + int sexp; 1.529 + _Stl_tenscale(vv.i64, dexp, sexp); 1.530 + bexp += sexp; 1.531 + 1.532 + if ( bexp >= limits::min_exponent ) { /* not zero or denorm */ 1.533 + if ( limits::digits < 64 ) { 1.534 + /* Round to (64 - M + 1) bits */ 1.535 + uint64_t rest = vv.i64 & ((~ULL(0) / ULL(2)) >> (limits::digits - 1)); 1.536 + vv.i64 >>= M - 2; 1.537 + uint32_t guard = (uint32) vv.i64 & 1; 1.538 + vv.i64 >>= 1; 1.539 + 1.540 + /* value&1 guard rest Action 1.541 + * 1.542 + * dc 0 dc none 1.543 + * 1 1 dc round 1.544 + * 0 1 0 none 1.545 + * 0 1 !=0 round 1.546 + */ 1.547 + 1.548 + if (guard) { 1.549 + if ( ((vv.i64 & 1) != 0) || (rest != 0) ) { 1.550 + vv.i64++; /* round */ 1.551 + if ( (vv.i64 >> (limits::digits < 64 ? limits::digits : 0)) != 0 ) { /* carry all the way across */ 1.552 + vv.i64 >>= 1; /* renormalize */ 1.553 + ++bexp; 1.554 + } 1.555 + } 1.556 + } 1.557 + 1.558 + vv.i64 &= ~(ULL(1) << (limits::digits - 1)); /* hide hidden bit */ 1.559 + } 1.560 + /* 1.561 + * Check for overflow 1.562 + * IEEE Double Precision Format 1.563 + * (From Table 7-8 of Kane and Heinrich) 1.564 + * 1.565 + * Fraction bits 52 1.566 + * Emax +1023 1.567 + * Emin -1022 1.568 + * Exponent bias +1023 1.569 + * Exponent bits 11 1.570 + * Integer bit hidden 1.571 + * Total width in bits 64 1.572 + */ 1.573 + 1.574 + if (bexp > limits::max_exponent) { /* overflow */ 1.575 + return limits::infinity(); 1.576 + } 1.577 + 1.578 + /* value is normal */ 1.579 + 1.580 + IEEE v; 1.581 + 1.582 + v.ieee.mantissa0 = vv.i32.hi; 1.583 + v.ieee.mantissa1 = vv.i32.lo; 1.584 + v.ieee.negative = 0; 1.585 + v.ieee.exponent = bexp + BIAS - 1; 1.586 + 1.587 + return v.d; 1.588 + } 1.589 + 1.590 + /* HI denorm or underflow */ 1.591 + bexp += BIAS - 1; 1.592 + if (bexp < -limits::digits) { /* guaranteed underflow */ 1.593 + vv.i64 = 0; 1.594 + } else { /* denorm or possible underflow */ 1.595 + 1.596 + /* 1.597 + * Problem point for long double: looks like this code reflect shareing of mantissa 1.598 + * and exponent in 64b int; not so for long double 1.599 + */ 1.600 + 1.601 + int lead0 = M - bexp; /* M = 12 sign and exponent bits */ 1.602 + uint64_t rest; 1.603 + uint32_t guard; 1.604 + 1.605 + /* we must special case right shifts of more than 63 */ 1.606 + 1.607 + if (lead0 > 64) { 1.608 + rest = vv.i64; 1.609 + guard = 0; 1.610 + vv.i64 = 0; 1.611 + } else if (lead0 == 64) { 1.612 + rest = vv.i64 & ((ULL(1) << 63)-1); 1.613 + guard = (uint32) ((vv.i64 >> 63) & 1 ); 1.614 + vv.i64 = 0; 1.615 + } else { 1.616 + rest = vv.i64 & (((ULL(1) << lead0)-1)-1); 1.617 + guard = (uint32) (((vv.i64 >> lead0)-1) & 1); 1.618 + vv.i64 >>= /*(uint64)*/ lead0; /* exponent is zero */ 1.619 + } 1.620 + 1.621 + /* Round */ 1.622 + if (guard && ( (vv.i64 & 1) || rest)) { 1.623 + vv.i64++; 1.624 + if (vv.i64 == (ULL(1) << (limits::digits - 1))) { /* carry created normal number */ 1.625 + IEEE v; 1.626 + 1.627 + v.ieee.mantissa0 = 0; 1.628 + v.ieee.mantissa1 = 0; 1.629 + v.ieee.negative = 0; 1.630 + v.ieee.exponent = 1; 1.631 + return v.d; 1.632 + } 1.633 + } 1.634 + } 1.635 + 1.636 + IEEE v; 1.637 + 1.638 + v.ieee.mantissa0 = vv.i32.hi; 1.639 + v.ieee.mantissa1 = vv.i32.lo; 1.640 + v.ieee.negative = 0; 1.641 + v.ieee.exponent = 0; 1.642 + 1.643 + return v.d; 1.644 +} 1.645 +#endif // __linux__ 1.646 + 1.647 +#if !defined (__linux__) || defined (__ANDROID__) 1.648 +static double _Stl_string_to_double(const char *s) { 1.649 + typedef numeric_limits<double> limits; 1.650 + const int max_digits = limits::digits10 + 2; 1.651 + unsigned c; 1.652 + unsigned Negate, decimal_point; 1.653 + char *d; 1.654 + int exp; 1.655 + int dpchar; 1.656 + char digits[max_digits]; 1.657 + 1.658 + c = *s++; 1.659 + 1.660 + /* process sign */ 1.661 + Negate = 0; 1.662 + if (c == '+') { 1.663 + c = *s++; 1.664 + } else if (c == '-') { 1.665 + Negate = 1; 1.666 + c = *s++; 1.667 + } 1.668 + 1.669 + d = digits; 1.670 + dpchar = '.' - '0'; 1.671 + decimal_point = 0; 1.672 + exp = 0; 1.673 + 1.674 + for (;;) { 1.675 + c -= '0'; 1.676 + if (c < 10) { 1.677 + if (d == digits + max_digits) { 1.678 + /* ignore more than max_digits digits, but adjust exponent */ 1.679 + exp += (decimal_point ^ 1); 1.680 + } else { 1.681 + if (c == 0 && d == digits) { 1.682 + /* ignore leading zeros */ 1.683 + } else { 1.684 + *d++ = (char) c; 1.685 + } 1.686 + exp -= decimal_point; 1.687 + } 1.688 + } else if (c == (unsigned int) dpchar && !decimal_point) { /* INTERNATIONAL */ 1.689 + decimal_point = 1; 1.690 + } else { 1.691 + break; 1.692 + } 1.693 + c = *s++; 1.694 + } 1.695 + 1.696 + /* strtod cant return until it finds the end of the exponent */ 1.697 + if (d == digits) { 1.698 + return 0.0; 1.699 + } 1.700 + 1.701 + if (c == 'e' - '0' || c == 'E' - '0') { 1.702 + register unsigned negate_exp = 0; 1.703 + register int e = 0; 1.704 + c = *s++; 1.705 + if (c == '+' || c == ' ') { 1.706 + c = *s++; 1.707 + } else if (c == '-') { 1.708 + negate_exp = 1; 1.709 + c = *s++; 1.710 + } 1.711 + if (c -= '0', c < 10) { 1.712 + do { 1.713 + e = e * 10 + (int)c; 1.714 + c = *s++; 1.715 + } while (c -= '0', c < 10); 1.716 + 1.717 + if (negate_exp) { 1.718 + e = -e; 1.719 + } 1.720 + exp += e; 1.721 + } 1.722 + } 1.723 + 1.724 + double x; 1.725 + ptrdiff_t n = d - digits; 1.726 + if ((exp + n - 1) < limits::min_exponent10) { 1.727 + x = 0; 1.728 + } 1.729 + else if ((exp + n - 1) > limits::max_exponent10) { 1.730 + x = limits::infinity(); 1.731 + } 1.732 + else { 1.733 + /* Let _Stl_atod diagnose under- and over-flows. 1.734 + * If the input was == 0.0, we have already returned, 1.735 + * so retval of +-Inf signals OVERFLOW, 0.0 UNDERFLOW */ 1.736 + x = _Stl_atod(digits, n, exp); 1.737 + } 1.738 + 1.739 + if (Negate) { 1.740 + x = -x; 1.741 + } 1.742 + 1.743 + return x; 1.744 +} 1.745 + 1.746 +#endif 1.747 + 1.748 +#if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \ 1.749 + defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC) 1.750 + 1.751 +template <class D, class IEEE, int M, int BIAS> 1.752 +D _Stl_string_to_doubleT(const char *s) 1.753 +{ 1.754 + typedef numeric_limits<D> limits; 1.755 + const int max_digits = limits::digits10; /* + 2 17 */; 1.756 + unsigned c; 1.757 + unsigned decimal_point; 1.758 + char *d; 1.759 + int exp; 1.760 + D x; 1.761 + int dpchar; 1.762 + char digits[max_digits]; 1.763 + 1.764 + c = *s++; 1.765 + 1.766 + /* process sign */ 1.767 + bool Negate = false; 1.768 + if (c == '+') { 1.769 + c = *s++; 1.770 + } else if (c == '-') { 1.771 + Negate = true; 1.772 + c = *s++; 1.773 + } 1.774 + 1.775 + d = digits; 1.776 + dpchar = '.' - '0'; 1.777 + decimal_point = 0; 1.778 + exp = 0; 1.779 + 1.780 + for (;;) { 1.781 + c -= '0'; 