gfx/angle/src/libGLESv2/ProgramBinary.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/angle/src/libGLESv2/ProgramBinary.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,2622 @@
     1.4 +#include "precompiled.h"
     1.5 +//
     1.6 +// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
     1.7 +// Use of this source code is governed by a BSD-style license that can be
     1.8 +// found in the LICENSE file.
     1.9 +//
    1.10 +
    1.11 +// Program.cpp: Implements the gl::Program class. Implements GL program objects
    1.12 +// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
    1.13 +
    1.14 +#include "libGLESv2/BinaryStream.h"
    1.15 +#include "libGLESv2/ProgramBinary.h"
    1.16 +#include "libGLESv2/renderer/ShaderExecutable.h"
    1.17 +
    1.18 +#include "common/debug.h"
    1.19 +#include "common/version.h"
    1.20 +#include "utilities.h"
    1.21 +
    1.22 +#include "libGLESv2/main.h"
    1.23 +#include "libGLESv2/Shader.h"
    1.24 +#include "libGLESv2/Program.h"
    1.25 +#include "libGLESv2/renderer/Renderer.h"
    1.26 +#include "libGLESv2/renderer/VertexDataManager.h"
    1.27 +
    1.28 +#include <algorithm>
    1.29 +
    1.30 +#undef near
    1.31 +#undef far
    1.32 +
    1.33 +namespace gl
    1.34 +{
    1.35 +std::string str(int i)
    1.36 +{
    1.37 +    char buffer[20];
    1.38 +    snprintf(buffer, sizeof(buffer), "%d", i);
    1.39 +    return buffer;
    1.40 +}
    1.41 +
    1.42 +UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index) 
    1.43 +    : name(name), element(element), index(index)
    1.44 +{
    1.45 +}
    1.46 +
    1.47 +unsigned int ProgramBinary::mCurrentSerial = 1;
    1.48 +
    1.49 +ProgramBinary::ProgramBinary(rx::Renderer *renderer) : mRenderer(renderer), RefCountObject(0), mSerial(issueSerial())
    1.50 +{
    1.51 +    mPixelExecutable = NULL;
    1.52 +    mVertexExecutable = NULL;
    1.53 +    mGeometryExecutable = NULL;
    1.54 +
    1.55 +    mValidated = false;
    1.56 +
    1.57 +    for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
    1.58 +    {
    1.59 +        mSemanticIndex[index] = -1;
    1.60 +    }
    1.61 +
    1.62 +    for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
    1.63 +    {
    1.64 +        mSamplersPS[index].active = false;
    1.65 +    }
    1.66 +
    1.67 +    for (int index = 0; index < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++)
    1.68 +    {
    1.69 +        mSamplersVS[index].active = false;
    1.70 +    }
    1.71 +
    1.72 +    mUsedVertexSamplerRange = 0;
    1.73 +    mUsedPixelSamplerRange = 0;
    1.74 +    mUsesPointSize = false;
    1.75 +}
    1.76 +
    1.77 +ProgramBinary::~ProgramBinary()
    1.78 +{
    1.79 +    delete mPixelExecutable;
    1.80 +    mPixelExecutable = NULL;
    1.81 +
    1.82 +    delete mVertexExecutable;
    1.83 +    mVertexExecutable = NULL;
    1.84 +
    1.85 +    delete mGeometryExecutable;
    1.86 +    mGeometryExecutable = NULL;
    1.87 +
    1.88 +    while (!mUniforms.empty())
    1.89 +    {
    1.90 +        delete mUniforms.back();
    1.91 +        mUniforms.pop_back();
    1.92 +    }
    1.93 +}
    1.94 +
    1.95 +unsigned int ProgramBinary::getSerial() const
    1.96 +{
    1.97 +    return mSerial;
    1.98 +}
    1.99 +
   1.100 +unsigned int ProgramBinary::issueSerial()
   1.101 +{
   1.102 +    return mCurrentSerial++;
   1.103 +}
   1.104 +
   1.105 +rx::ShaderExecutable *ProgramBinary::getPixelExecutable()
   1.106 +{
   1.107 +    return mPixelExecutable;
   1.108 +}
   1.109 +
   1.110 +rx::ShaderExecutable *ProgramBinary::getVertexExecutable()
   1.111 +{
   1.112 +    return mVertexExecutable;
   1.113 +}
   1.114 +
   1.115 +rx::ShaderExecutable *ProgramBinary::getGeometryExecutable()
   1.116 +{
   1.117 +    return mGeometryExecutable;
   1.118 +}
   1.119 +
   1.120 +GLuint ProgramBinary::getAttributeLocation(const char *name)
   1.121 +{
   1.122 +    if (name)
   1.123 +    {
   1.124 +        for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
   1.125 +        {
   1.126 +            if (mLinkedAttribute[index].name == std::string(name))
   1.127 +            {
   1.128 +                return index;
   1.129 +            }
   1.130 +        }
   1.131 +    }
   1.132 +
   1.133 +    return -1;
   1.134 +}
   1.135 +
   1.136 +int ProgramBinary::getSemanticIndex(int attributeIndex)
   1.137 +{
   1.138 +    ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
   1.139 +    
   1.140 +    return mSemanticIndex[attributeIndex];
   1.141 +}
   1.142 +
   1.143 +// Returns one more than the highest sampler index used.
   1.144 +GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
   1.145 +{
   1.146 +    switch (type)
   1.147 +    {
   1.148 +      case SAMPLER_PIXEL:
   1.149 +        return mUsedPixelSamplerRange;
   1.150 +      case SAMPLER_VERTEX:
   1.151 +        return mUsedVertexSamplerRange;
   1.152 +      default:
   1.153 +        UNREACHABLE();
   1.154 +        return 0;
   1.155 +    }
   1.156 +}
   1.157 +
   1.158 +bool ProgramBinary::usesPointSize() const
   1.159 +{
   1.160 +    return mUsesPointSize;
   1.161 +}
   1.162 +
   1.163 +bool ProgramBinary::usesPointSpriteEmulation() const
   1.164 +{
   1.165 +    return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4;
   1.166 +}
   1.167 +
   1.168 +bool ProgramBinary::usesGeometryShader() const
   1.169 +{
   1.170 +    return usesPointSpriteEmulation();
   1.171 +}
   1.172 +
   1.173 +// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler
   1.174 +// index (0-15 for the pixel shader and 0-3 for the vertex shader).
   1.175 +GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex)
   1.176 +{
   1.177 +    GLint logicalTextureUnit = -1;
   1.178 +
   1.179 +    switch (type)
   1.180 +    {
   1.181 +      case SAMPLER_PIXEL:
   1.182 +        ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
   1.183 +
   1.184 +        if (mSamplersPS[samplerIndex].active)
   1.185 +        {
   1.186 +            logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
   1.187 +        }
   1.188 +        break;
   1.189 +      case SAMPLER_VERTEX:
   1.190 +        ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
   1.191 +
   1.192 +        if (mSamplersVS[samplerIndex].active)
   1.193 +        {
   1.194 +            logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
   1.195 +        }
   1.196 +        break;
   1.197 +      default: UNREACHABLE();
   1.198 +    }
   1.199 +
   1.200 +    if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)mRenderer->getMaxCombinedTextureImageUnits())
   1.201 +    {
   1.202 +        return logicalTextureUnit;
   1.203 +    }
   1.204 +
   1.205 +    return -1;
   1.206 +}
   1.207 +
   1.208 +// Returns the texture type for a given Direct3D 9 sampler type and
   1.209 +// index (0-15 for the pixel shader and 0-3 for the vertex shader).
   1.210 +TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
   1.211 +{
   1.212 +    switch (type)
   1.213 +    {
   1.214 +      case SAMPLER_PIXEL:
   1.215 +        ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
   1.216 +        ASSERT(mSamplersPS[samplerIndex].active);
   1.217 +        return mSamplersPS[samplerIndex].textureType;
   1.218 +      case SAMPLER_VERTEX:
   1.219 +        ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
   1.220 +        ASSERT(mSamplersVS[samplerIndex].active);
   1.221 +        return mSamplersVS[samplerIndex].textureType;
   1.222 +      default: UNREACHABLE();
   1.223 +    }
   1.224 +
   1.225 +    return TEXTURE_2D;
   1.226 +}
   1.227 +
   1.228 +GLint ProgramBinary::getUniformLocation(std::string name)
   1.229 +{
   1.230 +    unsigned int subscript = 0;
   1.231 +
   1.232 +    // Strip any trailing array operator and retrieve the subscript
   1.233 +    size_t open = name.find_last_of('[');
   1.234 +    size_t close = name.find_last_of(']');
   1.235 +    if (open != std::string::npos && close == name.length() - 1)
   1.236 +    {
   1.237 +        subscript = atoi(name.substr(open + 1).c_str());
   1.238 +        name.erase(open);
   1.239 +    }
   1.240 +
   1.241 +    unsigned int numUniforms = mUniformIndex.size();
   1.242 +    for (unsigned int location = 0; location < numUniforms; location++)
   1.243 +    {
   1.244 +        if (mUniformIndex[location].name == name &&
   1.245 +            mUniformIndex[location].element == subscript)
   1.246 +        {
   1.247 +            return location;
   1.248 +        }
   1.249 +    }
   1.250 +
   1.251 +    return -1;
   1.252 +}
   1.253 +
   1.254 +bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
   1.255 +{
   1.256 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.257 +    {
   1.258 +        return false;
   1.259 +    }
   1.260 +
   1.261 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.262 +    targetUniform->dirty = true;
   1.263 +
   1.264 +    int elementCount = targetUniform->elementCount();
   1.265 +
   1.266 +    if (elementCount == 1 && count > 1)
   1.267 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.268 +
   1.269 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.270 +
   1.271 +    if (targetUniform->type == GL_FLOAT)
   1.272 +    {
   1.273 +        GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
   1.274 +
   1.275 +        for (int i = 0; i < count; i++)
   1.276 +        {
   1.277 +            target[0] = v[0];
   1.278 +            target[1] = 0;
   1.279 +            target[2] = 0;
   1.280 +            target[3] = 0;
   1.281 +            target += 4;
   1.282 +            v += 1;
   1.283 +        }
   1.284 +    }
   1.285 +    else if (targetUniform->type == GL_BOOL)
   1.286 +    {
   1.287 +        GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.288 +
   1.289 +        for (int i = 0; i < count; i++)
   1.290 +        {
   1.291 +            boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.292 +            boolParams[1] = GL_FALSE;
   1.293 +            boolParams[2] = GL_FALSE;
   1.294 +            boolParams[3] = GL_FALSE;
   1.295 +            boolParams += 4;
   1.296 +            v += 1;
   1.297 +        }
   1.298 +    }
   1.299 +    else
   1.300 +    {
   1.301 +        return false;
   1.302 +    }
   1.303 +
   1.304 +    return true;
   1.305 +}
   1.306 +
   1.307 +bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
   1.308 +{
   1.309 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.310 +    {
   1.311 +        return false;
   1.312 +    }
   1.313 +
   1.314 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.315 +    targetUniform->dirty = true;
   1.316 +
   1.317 +    int elementCount = targetUniform->elementCount();
   1.318 +
   1.319 +    if (elementCount == 1 && count > 1)
   1.320 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.321 +
   1.322 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.323 +
   1.324 +    if (targetUniform->type == GL_FLOAT_VEC2)
   1.325 +    {
   1.326 +        GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
   1.327 +
   1.328 +        for (int i = 0; i < count; i++)
   1.329 +        {
   1.330 +            target[0] = v[0];
   1.331 +            target[1] = v[1];
   1.332 +            target[2] = 0;
   1.333 +            target[3] = 0;
   1.334 +            target += 4;
   1.335 +            v += 2;
   1.336 +        }
   1.337 +    }
   1.338 +    else if (targetUniform->type == GL_BOOL_VEC2)
   1.339 +    {
   1.340 +        GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.341 +
   1.342 +        for (int i = 0; i < count; i++)
   1.343 +        {
   1.344 +            boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.345 +            boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.346 +            boolParams[2] = GL_FALSE;
   1.347 +            boolParams[3] = GL_FALSE;
   1.348 +            boolParams += 4;
   1.349 +            v += 2;
   1.350 +        }
   1.351 +    }
   1.352 +    else 
   1.353 +    {
   1.354 +        return false;
   1.355 +    }
   1.356 +
   1.357 +    return true;
   1.358 +}
   1.359 +
   1.360 +bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
   1.361 +{
   1.362 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.363 +    {
   1.364 +        return false;
   1.365 +    }
   1.366 +
   1.367 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.368 +    targetUniform->dirty = true;
   1.369 +
   1.370 +    int elementCount = targetUniform->elementCount();
   1.371 +
   1.372 +    if (elementCount == 1 && count > 1)
   1.373 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.374 +
   1.375 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.376 +
   1.377 +    if (targetUniform->type == GL_FLOAT_VEC3)
   1.378 +    {
   1.379 +        GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
   1.380 +
   1.381 +        for (int i = 0; i < count; i++)
   1.382 +        {
   1.383 +            target[0] = v[0];
   1.384 +            target[1] = v[1];
   1.385 +            target[2] = v[2];
   1.386 +            target[3] = 0;
   1.387 +            target += 4;
   1.388 +            v += 3;
   1.389 +        }
   1.390 +    }
   1.391 +    else if (targetUniform->type == GL_BOOL_VEC3)
   1.392 +    {
   1.393 +        GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.394 +
   1.395 +        for (int i = 0; i < count; i++)
   1.396 +        {
   1.397 +            boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.398 +            boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.399 +            boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.400 +            boolParams[3] = GL_FALSE;
   1.401 +            boolParams += 4;
   1.402 +            v += 3;
   1.403 +        }
   1.404 +    }
   1.405 +    else 
   1.406 +    {
   1.407 +        return false;
   1.408 +    }
   1.409 +
   1.410 +    return true;
   1.411 +}
   1.412 +
   1.413 +bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
   1.414 +{
   1.415 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.416 +    {
   1.417 +        return false;
   1.418 +    }
   1.419 +
   1.420 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.421 +    targetUniform->dirty = true;
   1.422 +
   1.423 +    int elementCount = targetUniform->elementCount();
   1.424 +
   1.425 +    if (elementCount == 1 && count > 1)
   1.426 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.427 +
   1.428 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.429 +
   1.430 +    if (targetUniform->type == GL_FLOAT_VEC4)
   1.431 +    {
   1.432 +        GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
   1.433 +
   1.434 +        for (int i = 0; i < count; i++)
   1.435 +        {
   1.436 +            target[0] = v[0];
   1.437 +            target[1] = v[1];
   1.438 +            target[2] = v[2];
   1.439 +            target[3] = v[3];
   1.440 +            target += 4;
   1.441 +            v += 4;
   1.442 +        }
   1.443 +    }
   1.444 +    else if (targetUniform->type == GL_BOOL_VEC4)
   1.445 +    {
   1.446 +        GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.447 +
   1.448 +        for (int i = 0; i < count; i++)
   1.449 +        {
   1.450 +            boolParams[0] = (v[0] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.451 +            boolParams[1] = (v[1] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.452 +            boolParams[2] = (v[2] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.453 +            boolParams[3] = (v[3] == 0.0f) ? GL_FALSE : GL_TRUE;
   1.454 +            boolParams += 4;
   1.455 +            v += 4;
   1.456 +        }
   1.457 +    }
   1.458 +    else 
   1.459 +    {
   1.460 +        return false;
   1.461 +    }
   1.462 +
   1.463 +    return true;
   1.464 +}
   1.465 +
   1.466 +template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight>
   1.467 +void transposeMatrix(T *target, const GLfloat *value)
   1.468 +{
   1.469 +    int copyWidth = std::min(targetWidth, srcWidth);
   1.470 +    int copyHeight = std::min(targetHeight, srcHeight);
   1.471 +
   1.472 +    for (int x = 0; x < copyWidth; x++)
   1.473 +    {
   1.474 +        for (int y = 0; y < copyHeight; y++)
   1.475 +        {
   1.476 +            target[x * targetWidth + y] = (T)value[y * srcWidth + x];
   1.477 +        }
   1.478 +    }
   1.479 +    // clear unfilled right side
   1.480 +    for (int y = 0; y < copyHeight; y++)
   1.481 +    {
   1.482 +        for (int x = srcWidth; x < targetWidth; x++)
   1.483 +        {
   1.484 +            target[y * targetWidth + x] = (T)0;
   1.485 +        }
   1.486 +    }
   1.487 +    // clear unfilled bottom.
   1.488 +    for (int y = srcHeight; y < targetHeight; y++)
   1.489 +    {
   1.490 +        for (int x = 0; x < targetWidth; x++)
   1.491 +        {
   1.492 +            target[y * targetWidth + x] = (T)0;
   1.493 +        }
   1.494 +    }
   1.495 +}
   1.496 +
   1.497 +bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
   1.498 +{
   1.499 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.500 +    {
   1.501 +        return false;
   1.502 +    }
   1.503 +
   1.504 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.505 +    targetUniform->dirty = true;
   1.506 +
   1.507 +    if (targetUniform->type != GL_FLOAT_MAT2)
   1.508 +    {
   1.509 +        return false;
   1.510 +    }
   1.511 +
   1.512 +    int elementCount = targetUniform->elementCount();
   1.513 +
   1.514 +    if (elementCount == 1 && count > 1)
   1.515 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.516 +
   1.517 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.518 +    GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8;
   1.519 +
   1.520 +    for (int i = 0; i < count; i++)
   1.521 +    {
   1.522 +        transposeMatrix<GLfloat,4,2,2,2>(target, value);
   1.523 +        target += 8;
   1.524 +        value += 4;
   1.525 +    }
   1.526 +
   1.527 +    return true;
   1.528 +}
   1.529 +
   1.530 +bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
   1.531 +{
   1.532 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.533 +    {
   1.534 +        return false;
   1.535 +    }
   1.536 +
   1.537 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.538 +    targetUniform->dirty = true;
   1.539 +
   1.540 +    if (targetUniform->type != GL_FLOAT_MAT3)
   1.541 +    {
   1.542 +        return false;
   1.543 +    }
   1.544 +
   1.545 +    int elementCount = targetUniform->elementCount();
   1.546 +
   1.547 +    if (elementCount == 1 && count > 1)
   1.548 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.549 +
   1.550 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.551 +    GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12;
   1.552 +
   1.553 +    for (int i = 0; i < count; i++)
   1.554 +    {
   1.555 +        transposeMatrix<GLfloat,4,3,3,3>(target, value);
   1.556 +        target += 12;
   1.557 +        value += 9;
   1.558 +    }
   1.559 +
   1.560 +    return true;
   1.561 +}
   1.562 +
   1.563 +
   1.564 +bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
   1.565 +{
   1.566 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.567 +    {
   1.568 +        return false;
   1.569 +    }
   1.570 +
   1.571 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.572 +    targetUniform->dirty = true;
   1.573 +
   1.574 +    if (targetUniform->type != GL_FLOAT_MAT4)
   1.575 +    {
   1.576 +        return false;
   1.577 +    }
   1.578 +
   1.579 +    int elementCount = targetUniform->elementCount();
   1.580 +
   1.581 +    if (elementCount == 1 && count > 1)
   1.582 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.583 +
   1.584 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.585 +    GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16);
   1.586 +
   1.587 +    for (int i = 0; i < count; i++)
   1.588 +    {
   1.589 +        transposeMatrix<GLfloat,4,4,4,4>(target, value);
   1.590 +        target += 16;
   1.591 +        value += 16;
   1.592 +    }
   1.593 +
   1.594 +    return true;
   1.595 +}
   1.596 +
   1.597 +bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v)
   1.598 +{
   1.599 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.600 +    {
   1.601 +        return false;
   1.602 +    }
   1.603 +
   1.604 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.605 +    targetUniform->dirty = true;
   1.606 +
   1.607 +    int elementCount = targetUniform->elementCount();
   1.608 +
   1.609 +    if (elementCount == 1 && count > 1)
   1.610 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.611 +
   1.612 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.613 +
   1.614 +    if (targetUniform->type == GL_INT ||
   1.615 +        targetUniform->type == GL_SAMPLER_2D ||
   1.616 +        targetUniform->type == GL_SAMPLER_CUBE)
   1.617 +    {
   1.618 +        GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.619 +
   1.620 +        for (int i = 0; i < count; i++)
   1.621 +        {
   1.622 +            target[0] = v[0];
   1.623 +            target[1] = 0;
   1.624 +            target[2] = 0;
   1.625 +            target[3] = 0;
   1.626 +            target += 4;
   1.627 +            v += 1;
   1.628 +        }
   1.629 +    }
   1.630 +    else if (targetUniform->type == GL_BOOL)
   1.631 +    {
   1.632 +        GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.633 +
   1.634 +        for (int i = 0; i < count; i++)
   1.635 +        {
   1.636 +            boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
   1.637 +            boolParams[1] = GL_FALSE;
   1.638 +            boolParams[2] = GL_FALSE;
   1.639 +            boolParams[3] = GL_FALSE;
   1.640 +            boolParams += 4;
   1.641 +            v += 1;
   1.642 +        }
   1.643 +    }
   1.644 +    else
   1.645 +    {
   1.646 +        return false;
   1.647 +    }
   1.648 +
   1.649 +    return true;
   1.650 +}
   1.651 +
   1.652 +bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v)
   1.653 +{
   1.654 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.655 +    {
   1.656 +        return false;
   1.657 +    }
   1.658 +
   1.659 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.660 +    targetUniform->dirty = true;
   1.661 +
   1.662 +    int elementCount = targetUniform->elementCount();
   1.663 +
   1.664 +    if (elementCount == 1 && count > 1)
   1.665 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.666 +
   1.667 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.668 +
   1.669 +    if (targetUniform->type == GL_INT_VEC2)
   1.670 +    {
   1.671 +        GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.672 +
   1.673 +        for (int i = 0; i < count; i++)
   1.674 +        {
   1.675 +            target[0] = v[0];
   1.676 +            target[1] = v[1];
   1.677 +            target[2] = 0;
   1.678 +            target[3] = 0;
   1.679 +            target += 4;
   1.680 +            v += 2;
   1.681 +        }
   1.682 +    }
   1.683 +    else if (targetUniform->type == GL_BOOL_VEC2)
   1.684 +    {
   1.685 +        GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.686 +
   1.687 +        for (int i = 0; i < count; i++)
   1.688 +        {
   1.689 +            boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
   1.690 +            boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
   1.691 +            boolParams[2] = GL_FALSE;
   1.692 +            boolParams[3] = GL_FALSE;
   1.693 +            boolParams += 4;
   1.694 +            v += 2;
   1.695 +        }
   1.696 +    }
   1.697 +    else
   1.698 +    {
   1.699 +        return false;
   1.700 +    }
   1.701 +
   1.702 +    return true;
   1.703 +}
   1.704 +
   1.705 +bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v)
   1.706 +{
   1.707 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.708 +    {
   1.709 +        return false;
   1.710 +    }
   1.711 +
   1.712 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.713 +    targetUniform->dirty = true;
   1.714 +
   1.715 +    int elementCount = targetUniform->elementCount();
   1.716 +
   1.717 +    if (elementCount == 1 && count > 1)
   1.718 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.719 +
   1.720 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.721 +
   1.722 +    if (targetUniform->type == GL_INT_VEC3)
   1.723 +    {
   1.724 +        GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.725 +
   1.726 +        for (int i = 0; i < count; i++)
   1.727 +        {
   1.728 +            target[0] = v[0];
   1.729 +            target[1] = v[1];
   1.730 +            target[2] = v[2];
   1.731 +            target[3] = 0;
   1.732 +            target += 4;
   1.733 +            v += 3;
   1.734 +        }
   1.735 +    }
   1.736 +    else if (targetUniform->type == GL_BOOL_VEC3)
   1.737 +    {
   1.738 +        GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.739 +
   1.740 +        for (int i = 0; i < count; i++)
   1.741 +        {
   1.742 +            boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
   1.743 +            boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
   1.744 +            boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE;
   1.745 +            boolParams[3] = GL_FALSE;
   1.746 +            boolParams += 4;
   1.747 +            v += 3;
   1.748 +        }
   1.749 +    }
   1.750 +    else
   1.751 +    {
   1.752 +        return false;
   1.753 +    }
   1.754 +
   1.755 +    return true;
   1.756 +}
   1.757 +
   1.758 +bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v)
   1.759 +{
   1.760 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.761 +    {
   1.762 +        return false;
   1.763 +    }
   1.764 +
   1.765 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.766 +    targetUniform->dirty = true;
   1.767 +
   1.768 +    int elementCount = targetUniform->elementCount();
   1.769 +
   1.770 +    if (elementCount == 1 && count > 1)
   1.771 +        return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
   1.772 +
   1.773 +    count = std::min(elementCount - (int)mUniformIndex[location].element, count);
   1.774 +
   1.775 +    if (targetUniform->type == GL_INT_VEC4)
   1.776 +    {
   1.777 +        GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.778 +
   1.779 +        for (int i = 0; i < count; i++)
   1.780 +        {
   1.781 +            target[0] = v[0];
   1.782 +            target[1] = v[1];
   1.783 +            target[2] = v[2];
   1.784 +            target[3] = v[3];
   1.785 +            target += 4;
   1.786 +            v += 4;
   1.787 +        }
   1.788 +    }
   1.789 +    else if (targetUniform->type == GL_BOOL_VEC4)
   1.790 +    {
   1.791 +        GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.792 +
   1.793 +        for (int i = 0; i < count; i++)
   1.794 +        {
   1.795 +            boolParams[0] = (v[0] == 0) ? GL_FALSE : GL_TRUE;
   1.796 +            boolParams[1] = (v[1] == 0) ? GL_FALSE : GL_TRUE;
   1.797 +            boolParams[2] = (v[2] == 0) ? GL_FALSE : GL_TRUE;
   1.798 +            boolParams[3] = (v[3] == 0) ? GL_FALSE : GL_TRUE;
   1.799 +            boolParams += 4;
   1.800 +            v += 4;
   1.801 +        }
   1.802 +    }
   1.803 +    else
   1.804 +    {
   1.805 +        return false;
   1.806 +    }
   1.807 +
   1.808 +    return true;
   1.809 +}
   1.810 +
   1.811 +bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
   1.812 +{
   1.813 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.814 +    {
   1.815 +        return false;
   1.816 +    }
   1.817 +
   1.818 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.819 +
   1.820 +    // sized queries -- ensure the provided buffer is large enough
   1.821 +    if (bufSize)
   1.822 +    {
   1.823 +        int requiredBytes = UniformExternalSize(targetUniform->type);
   1.824 +        if (*bufSize < requiredBytes)
   1.825 +        {
   1.826 +            return false;
   1.827 +        }
   1.828 +    }
   1.829 +
   1.830 +    switch (targetUniform->type)
   1.831 +    {
   1.832 +      case GL_FLOAT_MAT2:
   1.833 +        transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
   1.834 +        break;
   1.835 +      case GL_FLOAT_MAT3:
   1.836 +        transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
   1.837 +        break;
   1.838 +      case GL_FLOAT_MAT4:
   1.839 +        transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
   1.840 +        break;
   1.841 +      default:
   1.842 +        {
   1.843 +            unsigned int size = UniformComponentCount(targetUniform->type);
   1.844 +
   1.845 +            switch (UniformComponentType(targetUniform->type))
   1.846 +            {
   1.847 +              case GL_BOOL:
   1.848 +                {
   1.849 +                    GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.850 +
   1.851 +                    for (unsigned int i = 0; i < size; i++)
   1.852 +                    {
   1.853 +                        params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
   1.854 +                    }
   1.855 +                }
   1.856 +                break;
   1.857 +              case GL_FLOAT:
   1.858 +                memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLfloat),
   1.859 +                       size * sizeof(GLfloat));
   1.860 +                break;
   1.861 +              case GL_INT:
   1.862 +                {
   1.863 +                    GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.864 +
   1.865 +                    for (unsigned int i = 0; i < size; i++)
   1.866 +                    {
   1.867 +                        params[i] = (float)intParams[i];
   1.868 +                    }
   1.869 +                }
   1.870 +                break;
   1.871 +              default: UNREACHABLE();
   1.872 +            }
   1.873 +        }
   1.874 +    }
   1.875 +
   1.876 +    return true;
   1.877 +}
   1.878 +
   1.879 +bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
   1.880 +{
   1.881 +    if (location < 0 || location >= (int)mUniformIndex.size())
   1.882 +    {
   1.883 +        return false;
   1.884 +    }
   1.885 +
   1.886 +    Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
   1.887 +
   1.888 +    // sized queries -- ensure the provided buffer is large enough
   1.889 +    if (bufSize)
   1.890 +    {
   1.891 +        int requiredBytes = UniformExternalSize(targetUniform->type);
   1.892 +        if (*bufSize < requiredBytes)
   1.893 +        {
   1.894 +            return false;
   1.895 +        }
   1.896 +    }
   1.897 +
   1.898 +    switch (targetUniform->type)
   1.899 +    {
   1.900 +      case GL_FLOAT_MAT2:
   1.901 +        transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
   1.902 +        break;
   1.903 +      case GL_FLOAT_MAT3:
   1.904 +        transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
   1.905 +        break;
   1.906 +      case GL_FLOAT_MAT4:
   1.907 +        transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
   1.908 +        break;
   1.909 +      default:
   1.910 +        {
   1.911 +            unsigned int size = VariableColumnCount(targetUniform->type);
   1.912 +
   1.913 +            switch (UniformComponentType(targetUniform->type))
   1.914 +            {
   1.915 +              case GL_BOOL:
   1.916 +                {
   1.917 +                    GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
   1.918 +
   1.919 +                    for (unsigned int i = 0; i < size; i++)
   1.920 +                    {
   1.921 +                        params[i] = boolParams[i];
   1.922 +                    }
   1.923 +                }
   1.924 +                break;
   1.925 +              case GL_FLOAT:
   1.926 +                {
   1.927 +                    GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
   1.928 +
   1.929 +                    for (unsigned int i = 0; i < size; i++)
   1.930 +                    {
   1.931 +                        params[i] = (GLint)floatParams[i];
   1.932 +                    }
   1.933 +                }
   1.934 +                break;
   1.935 +              case GL_INT:
   1.936 +                memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(GLint),
   1.937 +                    size * sizeof(GLint));
   1.938 +                break;
   1.939 +              default: UNREACHABLE();
   1.940 +            }
   1.941 +        }
   1.942 +    }
   1.943 +
   1.944 +    return true;
   1.945 +}
   1.946 +
   1.947 +void ProgramBinary::dirtyAllUniforms()
   1.948 +{
   1.949 +    unsigned int numUniforms = mUniforms.size();
   1.950 +    for (unsigned int index = 0; index < numUniforms; index++)
   1.951 +    {
   1.952 +        mUniforms[index]->dirty = true;
   1.953 +    }
   1.954 +}
   1.955 +
   1.956 +// Applies all the uniforms set for this program object to the renderer
   1.957 +void ProgramBinary::applyUniforms()
   1.958 +{
   1.959 +    // Retrieve sampler uniform values
   1.960 +    for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub)
   1.961 +    {
   1.962 +        Uniform *targetUniform = *ub;
   1.963 +
   1.964 +        if (targetUniform->dirty)
   1.965 +        {
   1.966 +            if (targetUniform->type == GL_SAMPLER_2D || 
   1.967 +                targetUniform->type == GL_SAMPLER_CUBE)
   1.968 +            {
   1.969 +                int count = targetUniform->elementCount();
   1.970 +                GLint (*v)[4] = (GLint(*)[4])targetUniform->data;
   1.971 +
   1.972 +                if (targetUniform->psRegisterIndex >= 0)
   1.973 +                {
   1.974 +                    unsigned int firstIndex = targetUniform->psRegisterIndex;
   1.975 +
   1.976 +                    for (int i = 0; i < count; i++)
   1.977 +                    {
   1.978 +                        unsigned int samplerIndex = firstIndex + i;
   1.979 +
   1.980 +                        if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
   1.981 +                        {
   1.982 +                            ASSERT(mSamplersPS[samplerIndex].active);
   1.983 +                            mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0];
   1.984 +                        }
   1.985 +                    }
   1.986 +                }
   1.987 +
   1.988 +                if (targetUniform->vsRegisterIndex >= 0)
   1.989 +                {
   1.990 +                    unsigned int firstIndex = targetUniform->vsRegisterIndex;
   1.991 +
   1.992 +                    for (int i = 0; i < count; i++)
   1.993 +                    {
   1.994 +                        unsigned int samplerIndex = firstIndex + i;
   1.995 +
   1.996 +                        if (samplerIndex < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS)
   1.997 +                        {
   1.998 +                            ASSERT(mSamplersVS[samplerIndex].active);
   1.999 +                            mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0];
  1.1000 +                        }
  1.1001 +                    }
  1.1002 +                }
  1.1003 +            }
  1.1004 +        }
  1.1005 +    }
  1.1006 +
  1.1007 +    mRenderer->applyUniforms(this, &mUniforms);
  1.1008 +}
  1.1009 +
  1.1010 +// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
  1.1011 +// Returns the number of used varying registers, or -1 if unsuccesful
  1.1012 +int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader)
  1.1013 +{
  1.1014 +    const int maxVaryingVectors = mRenderer->getMaxVaryingVectors();
  1.1015 +
  1.1016 +    fragmentShader->resetVaryingsRegisterAssignment();
  1.1017 +
  1.1018 +    for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
  1.1019 +    {
  1.1020 +        int n = VariableRowCount(varying->type) * varying->size;
  1.1021 +        int m = VariableColumnCount(varying->type);
  1.1022 +        bool success = false;
  1.1023 +
  1.1024 +        if (m == 2 || m == 3 || m == 4)
  1.1025 +        {
  1.1026 +            for (int r = 0; r <= maxVaryingVectors - n && !success; r++)
  1.1027 +            {
  1.1028 +                bool available = true;
  1.1029 +
  1.1030 +                for (int y = 0; y < n && available; y++)
  1.1031 +                {
  1.1032 +                    for (int x = 0; x < m && available; x++)
  1.1033 +                    {
  1.1034 +                        if (packing[r + y][x])
  1.1035 +                        {
  1.1036 +                            available = false;
  1.1037 +                        }
  1.1038 +                    }
  1.1039 +                }
  1.1040 +
  1.1041 +                if (available)
  1.1042 +                {
  1.1043 +                    varying->reg = r;
  1.1044 +                    varying->col = 0;
  1.1045 +
  1.1046 +                    for (int y = 0; y < n; y++)
  1.1047 +                    {
  1.1048 +                        for (int x = 0; x < m; x++)
  1.1049 +                        {
  1.1050 +                            packing[r + y][x] = &*varying;
  1.1051 +                        }
  1.1052 +                    }
  1.1053 +
  1.1054 +                    success = true;
  1.1055 +                }
  1.1056 +            }
  1.1057 +
  1.1058 +            if (!success && m == 2)
  1.1059 +            {
  1.1060 +                for (int r = maxVaryingVectors - n; r >= 0 && !success; r--)
  1.1061 +                {
  1.1062 +                    bool available = true;
  1.1063 +
  1.1064 +                    for (int y = 0; y < n && available; y++)
  1.1065 +                    {
  1.1066 +                        for (int x = 2; x < 4 && available; x++)
  1.1067 +                        {
  1.1068 +                            if (packing[r + y][x])
  1.1069 +                            {
  1.1070 +                                available = false;
  1.1071 +                            }
  1.1072 +                        }
  1.1073 +                    }
  1.1074 +
  1.1075 +                    if (available)
  1.1076 +                    {
  1.1077 +                        varying->reg = r;
  1.1078 +                        varying->col = 2;
  1.1079 +
  1.1080 +                        for (int y = 0; y < n; y++)
  1.1081 +                        {
  1.1082 +                            for (int x = 2; x < 4; x++)
  1.1083 +                            {
  1.1084 +                                packing[r + y][x] = &*varying;
  1.1085 +                            }
  1.1086 +                        }
  1.1087 +
  1.1088 +                        success = true;
  1.1089 +                    }
  1.1090 +                }
  1.1091 +            }
  1.1092 +        }
  1.1093 +        else if (m == 1)
  1.1094 +        {
  1.1095 +            int space[4] = {0};
  1.1096 +
  1.1097 +            for (int y = 0; y < maxVaryingVectors; y++)
  1.1098 +            {
  1.1099 +                for (int x = 0; x < 4; x++)
  1.1100 +                {
  1.1101 +                    space[x] += packing[y][x] ? 0 : 1;
  1.1102 +                }
  1.1103 +            }
  1.1104 +
  1.1105 +            int column = 0;
  1.1106 +
  1.1107 +            for (int x = 0; x < 4; x++)
  1.1108 +            {
  1.1109 +                if (space[x] >= n && space[x] < space[column])
  1.1110 +                {
  1.1111 +                    column = x;
  1.1112 +                }
  1.1113 +            }
  1.1114 +
  1.1115 +            if (space[column] >= n)
  1.1116 +            {
  1.1117 +                for (int r = 0; r < maxVaryingVectors; r++)
  1.1118 +                {
  1.1119 +                    if (!packing[r][column])
  1.1120 +                    {
  1.1121 +                        varying->reg = r;
  1.1122 +
  1.1123 +                        for (int y = r; y < r + n; y++)
  1.1124 +                        {
  1.1125 +                            packing[y][column] = &*varying;
  1.1126 +                        }
  1.1127 +
  1.1128 +                        break;
  1.1129 +                    }
  1.1130 +                }
  1.1131 +
  1.1132 +                varying->col = column;
  1.1133 +
  1.1134 +                success = true;
  1.1135 +            }
  1.1136 +        }
  1.1137 +        else UNREACHABLE();
  1.1138 +
  1.1139 +        if (!success)
  1.1140 +        {
  1.1141 +            infoLog.append("Could not pack varying %s", varying->name.c_str());
  1.1142 +
  1.1143 +            return -1;
  1.1144 +        }
  1.1145 +    }
  1.1146 +
  1.1147 +    // Return the number of used registers
  1.1148 +    int registers = 0;
  1.1149 +
  1.1150 +    for (int r = 0; r < maxVaryingVectors; r++)
  1.1151 +    {
  1.1152 +        if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
  1.1153 +        {
  1.1154 +            registers++;
  1.1155 +        }
  1.1156 +    }
  1.1157 +
  1.1158 +    return registers;
  1.1159 +}
  1.1160 +
  1.1161 +bool ProgramBinary::linkVaryings(InfoLog &infoLog, int registers, const Varying *packing[][4],
  1.1162 +                                 std::string& pixelHLSL, std::string& vertexHLSL,
  1.1163 +                                 FragmentShader *fragmentShader, VertexShader *vertexShader)
  1.1164 +{
  1.1165 +    if (pixelHLSL.empty() || vertexHLSL.empty())
  1.1166 +    {
  1.1167 +        return false;
  1.1168 +    }
  1.1169 +
  1.1170 +    bool usesMRT = fragmentShader->mUsesMultipleRenderTargets;
  1.1171 +    bool usesFragColor = fragmentShader->mUsesFragColor;
  1.1172 +    bool usesFragData = fragmentShader->mUsesFragData;
  1.1173 +    if (usesFragColor && usesFragData)
  1.1174 +    {
  1.1175 +        infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader.");
  1.1176 +        return false;
  1.1177 +    }
  1.1178 +
  1.1179 +    // Write the HLSL input/output declarations
  1.1180 +    const int shaderModel = mRenderer->getMajorShaderModel();
  1.1181 +    const int maxVaryingVectors = mRenderer->getMaxVaryingVectors();
  1.1182 +
  1.1183 +    const int registersNeeded = registers + (fragmentShader->mUsesFragCoord ? 1 : 0) + (fragmentShader->mUsesPointCoord ? 1 : 0);
  1.1184 +
  1.1185 +    // The output color is broadcast to all enabled draw buffers when writing to gl_FragColor 
  1.1186 +    const bool broadcast = fragmentShader->mUsesFragColor;
  1.1187 +    const unsigned int numRenderTargets = (broadcast || usesMRT ? mRenderer->getMaxRenderTargets() : 1);
  1.1188 +
  1.1189 +    if (registersNeeded > maxVaryingVectors)
  1.1190 +    {
  1.1191 +        infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord");
  1.1192 +
  1.1193 +        return false;
  1.1194 +    }
  1.1195 +
  1.1196 +    vertexShader->resetVaryingsRegisterAssignment();
  1.1197 +
  1.1198 +    for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++)
  1.1199 +    {
  1.1200 +        bool matched = false;
  1.1201 +
  1.1202 +        for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++)
  1.1203 +        {
  1.1204 +            if (output->name == input->name)
  1.1205 +            {
  1.1206 +                if (output->type != input->type || output->size != input->size)
  1.1207 +                {
  1.1208 +                    infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
  1.1209 +
  1.1210 +                    return false;
  1.1211 +                }
  1.1212 +
  1.1213 +                output->reg = input->reg;
  1.1214 +                output->col = input->col;
  1.1215 +
  1.1216 +                matched = true;
  1.1217 +                break;
  1.1218 +            }
  1.1219 +        }
  1.1220 +
  1.1221 +        if (!matched)
  1.1222 +        {
  1.1223 +            infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
  1.1224 +
  1.1225 +            return false;
  1.1226 +        }
  1.1227 +    }
  1.1228 +
  1.1229 +    mUsesPointSize = vertexShader->mUsesPointSize;
  1.1230 +    std::string varyingSemantic = (mUsesPointSize && shaderModel == 3) ? "COLOR" : "TEXCOORD";
  1.1231 +    std::string targetSemantic = (shaderModel >= 4) ? "SV_Target" : "COLOR";
  1.1232 +    std::string positionSemantic = (shaderModel >= 4) ? "SV_Position" : "POSITION";
  1.1233 +    std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH";
  1.1234 +
  1.1235 +    // special varyings that use reserved registers
  1.1236 +    int reservedRegisterIndex = registers;
  1.1237 +    std::string fragCoordSemantic;
  1.1238 +    std::string pointCoordSemantic;
  1.1239 +
  1.1240 +    if (fragmentShader->mUsesFragCoord)
  1.1241 +    {
  1.1242 +        fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
  1.1243 +    }
  1.1244 +
  1.1245 +    if (fragmentShader->mUsesPointCoord)
  1.1246 +    {
  1.1247 +        // Shader model 3 uses a special TEXCOORD semantic for point sprite texcoords.
  1.1248 +        // In DX11 we compute this in the GS.
  1.1249 +        if (shaderModel == 3)
  1.1250 +        {
  1.1251 +            pointCoordSemantic = "TEXCOORD0";
  1.1252 +        }
  1.1253 +        else if (shaderModel >= 4)
  1.1254 +        {
  1.1255 +            pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++); 
  1.1256 +        }
  1.1257 +    }
  1.1258 +
  1.1259 +    vertexHLSL += "struct VS_INPUT\n"
  1.1260 +                  "{\n";
  1.1261 +
  1.1262 +    int semanticIndex = 0;
  1.1263 +    for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
  1.1264 +    {
  1.1265 +        switch (attribute->type)
  1.1266 +        {
  1.1267 +          case GL_FLOAT:      vertexHLSL += "    float ";    break;
  1.1268 +          case GL_FLOAT_VEC2: vertexHLSL += "    float2 ";   break;
  1.1269 +          case GL_FLOAT_VEC3: vertexHLSL += "    float3 ";   break;
  1.1270 +          case GL_FLOAT_VEC4: vertexHLSL += "    float4 ";   break;
  1.1271 +          case GL_FLOAT_MAT2: vertexHLSL += "    float2x2 "; break;
  1.1272 +          case GL_FLOAT_MAT3: vertexHLSL += "    float3x3 "; break;
  1.1273 +          case GL_FLOAT_MAT4: vertexHLSL += "    float4x4 "; break;
  1.1274 +          default:  UNREACHABLE();
  1.1275 +        }
  1.1276 +
  1.1277 +        vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n";
  1.1278 +
  1.1279 +        semanticIndex += VariableRowCount(attribute->type);
  1.1280 +    }
  1.1281 +
  1.1282 +    vertexHLSL += "};\n"
  1.1283 +                  "\n"
  1.1284 +                  "struct VS_OUTPUT\n"
  1.1285 +                  "{\n";
  1.1286 +
  1.1287 +    if (shaderModel < 4)
  1.1288 +    {
  1.1289 +        vertexHLSL += "    float4 gl_Position : " + positionSemantic + ";\n";
  1.1290 +    }
  1.1291 +
  1.1292 +    for (int r = 0; r < registers; r++)
  1.1293 +    {
  1.1294 +        int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
  1.1295 +
  1.1296 +        vertexHLSL += "    float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
  1.1297 +    }
  1.1298 +
  1.1299 +    if (fragmentShader->mUsesFragCoord)
  1.1300 +    {
  1.1301 +        vertexHLSL += "    float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
  1.1302 +    }
  1.1303 +
  1.1304 +    if (vertexShader->mUsesPointSize && shaderModel >= 3)
  1.1305 +    {
  1.1306 +        vertexHLSL += "    float gl_PointSize : PSIZE;\n";
  1.1307 +    }
  1.1308 +
  1.1309 +    if (shaderModel >= 4)
  1.1310 +    {
  1.1311 +        vertexHLSL += "    float4 gl_Position : " + positionSemantic + ";\n";
  1.1312 +    }
  1.1313 +
  1.1314 +    vertexHLSL += "};\n"
  1.1315 +                  "\n"
  1.1316 +                  "VS_OUTPUT main(VS_INPUT input)\n"
  1.1317 +                  "{\n";
  1.1318 +
  1.1319 +    for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
  1.1320 +    {
  1.1321 +        vertexHLSL += "    " + decorateAttribute(attribute->name) + " = ";
  1.1322 +
  1.1323 +        if (VariableRowCount(attribute->type) > 1)   // Matrix
  1.1324 +        {
  1.1325 +            vertexHLSL += "transpose";
  1.1326 +        }
  1.1327 +
  1.1328 +        vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n";
  1.1329 +    }
  1.1330 +
  1.1331 +    if (shaderModel >= 4)
  1.1332 +    {
  1.1333 +        vertexHLSL += "\n"
  1.1334 +                      "    gl_main();\n"
  1.1335 +                      "\n"
  1.1336 +                      "    VS_OUTPUT output;\n"
  1.1337 +                      "    output.gl_Position.x = gl_Position.x;\n"
  1.1338 +                      "    output.gl_Position.y = -gl_Position.y;\n"
  1.1339 +                      "    output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
  1.1340 +                      "    output.gl_Position.w = gl_Position.w;\n";
  1.1341 +    }
  1.1342 +    else
  1.1343 +    {
  1.1344 +        vertexHLSL += "\n"
  1.1345 +                      "    gl_main();\n"
  1.1346 +                      "\n"
  1.1347 +                      "    VS_OUTPUT output;\n"
  1.1348 +                      "    output.gl_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n"
  1.1349 +                      "    output.gl_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n"
  1.1350 +                      "    output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
  1.1351 +                      "    output.gl_Position.w = gl_Position.w;\n";
  1.1352 +    }
  1.1353 +
  1.1354 +    if (vertexShader->mUsesPointSize && shaderModel >= 3)
  1.1355 +    {
  1.1356 +        vertexHLSL += "    output.gl_PointSize = gl_PointSize;\n";
  1.1357 +    }
  1.1358 +
  1.1359 +    if (fragmentShader->mUsesFragCoord)
  1.1360 +    {
  1.1361 +        vertexHLSL += "    output.gl_FragCoord = gl_Position;\n";
  1.1362 +    }
  1.1363 +
  1.1364 +    for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++)
  1.1365 +    {
  1.1366 +        if (varying->reg >= 0)
  1.1367 +        {
  1.1368 +            for (int i = 0; i < varying->size; i++)
  1.1369 +            {
  1.1370 +                int rows = VariableRowCount(varying->type);
  1.1371 +
  1.1372 +                for (int j = 0; j < rows; j++)
  1.1373 +                {
  1.1374 +                    int r = varying->reg + i * rows + j;
  1.1375 +                    vertexHLSL += "    output.v" + str(r);
  1.1376 +
  1.1377 +                    bool sharedRegister = false;   // Register used by multiple varyings
  1.1378 +                    
  1.1379 +                    for (int x = 0; x < 4; x++)
  1.1380 +                    {
  1.1381 +                        if (packing[r][x] && packing[r][x] != packing[r][0])
  1.1382 +                        {
  1.1383 +                            sharedRegister = true;
  1.1384 +                            break;
  1.1385 +                        }
  1.1386 +                    }
  1.1387 +
  1.1388 +                    if(sharedRegister)
  1.1389 +                    {
  1.1390 +                        vertexHLSL += ".";
  1.1391 +
  1.1392 +                        for (int x = 0; x < 4; x++)
  1.1393 +                        {
  1.1394 +                            if (packing[r][x] == &*varying)
  1.1395 +                            {
  1.1396 +                                switch(x)
  1.1397 +                                {
  1.1398 +                                  case 0: vertexHLSL += "x"; break;
  1.1399 +                                  case 1: vertexHLSL += "y"; break;
  1.1400 +                                  case 2: vertexHLSL += "z"; break;
  1.1401 +                                  case 3: vertexHLSL += "w"; break;
  1.1402 +                                }
  1.1403 +                            }
  1.1404 +                        }
  1.1405 +                    }
  1.1406 +
  1.1407 +                    vertexHLSL += " = " + varying->name;
  1.1408 +                    
  1.1409 +                    if (varying->array)
