build/stlport/src/num_get_float.cpp

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * Copyright (c) 1999
     3  * Silicon Graphics Computer Systems, Inc.
     4  *
     5  * Copyright (c) 1999
     6  * Boris Fomitchev
     7  *
     8  * This material is provided "as is", with absolutely no warranty expressed
     9  * or implied. Any use is at your own risk.
    10  *
    11  * Permission to use or copy this software for any purpose is hereby granted
    12  * without fee, provided the above notices are retained on all copies.
    13  * Permission to modify the code and to distribute modified code is granted,
    14  * provided the above notices are retained, and a notice that the code was
    15  * modified is included with the above copyright notice.
    16  *
    17  */
    19 #include "stlport_prefix.h"
    21 #include <limits>
    22 #include <locale>
    23 #include <istream>
    25 #if (defined (__GNUC__) && !defined (__sun) && !defined (__hpux)) || \
    26     defined (__DMC__)
    27 #  include <stdint.h>
    28 #endif
    30 #if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \
    31     defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC)
    33 #  if defined (__BORLANDC__)
    34 typedef unsigned int uint32_t;
    35 typedef unsigned __int64 uint64_t;
    36 #  endif
    38 union _ll {
    39   uint64_t i64;
    40   struct {
    41 #  if defined (_STLP_BIG_ENDIAN)
    42     uint32_t hi;
    43     uint32_t lo;
    44 #  elif defined (_STLP_LITTLE_ENDIAN)
    45     uint32_t lo;
    46     uint32_t hi;
    47 #  else
    48 #    error Unknown endianess
    49 #  endif
    50   } i32;
    51 };
    53 #  if defined (__linux__) && !defined (__ANDROID__)
    54 #    include <ieee754.h>
    55 #  else
    56 union ieee854_long_double {
    57   long double d;
    59   /* This is the IEEE 854 double-extended-precision format.  */
    60   struct {
    61     unsigned int mantissa1:32;
    62     unsigned int mantissa0:32;
    63     unsigned int exponent:15;
    64     unsigned int negative:1;
    65     unsigned int empty:16;
    66   } ieee;
    67 };
    69 #    define IEEE854_LONG_DOUBLE_BIAS 0x3fff
    70 #  endif
    71 #endif
    73 _STLP_BEGIN_NAMESPACE
    74 _STLP_MOVE_TO_PRIV_NAMESPACE
    76 //----------------------------------------------------------------------
    77 // num_get
    79 // Helper functions for _M_do_get_float.
    81 #if !defined (_STLP_NO_WCHAR_T)
    82 void  _STLP_CALL
    83 _Initialize_get_float( const ctype<wchar_t>& ct,
    84                        wchar_t& Plus, wchar_t& Minus,
    85                        wchar_t& pow_e, wchar_t& pow_E,
    86                        wchar_t* digits) {
    87   char ndigits[11] = "0123456789";
    88   Plus  = ct.widen('+');
    89   Minus = ct.widen('-');
    90   pow_e = ct.widen('e');
    91   pow_E = ct.widen('E');
    92   ct.widen(ndigits + 0, ndigits + 10, digits);
    93 }
    94 #endif /* WCHAR_T */
    96 /*
    97  * __string_to_double is just lifted from atof, the difference being
    98  * that we just use '.' for the decimal point, rather than let it
    99  * be taken from the current C locale, which of course is not accessible
   100  * to us.
   101  */
   102 #if defined (_STLP_MSVC) || defined (__BORLANDC__) || defined (__ICL)
   103 typedef unsigned long uint32;
   104 typedef unsigned __int64 uint64;
   105 #  define ULL(x) x##Ui64
   106 #elif defined (__unix) || defined (__MINGW32__) || \
   107       (defined (__DMC__) && (__LONGLONG)) || defined (__WATCOMC__) || \
   108       defined (__ANDROID__)
   109 typedef uint32_t uint32;
   110 typedef uint64_t uint64;
   111 #  define ULL(x) x##ULL
   112 #else
   113 #  error There should be some unsigned 64-bit integer on the system!
   114 #endif
   116 // Multiplication of two 64-bit integers, giving a 128-bit result.
   117 // Taken from Algorithm M in Knuth section 4.3.1, with the loop
   118 // hand-unrolled.
   119 static void _Stl_mult64(const uint64 u, const uint64 v,
   120                         uint64& high, uint64& low) {
   121   const uint64 low_mask = ULL(0xffffffff);
   122   const uint64 u0 = u & low_mask;
   123   const uint64 u1 = u >> 32;
   124   const uint64 v0 = v & low_mask;
   125   const uint64 v1 = v >> 32;
   127   uint64 t = u0 * v0;
   128   low = t & low_mask;
   130   t = u1 * v0 + (t >> 32);
   131   uint64 w1 = t & low_mask;
   132   uint64 w2 = t >> 32;
   134   uint64 x = u0 * v1 + w1;
   135   low += (x & low_mask) << 32;
   136   high = u1 * v1 + w2 + (x >> 32);
   137 }
   139 #if !defined (__linux__) || defined (__ANDROID__)
   141 #  define bit11 ULL(0x7ff)
   142 #  define exponent_mask (bit11 << 52)
   144 #  if !defined (__GNUC__) || (__GNUC__ != 3) || (__GNUC_MINOR__ != 4) || \
   145       (!defined (__CYGWIN__) && !defined (__MINGW32__))
   146 //Generate bad code when compiled with -O2 option.
   147 inline
   148 #  endif
   149 void _Stl_set_exponent(uint64 &val, uint64 exp)
   150 { val = (val & ~exponent_mask) | ((exp & bit11) << 52); }
   152 #endif // __linux__
   154 /* Power of ten fractions for tenscale*/
   155 /* The constants are factored so that at most two constants
   156  * and two multiplies are needed. Furthermore, one of the constants
   157  * is represented exactly - 10**n where 1<= n <= 27.
   158  */
   160 static const uint64 _Stl_tenpow[80] = {
   161 ULL(0xa000000000000000), /* _Stl_tenpow[0]=(10**1)/(2**4) */
   162 ULL(0xc800000000000000), /* _Stl_tenpow[1]=(10**2)/(2**7) */
   163 ULL(0xfa00000000000000), /* _Stl_tenpow[2]=(10**3)/(2**10) */
   164 ULL(0x9c40000000000000), /* _Stl_tenpow[3]=(10**4)/(2**14) */
   165 ULL(0xc350000000000000), /* _Stl_tenpow[4]=(10**5)/(2**17) */
   166 ULL(0xf424000000000000), /* _Stl_tenpow[5]=(10**6)/(2**20) */
   167 ULL(0x9896800000000000), /* _Stl_tenpow[6]=(10**7)/(2**24) */
   168 ULL(0xbebc200000000000), /* _Stl_tenpow[7]=(10**8)/(2**27) */
   169 ULL(0xee6b280000000000), /* _Stl_tenpow[8]=(10**9)/(2**30) */
   170 ULL(0x9502f90000000000), /* _Stl_tenpow[9]=(10**10)/(2**34) */
   171 ULL(0xba43b74000000000), /* _Stl_tenpow[10]=(10**11)/(2**37) */
   172 ULL(0xe8d4a51000000000), /* _Stl_tenpow[11]=(10**12)/(2**40) */
   173 ULL(0x9184e72a00000000), /* _Stl_tenpow[12]=(10**13)/(2**44) */
   174 ULL(0xb5e620f480000000), /* _Stl_tenpow[13]=(10**14)/(2**47) */
   175 ULL(0xe35fa931a0000000), /* _Stl_tenpow[14]=(10**15)/(2**50) */
   176 ULL(0x8e1bc9bf04000000), /* _Stl_tenpow[15]=(10**16)/(2**54) */
   177 ULL(0xb1a2bc2ec5000000), /* _Stl_tenpow[16]=(10**17)/(2**57) */
   178 ULL(0xde0b6b3a76400000), /* _Stl_tenpow[17]=(10**18)/(2**60) */
   179 ULL(0x8ac7230489e80000), /* _Stl_tenpow[18]=(10**19)/(2**64) */
   180 ULL(0xad78ebc5ac620000), /* _Stl_tenpow[19]=(10**20)/(2**67) */
   181 ULL(0xd8d726b7177a8000), /* _Stl_tenpow[20]=(10**21)/(2**70) */
   182 ULL(0x878678326eac9000), /* _Stl_tenpow[21]=(10**22)/(2**74) */
   183 ULL(0xa968163f0a57b400), /* _Stl_tenpow[22]=(10**23)/(2**77) */
   184 ULL(0xd3c21bcecceda100), /* _Stl_tenpow[23]=(10**24)/(2**80) */
   185 ULL(0x84595161401484a0), /* _Stl_tenpow[24]=(10**25)/(2**84) */
   186 ULL(0xa56fa5b99019a5c8), /* _Stl_tenpow[25]=(10**26)/(2**87) */
   187 ULL(0xcecb8f27f4200f3a), /* _Stl_tenpow[26]=(10**27)/(2**90) */
   189 ULL(0xd0cf4b50cfe20766), /* _Stl_tenpow[27]=(10**55)/(2**183) */
   190 ULL(0xd2d80db02aabd62c), /* _Stl_tenpow[28]=(10**83)/(2**276) */
   191 ULL(0xd4e5e2cdc1d1ea96), /* _Stl_tenpow[29]=(10**111)/(2**369) */
   192 ULL(0xd6f8d7509292d603), /* _Stl_tenpow[30]=(10**139)/(2**462) */
   193 ULL(0xd910f7ff28069da4), /* _Stl_tenpow[31]=(10**167)/(2**555) */
   194 ULL(0xdb2e51bfe9d0696a), /* _Stl_tenpow[32]=(10**195)/(2**648) */
   195 ULL(0xdd50f1996b947519), /* _Stl_tenpow[33]=(10**223)/(2**741) */
   196 ULL(0xdf78e4b2bd342cf7), /* _Stl_tenpow[34]=(10**251)/(2**834) */
   197 ULL(0xe1a63853bbd26451), /* _Stl_tenpow[35]=(10**279)/(2**927) */
   198 ULL(0xe3d8f9e563a198e5), /* _Stl_tenpow[36]=(10**307)/(2**1020) */
   200 // /* _Stl_tenpow[36]=(10**335)/(2**) */
   201 // /* _Stl_tenpow[36]=(10**335)/(2**) */
   203 ULL(0xfd87b5f28300ca0e), /* _Stl_tenpow[37]=(10**-28)/(2**-93) */
   204 ULL(0xfb158592be068d2f), /* _Stl_tenpow[38]=(10**-56)/(2**-186) */
   205 ULL(0xf8a95fcf88747d94), /* _Stl_tenpow[39]=(10**-84)/(2**-279) */
   206 ULL(0xf64335bcf065d37d), /* _Stl_tenpow[40]=(10**-112)/(2**-372) */
   207 ULL(0xf3e2f893dec3f126), /* _Stl_tenpow[41]=(10**-140)/(2**-465) */
   208 ULL(0xf18899b1bc3f8ca2), /* _Stl_tenpow[42]=(10**-168)/(2**-558) */
   209 ULL(0xef340a98172aace5), /* _Stl_tenpow[43]=(10**-196)/(2**-651) */
   210 ULL(0xece53cec4a314ebe), /* _Stl_tenpow[44]=(10**-224)/(2**-744) */
   211 ULL(0xea9c227723ee8bcb), /* _Stl_tenpow[45]=(10**-252)/(2**-837)     */
   212 ULL(0xe858ad248f5c22ca), /* _Stl_tenpow[46]=(10**-280)/(2**-930) */
   213 ULL(0xe61acf033d1a45df), /* _Stl_tenpow[47]=(10**-308)/(2**-1023)    */
   214 ULL(0xe3e27a444d8d98b8), /* _Stl_tenpow[48]=(10**-336)/(2**-1116) */
   215 ULL(0xe1afa13afbd14d6e)  /* _Stl_tenpow[49]=(10**-364)/(2**-1209) */
   216 };
   218 static const short _Stl_twoexp[80] = {
   219 4,7,10,14,17,20,24,27,30,34,37,40,44,47,50,54,57,60,64,67,70,74,77,80,84,87,90,
   220 183,276,369,462,555,648,741,834,927,1020,
   221 -93,-186,-279,-372,-465,-558,-651,-744,-837,-930,-1023,-1116,-1209
   222 };
   224 #define  TEN_1  0           /* offset to 10 **   1 */
   225 #define  TEN_27   26        /* offset to 10 **  27 */
   226 #define  TEN_M28  37        /* offset to 10 ** -28 */
   227 #define  NUM_HI_P 11
   228 #define  NUM_HI_N 13
   230 #define _Stl_HIBITULL (ULL(1) << 63)
   232 static void _Stl_norm_and_round(uint64& p, int& norm, uint64 prodhi, uint64 prodlo) {
   233   norm = 0;
   234   if ((prodhi & _Stl_HIBITULL) == 0) {
   235                                 /* leading bit is a zero
   236                                  * may have to normalize
   237                                  */
   238     if ((prodhi == ~_Stl_HIBITULL) &&
   239         ((prodlo >> 62) == 0x3)) {  /* normalization followed by round
   240                                      * would cause carry to create
   241                                      * extra bit, so don't normalize
   242                                      */
   243       p = _Stl_HIBITULL;
   244       return;
   245     }
   246     p = (prodhi << 1) | (prodlo >> 63); /* normalize */
   247     norm = 1;
   248     prodlo <<= 1;
   249   }
   250   else {
   251     p = prodhi;
   252   }
   254   if ((prodlo & _Stl_HIBITULL) != 0) {     /* first guard bit a one */
   255     if (((p & 0x1) != 0) ||
   256         prodlo != _Stl_HIBITULL ) {    /* not borderline for round to even */
   257       /* round */
   258       ++p;
   259       if (p == 0)
   260         ++p;
   261     }
   262   }
   263 }
   265 // Convert a 64-bitb fraction * 10^exp to a 64-bit fraction * 2^bexp.
   266 // p:    64-bit fraction
   267 // exp:  base-10 exponent
   268 // bexp: base-2 exponent (output parameter)
   269 static void _Stl_tenscale(uint64& p, int exp, int& bexp) {
   270   bexp = 0;
   272   if ( exp == 0 ) {              /* no scaling needed */
   273     return;
   274   }
   276   int exp_hi = 0, exp_lo = exp; /* exp = exp_hi*32 + exp_lo */
   277   int tlo = TEN_1, thi;         /* offsets in power of ten table */
   278   int num_hi;                   /* number of high exponent powers */
   280   if (exp > 0) {                /* split exponent */
   281     if (exp_lo > 27) {
   282       exp_lo++;
   283       while (exp_lo > 27) {
   284         exp_hi++;
   285         exp_lo -= 28;
   286       }
   287     }
   288     thi = TEN_27;
   289     num_hi = NUM_HI_P;
   290   } else { // exp < 0
   291     while (exp_lo < 0) {
   292       exp_hi++;
   293       exp_lo += 28;
   294     }
   295     thi = TEN_M28;
   296     num_hi = NUM_HI_N;
   297   }
   299   uint64 prodhi, prodlo;        /* 128b product */
   300   int norm;                     /* number of bits of normalization */
   302   int hi, lo;                   /* offsets in power of ten table */
   303   while (exp_hi) {              /* scale */
   304     hi = (min) (exp_hi, num_hi);    /* only a few large powers of 10 */
   305     exp_hi -= hi;               /* could iterate in extreme case */
   306     hi += thi-1;
   307     _Stl_mult64(p, _Stl_tenpow[hi], prodhi, prodlo);
   308     _Stl_norm_and_round(p, norm, prodhi, prodlo);
   309     bexp += _Stl_twoexp[hi] - norm;
   310   }
   312   if (exp_lo) {
   313     lo = tlo + exp_lo -1;
   314     _Stl_mult64(p, _Stl_tenpow[lo], prodhi, prodlo);
   315     _Stl_norm_and_round(p, norm, prodhi, prodlo);
   316     bexp += _Stl_twoexp[lo] - norm;
   317   }
   319   return;
   320 }
   322 // First argument is a buffer of values from 0 to 9, NOT ascii.
   323 // Second argument is number of digits in buffer, 1 <= digits <= 17.
   324 // Third argument is base-10 exponent.
   326 /* IEEE representation */
   327 #if !defined (__linux__) || defined (__ANDROID__)
   329 union _Double_rep {
   330   uint64 ival;
   331   double val;
   332 };
   334 static double _Stl_atod(char *buffer, ptrdiff_t ndigit, int dexp) {
   335   typedef numeric_limits<double> limits;
   336   _Double_rep drep;
   337   uint64 &value = drep.ival;  /* Value develops as follows:
   338                                  * 1) decimal digits as an integer
   339                                  * 2) left adjusted fraction
   340                                  * 3) right adjusted fraction
   341                                  * 4) exponent and fraction
   342                                  */
   344   uint32 guard;         /* First guard bit */
   345   uint64 rest;          /* Remaining guard bits */
   347   int bexp;             /* binary exponent */
   348   int nzero;            /* number of non-zero bits */
   349   int sexp;             /* scaling exponent */
   351   char *bufferend;              /* pointer to char after last digit */
   353   /* Convert the decimal digits to a binary integer. */
   354   bufferend = buffer + ndigit;
   355   value = 0;
   357   while (buffer < bufferend) {
   358     value *= 10;
   359     value += *buffer++;
   360   }
   362   /* Check for zero and treat it as a special case */
   363   if (value == 0) {
   364     return 0.0;
   365   }
   367   /* Normalize value */
   368   bexp = 64;                    /* convert from 64b int to fraction */
   370   /* Count number of non-zeroes in value */
   371   nzero = 0;
   372   if ((value >> 32) != 0) { nzero  = 32; }    //*TY 03/25/2000 - added explicit comparison to zero to avoid uint64 to bool conversion operator
   373   if ((value >> (16 + nzero)) != 0) { nzero += 16; }
   374   if ((value >> ( 8 + nzero)) != 0) { nzero +=  8; }
   375   if ((value >> ( 4 + nzero)) != 0) { nzero +=  4; }
   376   if ((value >> ( 2 + nzero)) != 0) { nzero +=  2; }
   377   if ((value >> ( 1 + nzero)) != 0) { nzero +=  1; }
   378   if ((value >> (     nzero)) != 0) { nzero +=  1; }
   380   /* Normalize */
   381   value <<= /*(uint64)*/ (64 - nzero);    //*TY 03/25/2000 - removed extraneous cast to uint64
   382   bexp -= 64 - nzero;
   384   /* At this point we have a 64b fraction and a binary exponent
   385    * but have yet to incorporate the decimal exponent.
   386    */
   388   /* multiply by 10^dexp */
   389   _Stl_tenscale(value, dexp, sexp);
   390   bexp += sexp;
   392   if (bexp <= -1022) {          /* HI denorm or underflow */
   393     bexp += 1022;
   394     if (bexp < -53) {          /* guaranteed underflow */
   395       value = 0;
   396     }
   397     else {                      /* denorm or possible underflow */
   398       int lead0 = 12 - bexp;          /* 12 sign and exponent bits */
   400       /* we must special case right shifts of more than 63 */
   401       if (lead0 > 64) {
   402         rest = value;
   403         guard = 0;
   404         value = 0;
   405       }
   406       else if (lead0 == 64) {
   407         rest = value & ((ULL(1)<< 63)-1);
   408         guard = (uint32) ((value>> 63) & 1 );
   409         value = 0;
   410       }
   411       else {
   412         rest = value & (((ULL(1) << lead0)-1)-1);
   413         guard = (uint32) (((value>> lead0)-1) & 1);
   414         value >>= /*(uint64)*/ lead0; /* exponent is zero */
   415       }
   417       /* Round */
   418       if (guard && ((value & 1) || rest) ) {
   419         ++value;
   420         if (value == (ULL(1) << (limits::digits - 1))) { /* carry created normal number */
   421           value = 0;
   422           _Stl_set_exponent(value, 1);
   423         }
   424       }
   425     }
   426   }
   427   else {                        /* not zero or denorm */
   428     /* Round to 53 bits */
   429     rest = value & ((1 << 10) - 1);
   430     value >>= 10;
   431     guard = (uint32) value & 1;
   432     value >>= 1;
   434     /*  value&1 guard   rest    Action
   435      *
   436      *  dc      0       dc      none
   437      *  1       1       dc      round
   438      *  0       1       0       none
   439      *  0       1       !=0     round
   440      */
   441     if (guard) {
   442       if (((value&1)!=0) || (rest!=0)) {
   443         ++value;                        /* round */
   444         if ((value >> 53) != 0) {       /* carry all the way across */
   445           value >>= 1;          /* renormalize */
   446           ++bexp;
   447         }
   448       }
   449     }
   450     /*
   451      * Check for overflow
   452      * IEEE Double Precision Format
   453      * (From Table 7-8 of Kane and Heinrich)
   454      *
   455      * Fraction bits               52
   456      * Emax                     +1023
   457      * Emin                     -1022
   458      * Exponent bias            +1023
   459      * Exponent bits               11
   460      * Integer bit             hidden
   461      * Total width in bits         64
   462      */
   464     if (bexp > limits::max_exponent) {          /* overflow */
   465       return limits::infinity();
   466     }
   467     else {                      /* value is normal */
   468       value &= ~(ULL(1) << (limits::digits - 1));   /* hide hidden bit */
   469       _Stl_set_exponent(value, bexp + 1022); /* add bias */
   470     }
   471   }
   473   _STLP_STATIC_ASSERT(sizeof(uint64) >= sizeof(double))
   474   return drep.val;
   475 }
   477 #endif
   479 #if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \
   480     defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC)
   482 template <class D, class IEEE, int M, int BIAS>
   483 D _Stl_atodT(char *buffer, ptrdiff_t ndigit, int dexp)
   484 {
   485   typedef numeric_limits<D> limits;
   487   /* Convert the decimal digits to a binary integer. */
   488   char *bufferend = buffer + ndigit; /* pointer to char after last digit */
   489   _ll vv;
   490   vv.i64 = 0L;
   492   while ( buffer < bufferend ) {
   493     vv.i64 *= 10;
   494     vv.i64 += *buffer++;
   495   }
   497   if ( vv.i64 == ULL(0) ) { /* Check for zero and treat it as a special case */
   498     return D(0.0);
   499   }
   501   /* Normalize value */
   503   int bexp = 64; /* convert from 64b int to fraction */
   505   /* Count number of non-zeroes in value */
   506   int nzero = 0;
   507   if ((vv.i64 >> 32) != 0) { nzero = 32; }
   508   if ((vv.i64 >> (16 + nzero)) != 0) { nzero += 16; }
   509   if ((vv.i64 >> ( 8 + nzero)) != 0) { nzero +=  8; }
   510   if ((vv.i64 >> ( 4 + nzero)) != 0) { nzero +=  4; }
   511   if ((vv.i64 >> ( 2 + nzero)) != 0) { nzero +=  2; }
   512   if ((vv.i64 >> ( 1 + nzero)) != 0) { nzero +=  1; }
   513   if ((vv.i64 >> (     nzero)) != 0) { nzero +=  1; }
   515   /* Normalize */
   516   nzero = 64 - nzero;
   517   vv.i64 <<= nzero;    // * TY 03/25/2000 - removed extraneous cast to uint64
   518   bexp -= nzero;
   520   /* At this point we have a 64b fraction and a binary exponent
   521    * but have yet to incorporate the decimal exponent.
   522    */
   524   /* multiply by 10^dexp */
   525   int sexp;
   526   _Stl_tenscale(vv.i64, dexp, sexp);
   527   bexp += sexp;
   529   if ( bexp >= limits::min_exponent ) { /* not zero or denorm */
   530     if ( limits::digits < 64 ) {
   531       /* Round to (64 - M + 1) bits */
   532       uint64_t rest = vv.i64 & ((~ULL(0) / ULL(2)) >> (limits::digits - 1));
   533       vv.i64 >>= M - 2;
   534       uint32_t guard = (uint32) vv.i64 & 1;
   535       vv.i64 >>= 1;
   537       /*  value&1 guard   rest    Action
   538        *
   539        *  dc      0       dc      none
   540        *  1       1       dc      round
   541        *  0       1       0       none
   542        *  0       1       !=0     round
   543        */
   545       if (guard) {
   546         if ( ((vv.i64 & 1) != 0) || (rest != 0) ) {
   547           vv.i64++;       /* round */
   548           if ( (vv.i64 >> (limits::digits < 64 ? limits::digits : 0)) != 0 ) { /* carry all the way across */
   549             vv.i64 >>= 1; /* renormalize */
   550             ++bexp;
   551           }
   552         }
   553       }
   555       vv.i64 &= ~(ULL(1) << (limits::digits - 1)); /* hide hidden bit */
   556     }
   557     /*
   558      * Check for overflow
   559      * IEEE Double Precision Format
   560      * (From Table 7-8 of Kane and Heinrich)
   561      *
   562      * Fraction bits               52
   563      * Emax                     +1023
   564      * Emin                     -1022
   565      * Exponent bias            +1023
   566      * Exponent bits               11
   567      * Integer bit             hidden
   568      * Total width in bits         64
   569      */
   571     if (bexp > limits::max_exponent) { /* overflow */
   572       return limits::infinity();
   573     }
   575     /* value is normal */
   577     IEEE v;
   579     v.ieee.mantissa0 = vv.i32.hi;
   580     v.ieee.mantissa1 = vv.i32.lo;
   581     v.ieee.negative = 0;
   582     v.ieee.exponent = bexp + BIAS - 1;
   584     return v.d;
   585   }
   587   /* HI denorm or underflow */
   588   bexp += BIAS - 1;
   589   if (bexp < -limits::digits) { /* guaranteed underflow */
   590     vv.i64 = 0;
   591   } else {  /* denorm or possible underflow */
   593     /*
   594      * Problem point for long double: looks like this code reflect shareing of mantissa
   595      * and exponent in 64b int; not so for long double
   596      */
   598     int lead0 = M - bexp; /* M = 12 sign and exponent bits */
   599     uint64_t rest;
   600     uint32_t guard;
   602     /* we must special case right shifts of more than 63 */
   604     if (lead0 > 64) {
   605       rest = vv.i64;
   606       guard = 0;
   607       vv.i64 = 0;
   608     } else if (lead0 == 64) {
   609       rest = vv.i64 & ((ULL(1) << 63)-1);
   610       guard = (uint32) ((vv.i64 >> 63) & 1 );
   611       vv.i64 = 0;
   612     } else {
   613       rest = vv.i64 & (((ULL(1) << lead0)-1)-1);
   614       guard = (uint32) (((vv.i64 >> lead0)-1) & 1);
   615       vv.i64 >>= /*(uint64)*/ lead0; /* exponent is zero */
   616     }
   618     /* Round */
   619     if (guard && ( (vv.i64 & 1) || rest)) {
   620       vv.i64++;
   621       if (vv.i64 == (ULL(1) << (limits::digits - 1))) { /* carry created normal number */
   622         IEEE v;
   624         v.ieee.mantissa0 = 0;
   625         v.ieee.mantissa1 = 0;
   626         v.ieee.negative = 0;
   627         v.ieee.exponent = 1;
   628         return v.d;
   629       }
   630     }
   631   }
   633   IEEE v;
   635   v.ieee.mantissa0 = vv.i32.hi;
   636   v.ieee.mantissa1 = vv.i32.lo;
   637   v.ieee.negative = 0;
   638   v.ieee.exponent = 0;
   640   return v.d;
   641 }
   642 #endif // __linux__
   644 #if !defined (__linux__) || defined (__ANDROID__)
   645 static double _Stl_string_to_double(const char *s) {
   646   typedef numeric_limits<double> limits;
   647   const int max_digits = limits::digits10 + 2;
   648   unsigned c;
   649   unsigned Negate, decimal_point;
   650   char *d;
   651   int exp;
   652   int dpchar;
   653   char digits[max_digits];
   655   c = *s++;
   657   /* process sign */
   658   Negate = 0;
   659   if (c == '+') {
   660     c = *s++;
   661   } else if (c == '-') {
   662     Negate = 1;
   663     c = *s++;
   664   }
   666   d = digits;
   667   dpchar = '.' - '0';
   668   decimal_point = 0;
   669   exp = 0;
   671   for (;;) {
   672     c -= '0';
   673     if (c < 10) {
   674       if (d == digits + max_digits) {
   675         /* ignore more than max_digits digits, but adjust exponent */
   676         exp += (decimal_point ^ 1);
   677       } else {
   678         if (c == 0 && d == digits) {
   679           /* ignore leading zeros */
   680         } else {
   681           *d++ = (char) c;
   682         }
   683         exp -= decimal_point;
   684       }
   685     } else if (c == (unsigned int) dpchar && !decimal_point) { /* INTERNATIONAL */
   686       decimal_point = 1;
   687     } else {
   688       break;
   689     }
   690     c = *s++;
   691   }
   693   /* strtod cant return until it finds the end of the exponent */
   694   if (d == digits) {
   695     return 0.0;
   696   }
   698   if (c == 'e' - '0' || c == 'E' - '0') {
   699     register unsigned negate_exp = 0;
   700     register int e = 0;
   701     c = *s++;
   702     if (c == '+' || c == ' ') {
   703       c = *s++;
   704     } else if (c == '-') {
   705       negate_exp = 1;
   706       c = *s++;
   707     }
   708     if (c -= '0', c < 10) {
   709       do {
   710         e = e * 10 + (int)c;
   711         c = *s++;
   712       } while (c -= '0', c < 10);
   714       if (negate_exp) {
   715         e = -e;
   716       }
   717       exp += e;
   718     }
   719   }
   721   double x;
   722   ptrdiff_t n = d - digits;
   723   if ((exp + n - 1) < limits::min_exponent10) {
   724     x = 0;
   725   }
   726   else if ((exp + n - 1) > limits::max_exponent10) {
   727     x = limits::infinity();
   728   }
   729   else {
   730     /* Let _Stl_atod diagnose under- and over-flows.
   731      * If the input was == 0.0, we have already returned,
   732      * so retval of +-Inf signals OVERFLOW, 0.0 UNDERFLOW */
   733     x = _Stl_atod(digits, n, exp);
   734   }
   736   if (Negate) {
   737     x = -x;
   738   }
   740   return x;
   741 }
   743 #endif
   745 #if defined (__linux__) || defined (__MINGW32__) || defined (__CYGWIN__) || \
   746     defined (__BORLANDC__) || defined (__DMC__) || defined (__HP_aCC)
   748 template <class D, class IEEE, int M, int BIAS>
   749 D _Stl_string_to_doubleT(const char *s)
   750 {
   751   typedef numeric_limits<D> limits;
   752   const int max_digits = limits::digits10; /* + 2 17 */;
   753   unsigned c;
   754   unsigned decimal_point;
   755   char *d;
   756   int exp;
   757   D x;
   758   int dpchar;
   759   char digits[max_digits];
   761   c = *s++;
   763   /* process sign */
   764   bool Negate = false;
   765   if (c == '+') {
   766     c = *s++;
   767   } else if (c == '-') {
   768     Negate = true;
   769     c = *s++;
   770   }
   772   d = digits;
   773   dpchar = '.' - '0';
   774   decimal_point = 0;
   775   exp = 0;
   777   for (;;) {
   778     c -= '0';
   779     if (c < 10) {
   780       if (d == digits + max_digits) {
   781         /* ignore more than max_digits digits, but adjust exponent */
   782         exp += (decimal_point ^ 1);
   783       } else {
   784         if (c == 0 && d == digits) {
   785           /* ignore leading zeros */
   786         } else {
   787           *d++ = (char) c;
   788         }
   789         exp -= decimal_point;
   790       }
   791     } else if (c == (unsigned int) dpchar && !decimal_point) {    /* INTERNATIONAL */
   792       decimal_point = 1;
   793     } else {
   794       break;
   795     }
   796     c = *s++;
   797   }
   798   /* strtod cant return until it finds the end of the exponent */
   799   if (d == digits) {
   800     return D(0.0);
   801   }
   803   if (c == 'e'-'0' || c == 'E'-'0') {
   804     bool negate_exp = false;
   805     register int e = 0;
   806     c = *s++;
   807     if (c == '+' || c == ' ') {
   808       c = *s++;
   809     } else if (c == '-') {
   810       negate_exp = true;
   811       c = *s++;
   812     }
   813     if (c -= '0', c < 10) {
   814       do {
   815         e = e * 10 + (int)c;
   816         c = *s++;
   817       } while (c -= '0', c < 10);
   819       if (negate_exp) {
   820         e = -e;
   821       }
   822       exp += e;
   823     }
   824   }
   826   ptrdiff_t n = d - digits;
   827   if ((exp + n - 1) < limits::min_exponent10) {
   828     return D(0.0); // +0.0 is the same as -0.0
   829   } else if ((exp + n - 1) > limits::max_exponent10 ) {
   830     // not good, because of x = -x below; this may lead to portability problems
   831     x = limits::infinity();
   832   } else {
   833     /* let _Stl_atod diagnose under- and over-flows */
   834     /* if the input was == 0.0, we have already returned,
   835        so retval of +-Inf signals OVERFLOW, 0.0 UNDERFLOW
   836     */
   837     x = _Stl_atodT<D,IEEE,M,BIAS>(digits, n, exp);
   838   }
   840   return Negate ? -x : x;
   841 }
   843 #endif // __linux__
   845 void _STLP_CALL
   846 __string_to_float(const __iostring& v, float& val)
   847 {
   848 #if !defined (__linux__) || defined (__ANDROID__)
   849   val = (float)_Stl_string_to_double(v.c_str());
   850 #else
   851   val = (float)_Stl_string_to_doubleT<double,ieee754_double,12,IEEE754_DOUBLE_BIAS>(v.c_str());
   852 #endif
   853 }
   855 void _STLP_CALL
   856 __string_to_float(const __iostring& v, double& val)
   857 {
   858 #if !defined (__linux__) || defined (__ANDROID__)
   859   val = _Stl_string_to_double(v.c_str());
   860 #else
   861   val = _Stl_string_to_doubleT<double,ieee754_double,12,IEEE754_DOUBLE_BIAS>(v.c_str());
   862 #endif
   863 }
   865 #if !defined (_STLP_NO_LONG_DOUBLE)
   866 void _STLP_CALL
   867 __string_to_float(const __iostring& v, long double& val) {
   868 #if !defined (__linux__) && !defined (__MINGW32__) && !defined (__CYGWIN__) && \
   869     !defined (__BORLANDC__) && !defined (__DMC__) && !defined (__HP_aCC)
   870   //The following function is valid only if long double is an alias for double.
   871   _STLP_STATIC_ASSERT( sizeof(long double) <= sizeof(double) )
   872   val = _Stl_string_to_double(v.c_str());
   873 #else
   874   val = _Stl_string_to_doubleT<long double,ieee854_long_double,16,IEEE854_LONG_DOUBLE_BIAS>(v.c_str());
   875 #endif
   876 }
   877 #endif
   879 _STLP_MOVE_TO_STD_NAMESPACE
   880 _STLP_END_NAMESPACE
   882 // Local Variables:
   883 // mode:C++
   884 // End:

mercurial