1.782 + if (c < 10) { 1.783 + if (d == digits + max_digits) { 1.784 + /* ignore more than max_digits digits, but adjust exponent */ 1.785 + exp += (decimal_point ^ 1); 1.786 + } else { 1.787 + if (c == 0 && d == digits) { 1.788 + /* ignore leading zeros */ 1.789 + } else { 1.790 + *d++ = (char) c; 1.791 + } 1.792 + exp -= decimal_point; 1.793 + } 1.794 + } else if (c == (unsigned int) dpchar && !decimal_point) { /* INTERNATIONAL */ 1.795 + decimal_point = 1; 1.796 + } else { 1.797 + break; 1.798 + } 1.799 + c = *s++; 1.800 + } 1.801 + /* strtod cant return until it finds the end of the exponent */ 1.802 + if (d == digits) { 1.803 + return D(0.0); 1.804 + } 1.805 + 1.806 + if (c == 'e'-'0' || c == 'E'-'0') { 1.807 + bool negate_exp = false; 1.808 + register int e = 0; 1.809 + c = *s++; 1.810 + if (c == '+' || c == ' ') { 1.811 + c = *s++; 1.812 + } else if (c == '-') { 1.813 + negate_exp = true; 1.814 + c = *s++; 1.815 + } 1.816 + if (c -= '0', c < 10) { 1.817 + do { 1.818 + e = e * 10 + (int)c; 1.819 + c = *s++; 1.820 + } while (c -= '0', c < 10); 1.821 + 1.822 + if (negate_exp) { 1.823 + e = -e; 1.824 + } 1.825 + exp += e; 1.826 + } 1.827 + } 1.828 + 1.829 + ptrdiff_t n = d - digits; 1.830 + if ((exp + n - 1) < limits::min_exponent10) { 1.831 + return D(0.0); // +0.0 is the same as -0.0 1.832 + } else if ((exp + n - 1) > limits::max_exponent10 ) { 1.833 + // not good, because of x = -x below; this may lead to portability problems 1.834 + x = limits::infinity(); 1.835 + } else { 1.836 + /* let _Stl_atod diagnose under- and over-flows */ 1.837 + /* if the input was == 0.0, we have already returned, 1.838 + so retval of +-Inf signals OVERFLOW, 0.0 UNDERFLOW 1.839 + */ 1.840 + x = _Stl_atodT<D,IEEE,M,BIAS>(digits, n, exp); 1.841 + } 1.842 + 1.843 + return Negate ? -x : x; 1.844 +} 1.845 + 1.846 +#endif // __linux__ 1.847 + 1.848 +void _STLP_CALL 1.849 +__string_to_float(const __iostring& v, float& val) 1.850 +{ 1.851 +#if !defined (__linux__) || defined (__ANDROID__) 1.852 + val = (float)_Stl_string_to_double(v.c_str()); 1.853 +#else 1.854 + val = (float)_Stl_string_to_doubleT<double,ieee754_double,12,IEEE754_DOUBLE_BIAS>(v.c_str()); 1.855 +#endif 1.856 +} 1.857 + 1.858 +void _STLP_CALL 1.859 +__string_to_float(const __iostring& v, double& val) 1.860 +{ 1.861 +#if !defined (__linux__) || defined (__ANDROID__) 1.862 + val = _Stl_string_to_double(v.c_str()); 1.863 +#else 1.864 + val = _Stl_string_to_doubleT<double,ieee754_double,12,IEEE754_DOUBLE_BIAS>(v.c_str()); 1.865 +#endif 1.866 +} 1.867 + 1.868 +#if !defined (_STLP_NO_LONG_DOUBLE) 1.869 +void _STLP_CALL 1.870 +__string_to_float(const __iostring& v, long double& val) { 1.871 +#if !defined (__linux__) && !defined (__MINGW32__) && !defined (__CYGWIN__) && \ 1.872 + !defined (__BORLANDC__) && !defined (__DMC__) && !defined (__HP_aCC) 1.873 + //The following function is valid only if long double is an alias for double. 1.874 + _STLP_STATIC_ASSERT( sizeof(long double) <= sizeof(double) ) 1.875 + val = _Stl_string_to_double(v.c_str()); 1.876 +#else 1.877 + val = _Stl_string_to_doubleT<long double,ieee854_long_double,16,IEEE854_LONG_DOUBLE_BIAS>(v.c_str()); 1.878 +#endif 1.879 +} 1.880 +#endif 1.881 + 1.882 +_STLP_MOVE_TO_STD_NAMESPACE 1.883 +_STLP_END_NAMESPACE 1.884 + 1.885 +// Local Variables: 1.886 +// mode:C++ 1.887 +// End: