gfx/2d/FilterProcessingScalar.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/2d/FilterProcessingScalar.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,321 @@
     1.4 +/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
     1.5 + * This Source Code Form is subject to the terms of the Mozilla Public
     1.6 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.7 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.8 +
     1.9 +#define FILTER_PROCESSING_SCALAR
    1.10 +
    1.11 +#include "FilterProcessingSIMD-inl.h"
    1.12 +
    1.13 +namespace mozilla {
    1.14 +namespace gfx {
    1.15 +
    1.16 +void
    1.17 +FilterProcessing::ExtractAlpha_Scalar(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride)
    1.18 +{
    1.19 +  for (int32_t y = 0; y < size.height; y++) {
    1.20 +    for (int32_t x = 0; x < size.width; x++) {
    1.21 +      int32_t sourceIndex = y * sourceStride + 4 * x;
    1.22 +      int32_t targetIndex = y * alphaStride + x;
    1.23 +      alphaData[targetIndex] = sourceData[sourceIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
    1.24 +    }
    1.25 +  }
    1.26 +}
    1.27 +
    1.28 +TemporaryRef<DataSourceSurface>
    1.29 +FilterProcessing::ConvertToB8G8R8A8_Scalar(SourceSurface* aSurface)
    1.30 +{
    1.31 +  return ConvertToB8G8R8A8_SIMD<simd::Scalaru8x16_t>(aSurface);
    1.32 +}
    1.33 +
    1.34 +template<BlendMode aBlendMode>
    1.35 +static TemporaryRef<DataSourceSurface>
    1.36 +ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2)
    1.37 +{
    1.38 +  IntSize size = aInput1->GetSize();
    1.39 +  RefPtr<DataSourceSurface> target =
    1.40 +    Factory::CreateDataSourceSurface(size, SurfaceFormat::B8G8R8A8);
    1.41 +  if (!target) {
    1.42 +    return nullptr;
    1.43 +  }
    1.44 +
    1.45 +  uint8_t* source1Data = aInput1->GetData();
    1.46 +  uint8_t* source2Data = aInput2->GetData();
    1.47 +  uint8_t* targetData = target->GetData();
    1.48 +  uint32_t targetStride = target->Stride();
    1.49 +  uint32_t source1Stride = aInput1->Stride();
    1.50 +  uint32_t source2Stride = aInput2->Stride();
    1.51 +
    1.52 +  for (int32_t y = 0; y < size.height; y++) {
    1.53 +    for (int32_t x = 0; x < size.width; x++) {
    1.54 +      uint32_t targetIndex = y * targetStride + 4 * x;
    1.55 +      uint32_t source1Index = y * source1Stride + 4 * x;
    1.56 +      uint32_t source2Index = y * source2Stride + 4 * x;
    1.57 +      uint32_t qa = source1Data[source1Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
    1.58 +      uint32_t qb = source2Data[source2Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
    1.59 +      for (int32_t i = std::min(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R);
    1.60 +           i <= std::max(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R); i++) {
    1.61 +        uint32_t ca = source1Data[source1Index + i];
    1.62 +        uint32_t cb = source2Data[source2Index + i];
    1.63 +        uint32_t val;
    1.64 +        switch (aBlendMode) {
    1.65 +          case BLEND_MODE_MULTIPLY:
    1.66 +            val = ((255 - qa) * cb + (255 - qb + cb) * ca);
    1.67 +            break;
    1.68 +          case BLEND_MODE_SCREEN:
    1.69 +            val = 255 * (cb + ca) - ca * cb;
    1.70 +            break;
    1.71 +          case BLEND_MODE_DARKEN:
    1.72 +            val = umin((255 - qa) * cb + 255 * ca,
    1.73 +                       (255 - qb) * ca + 255 * cb);
    1.74 +            break;
    1.75 +          case BLEND_MODE_LIGHTEN:
    1.76 +            val = umax((255 - qa) * cb + 255 * ca,
    1.77 +                       (255 - qb) * ca + 255 * cb);
    1.78 +            break;
    1.79 +          default:
    1.80 +            MOZ_CRASH();
    1.81 +        }
    1.82 +        val = umin(FilterProcessing::FastDivideBy255<unsigned>(val), 255U);
    1.83 +        targetData[targetIndex + i] = static_cast<uint8_t>(val);
    1.84 +      }
    1.85 +      uint32_t alpha = 255 * 255 - (255 - qa) * (255 - qb);
    1.86 +      targetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] =
    1.87 +        FilterProcessing::FastDivideBy255<uint8_t>(alpha);
    1.88 +    }
    1.89 +  }
    1.90 +
    1.91 +  return target;
    1.92 +}
    1.93 +
    1.94 +TemporaryRef<DataSourceSurface>
    1.95 +FilterProcessing::ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2,
    1.96 +                                       BlendMode aBlendMode)
    1.97 +{
    1.98 +  switch (aBlendMode) {
    1.99 +    case BLEND_MODE_MULTIPLY:
   1.100 +      return gfx::ApplyBlending_Scalar<BLEND_MODE_MULTIPLY>(aInput1, aInput2);
   1.101 +    case BLEND_MODE_SCREEN:
   1.102 +      return gfx::ApplyBlending_Scalar<BLEND_MODE_SCREEN>(aInput1, aInput2);
   1.103 +    case BLEND_MODE_DARKEN:
   1.104 +      return gfx::ApplyBlending_Scalar<BLEND_MODE_DARKEN>(aInput1, aInput2);
   1.105 +    case BLEND_MODE_LIGHTEN:
   1.106 +      return gfx::ApplyBlending_Scalar<BLEND_MODE_LIGHTEN>(aInput1, aInput2);
   1.107 +    default:
   1.108 +      return nullptr;
   1.109 +  }
   1.110 +}
   1.111 +
   1.112 +template<MorphologyOperator Operator>
   1.113 +static void
   1.114 +ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
   1.115 +                                 uint8_t* aDestData, int32_t aDestStride,
   1.116 +                                 const IntRect& aDestRect, int32_t aRadius)
   1.117 +{
   1.118 +  static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
   1.119 +                Operator == MORPHOLOGY_OPERATOR_DILATE,
   1.120 +                "unexpected morphology operator");
   1.121 +
   1.122 +  for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++) {
   1.123 +    int32_t startX = aDestRect.x - aRadius;
   1.124 +    int32_t endX = aDestRect.x + aRadius;
   1.125 +    for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++, startX++, endX++) {
   1.126 +      int32_t sourceIndex = y * aSourceStride + 4 * startX;
   1.127 +      uint8_t u[4];
   1.128 +      for (size_t i = 0; i < 4; i++) {
   1.129 +        u[i] = aSourceData[sourceIndex + i];
   1.130 +      }
   1.131 +      sourceIndex += 4;
   1.132 +      for (int32_t ix = startX + 1; ix <= endX; ix++, sourceIndex += 4) {
   1.133 +        for (size_t i = 0; i < 4; i++) {
   1.134 +          if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
   1.135 +            u[i] = umin(u[i], aSourceData[sourceIndex + i]);
   1.136 +          } else {
   1.137 +            u[i] = umax(u[i], aSourceData[sourceIndex + i]);
   1.138 +          }
   1.139 +        }
   1.140 +      }
   1.141 +
   1.142 +      int32_t destIndex = y * aDestStride + 4 * x;
   1.143 +      for (size_t i = 0; i < 4; i++) {
   1.144 +        aDestData[destIndex+i] = u[i];
   1.145 +      }
   1.146 +    }
   1.147 +  }
   1.148 +}
   1.149 +
   1.150 +void
   1.151 +FilterProcessing::ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
   1.152 +                                                   uint8_t* aDestData, int32_t aDestStride,
   1.153 +                                                   const IntRect& aDestRect, int32_t aRadius,
   1.154 +                                                   MorphologyOperator aOp)
   1.155 +{
   1.156 +  if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
   1.157 +    gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
   1.158 +      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
   1.159 +  } else {
   1.160 +    gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
   1.161 +      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
   1.162 +  }
   1.163 +}
   1.164 +
   1.165 +template<MorphologyOperator Operator>
   1.166 +static void ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
   1.167 +                                           uint8_t* aDestData, int32_t aDestStride,
   1.168 +                                           const IntRect& aDestRect, int32_t aRadius)
   1.169 +{
   1.170 +  static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
   1.171 +                Operator == MORPHOLOGY_OPERATOR_DILATE,
   1.172 +                "unexpected morphology operator");
   1.173 +
   1.174 +  int32_t startY = aDestRect.y - aRadius;
   1.175 +  int32_t endY = aDestRect.y + aRadius;
   1.176 +  for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++, startY++, endY++) {
   1.177 +    for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++) {
   1.178 +      int32_t sourceIndex = startY * aSourceStride + 4 * x;
   1.179 +      uint8_t u[4];
   1.180 +      for (size_t i = 0; i < 4; i++) {
   1.181 +        u[i] = aSourceData[sourceIndex + i];
   1.182 +      }
   1.183 +      sourceIndex += aSourceStride;
   1.184 +      for (int32_t iy = startY + 1; iy <= endY; iy++, sourceIndex += aSourceStride) {
   1.185 +        for (size_t i = 0; i < 4; i++) {
   1.186 +          if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
   1.187 +            u[i] = umin(u[i], aSourceData[sourceIndex + i]);
   1.188 +          } else {
   1.189 +            u[i] = umax(u[i], aSourceData[sourceIndex + i]);
   1.190 +          }
   1.191 +        }
   1.192 +      }
   1.193 +
   1.194 +      int32_t destIndex = y * aDestStride + 4 * x;
   1.195 +      for (size_t i = 0; i < 4; i++) {
   1.196 +        aDestData[destIndex+i] = u[i];
   1.197 +      }
   1.198 +    }
   1.199 +  }
   1.200 +}
   1.201 +
   1.202 +void
   1.203 +FilterProcessing::ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
   1.204 +                                                   uint8_t* aDestData, int32_t aDestStride,
   1.205 +                                                   const IntRect& aDestRect, int32_t aRadius,
   1.206 +                                                   MorphologyOperator aOp)
   1.207 +{
   1.208 +  if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
   1.209 +    gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
   1.210 +      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
   1.211 +  } else {
   1.212 +    gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
   1.213 +      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
   1.214 +  }
   1.215 +}
   1.216 +
   1.217 +TemporaryRef<DataSourceSurface>
   1.218 +FilterProcessing::ApplyColorMatrix_Scalar(DataSourceSurface* aInput, const Matrix5x4 &aMatrix)
   1.219 +{
   1.220 +  return ApplyColorMatrix_SIMD<simd::Scalari32x4_t,simd::Scalari16x8_t,simd::Scalaru8x16_t>(aInput, aMatrix);
   1.221 +}
   1.222 +
   1.223 +void
   1.224 +FilterProcessing::ApplyComposition_Scalar(DataSourceSurface* aSource, DataSourceSurface* aDest,
   1.225 +                                          CompositeOperator aOperator)
   1.226 +{
   1.227 +  return ApplyComposition_SIMD<simd::Scalari32x4_t,simd::Scalaru16x8_t,simd::Scalaru8x16_t>(aSource, aDest, aOperator);
   1.228 +}
   1.229 +
   1.230 +void
   1.231 +FilterProcessing::SeparateColorChannels_Scalar(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride)
   1.232 +{
   1.233 +  for (int32_t y = 0; y < size.height; y++) {
   1.234 +    for (int32_t x = 0; x < size.width; x++) {
   1.235 +      int32_t sourceIndex = y * sourceStride + 4 * x;
   1.236 +      int32_t targetIndex = y * channelStride + x;
   1.237 +      channel0Data[targetIndex] = sourceData[sourceIndex];
   1.238 +      channel1Data[targetIndex] = sourceData[sourceIndex+1];
   1.239 +      channel2Data[targetIndex] = sourceData[sourceIndex+2];
   1.240 +      channel3Data[targetIndex] = sourceData[sourceIndex+3];
   1.241 +    }
   1.242 +  }
   1.243 +}
   1.244 +
   1.245 +void
   1.246 +FilterProcessing::CombineColorChannels_Scalar(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data)
   1.247 +{
   1.248 +  for (int32_t y = 0; y < size.height; y++) {
   1.249 +    for (int32_t x = 0; x < size.width; x++) {
   1.250 +      int32_t resultIndex = y * resultStride + 4 * x;
   1.251 +      int32_t channelIndex = y * channelStride + x;
   1.252 +      resultData[resultIndex] = channel0Data[channelIndex];
   1.253 +      resultData[resultIndex+1] = channel1Data[channelIndex];
   1.254 +      resultData[resultIndex+2] = channel2Data[channelIndex];
   1.255 +      resultData[resultIndex+3] = channel3Data[channelIndex];
   1.256 +    }
   1.257 +  }
   1.258 +}
   1.259 +
   1.260 +void
   1.261 +FilterProcessing::DoPremultiplicationCalculation_Scalar(const IntSize& aSize,
   1.262 +                                     uint8_t* aTargetData, int32_t aTargetStride,
   1.263 +                                     uint8_t* aSourceData, int32_t aSourceStride)
   1.264 +{
   1.265 +  for (int32_t y = 0; y < aSize.height; y++) {
   1.266 +    for (int32_t x = 0; x < aSize.width; x++) {
   1.267 +      int32_t inputIndex = y * aSourceStride + 4 * x;
   1.268 +      int32_t targetIndex = y * aTargetStride + 4 * x;
   1.269 +      uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
   1.270 +      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
   1.271 +        FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alpha);
   1.272 +      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
   1.273 +        FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alpha);
   1.274 +      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
   1.275 +        FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alpha);
   1.276 +      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
   1.277 +    }
   1.278 +  }
   1.279 +}
   1.280 +
   1.281 +void
   1.282 +FilterProcessing::DoUnpremultiplicationCalculation_Scalar(
   1.283 +                                 const IntSize& aSize,
   1.284 +                                 uint8_t* aTargetData, int32_t aTargetStride,
   1.285 +                                 uint8_t* aSourceData, int32_t aSourceStride)
   1.286 +{
   1.287 +  for (int32_t y = 0; y < aSize.height; y++) {
   1.288 +    for (int32_t x = 0; x < aSize.width; x++) {
   1.289 +      int32_t inputIndex = y * aSourceStride + 4 * x;
   1.290 +      int32_t targetIndex = y * aTargetStride + 4 * x;
   1.291 +      uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
   1.292 +      uint16_t alphaFactor = sAlphaFactors[alpha];
   1.293 +      // inputColor * alphaFactor + 128 is guaranteed to fit into uint16_t
   1.294 +      // because the input is premultiplied and thus inputColor <= inputAlpha.
   1.295 +      // The maximum value this can attain is 65520 (which is less than 65535)
   1.296 +      // for color == alpha == 244:
   1.297 +      // 244 * sAlphaFactors[244] + 128 == 244 * 268 + 128 == 65520
   1.298 +      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
   1.299 +        (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alphaFactor + 128) >> 8;
   1.300 +      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
   1.301 +        (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alphaFactor + 128) >> 8;
   1.302 +      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
   1.303 +        (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alphaFactor + 128) >> 8;
   1.304 +      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
   1.305 +    }
   1.306 +  }
   1.307 +}
   1.308 +
   1.309 +TemporaryRef<DataSourceSurface>
   1.310 +FilterProcessing::RenderTurbulence_Scalar(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
   1.311 +                                          int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect)
   1.312 +{
   1.313 +   return RenderTurbulence_SIMD<simd::Scalarf32x4_t,simd::Scalari32x4_t,simd::Scalaru8x16_t>(
   1.314 +     aSize, aOffset, aBaseFrequency, aSeed, aNumOctaves, aType, aStitch, aTileRect);
   1.315 +}
   1.316 +
   1.317 +TemporaryRef<DataSourceSurface>
   1.318 +FilterProcessing::ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4)
   1.319 +{
   1.320 +  return ApplyArithmeticCombine_SIMD<simd::Scalari32x4_t,simd::Scalari16x8_t,simd::Scalaru8x16_t>(aInput1, aInput2, aK1, aK2, aK3, aK4);
   1.321 +}
   1.322 +
   1.323 +} // namespace mozilla
   1.324 +} // namespace gfx

mercurial