  1.1410 +                    {
  1.1411 +                        vertexHLSL += "[" + str(i) + "]";
  1.1412 +                    }
  1.1413 +
  1.1414 +                    if (rows > 1)
  1.1415 +                    {
  1.1416 +                        vertexHLSL += "[" + str(j) + "]";
  1.1417 +                    }
  1.1418 +                    
  1.1419 +                    vertexHLSL += ";\n";
  1.1420 +                }
  1.1421 +            }
  1.1422 +        }
  1.1423 +    }
  1.1424 +
  1.1425 +    vertexHLSL += "\n"
  1.1426 +                  "    return output;\n"
  1.1427 +                  "}\n";
  1.1428 +
  1.1429 +    pixelHLSL += "struct PS_INPUT\n"
  1.1430 +                 "{\n";
  1.1431 +    
  1.1432 +    for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
  1.1433 +    {
  1.1434 +        if (varying->reg >= 0)
  1.1435 +        {
  1.1436 +            for (int i = 0; i < varying->size; i++)
  1.1437 +            {
  1.1438 +                int rows = VariableRowCount(varying->type);
  1.1439 +                for (int j = 0; j < rows; j++)
  1.1440 +                {
  1.1441 +                    std::string n = str(varying->reg + i * rows + j);
  1.1442 +                    pixelHLSL += "    float" + str(VariableColumnCount(varying->type)) + " v" + n + " : " + varyingSemantic + n + ";\n";
  1.1443 +                }
  1.1444 +            }
  1.1445 +        }
  1.1446 +        else UNREACHABLE();
  1.1447 +    }
  1.1448 +
  1.1449 +    if (fragmentShader->mUsesFragCoord)
  1.1450 +    {
  1.1451 +        pixelHLSL += "    float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
  1.1452 +    }
  1.1453 +        
  1.1454 +    if (fragmentShader->mUsesPointCoord && shaderModel >= 3)
  1.1455 +    {
  1.1456 +        pixelHLSL += "    float2 gl_PointCoord : " + pointCoordSemantic + ";\n";
  1.1457 +    }
  1.1458 +
  1.1459 +    // Must consume the PSIZE element if the geometry shader is not active
  1.1460 +    // We won't know if we use a GS until we draw
  1.1461 +    if (vertexShader->mUsesPointSize && shaderModel >= 4)
  1.1462 +    {
  1.1463 +        pixelHLSL += "    float gl_PointSize : PSIZE;\n";
  1.1464 +    }
  1.1465 +
  1.1466 +    if (fragmentShader->mUsesFragCoord)
  1.1467 +    {
  1.1468 +        if (shaderModel >= 4)
  1.1469 +        {
  1.1470 +            pixelHLSL += "    float4 dx_VPos : SV_Position;\n";
  1.1471 +        }
  1.1472 +        else if (shaderModel >= 3)
  1.1473 +        {
  1.1474 +            pixelHLSL += "    float2 dx_VPos : VPOS;\n";
  1.1475 +        }
  1.1476 +    }
  1.1477 +
  1.1478 +    pixelHLSL += "};\n"
  1.1479 +                 "\n"
  1.1480 +                 "struct PS_OUTPUT\n"
  1.1481 +                 "{\n";
  1.1482 +
  1.1483 +    for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++)
  1.1484 +    {
  1.1485 +        pixelHLSL += "    float4 gl_Color" + str(renderTargetIndex) + " : " + targetSemantic + str(renderTargetIndex) + ";\n";
  1.1486 +    }
  1.1487 +
  1.1488 +    if (fragmentShader->mUsesFragDepth)
  1.1489 +    {
  1.1490 +        pixelHLSL += "    float gl_Depth : " + depthSemantic + ";\n";
  1.1491 +    }
  1.1492 +
  1.1493 +    pixelHLSL += "};\n"
  1.1494 +                 "\n";
  1.1495 +
  1.1496 +    if (fragmentShader->mUsesFrontFacing)
  1.1497 +    {
  1.1498 +        if (shaderModel >= 4)
  1.1499 +        {
  1.1500 +            pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n"
  1.1501 +                         "{\n";
  1.1502 +        }
  1.1503 +        else
  1.1504 +        {
  1.1505 +            pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n"
  1.1506 +                         "{\n";
  1.1507 +        }
  1.1508 +    }
  1.1509 +    else
  1.1510 +    {
  1.1511 +        pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n"
  1.1512 +                     "{\n";
  1.1513 +    }
  1.1514 +
  1.1515 +    if (fragmentShader->mUsesFragCoord)
  1.1516 +    {
  1.1517 +        pixelHLSL += "    float rhw = 1.0 / input.gl_FragCoord.w;\n";
  1.1518 +        
  1.1519 +        if (shaderModel >= 4)
  1.1520 +        {
  1.1521 +            pixelHLSL += "    gl_FragCoord.x = input.dx_VPos.x;\n"
  1.1522 +                         "    gl_FragCoord.y = input.dx_VPos.y;\n";
  1.1523 +        }
  1.1524 +        else if (shaderModel >= 3)
  1.1525 +        {
  1.1526 +            pixelHLSL += "    gl_FragCoord.x = input.dx_VPos.x + 0.5;\n"
  1.1527 +                         "    gl_FragCoord.y = input.dx_VPos.y + 0.5;\n";
  1.1528 +        }
  1.1529 +        else
  1.1530 +        {
  1.1531 +            // dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport()
  1.1532 +            pixelHLSL += "    gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n"
  1.1533 +                         "    gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n";
  1.1534 +        }
  1.1535 +        
  1.1536 +        pixelHLSL += "    gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n"
  1.1537 +                     "    gl_FragCoord.w = rhw;\n";
  1.1538 +    }
  1.1539 +
  1.1540 +    if (fragmentShader->mUsesPointCoord && shaderModel >= 3)
  1.1541 +    {
  1.1542 +        pixelHLSL += "    gl_PointCoord.x = input.gl_PointCoord.x;\n";
  1.1543 +        pixelHLSL += "    gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n";
  1.1544 +    }
  1.1545 +
  1.1546 +    if (fragmentShader->mUsesFrontFacing)
  1.1547 +    {
  1.1548 +        if (shaderModel <= 3)
  1.1549 +        {
  1.1550 +            pixelHLSL += "    gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n";
  1.1551 +        }
  1.1552 +        else
  1.1553 +        {
  1.1554 +            pixelHLSL += "    gl_FrontFacing = isFrontFace;\n";
  1.1555 +        }
  1.1556 +    }
  1.1557 +
  1.1558 +    for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
  1.1559 +    {
  1.1560 +        if (varying->reg >= 0)
  1.1561 +        {
  1.1562 +            for (int i = 0; i < varying->size; i++)
  1.1563 +            {
  1.1564 +                int rows = VariableRowCount(varying->type);
  1.1565 +                for (int j = 0; j < rows; j++)
  1.1566 +                {
  1.1567 +                    std::string n = str(varying->reg + i * rows + j);
  1.1568 +                    pixelHLSL += "    " + varying->name;
  1.1569 +
  1.1570 +                    if (varying->array)
  1.1571 +                    {
  1.1572 +                        pixelHLSL += "[" + str(i) + "]";
  1.1573 +                    }
  1.1574 +
  1.1575 +                    if (rows > 1)
  1.1576 +                    {
  1.1577 +                        pixelHLSL += "[" + str(j) + "]";
  1.1578 +                    }
  1.1579 +
  1.1580 +                    switch (VariableColumnCount(varying->type))
  1.1581 +                    {
  1.1582 +                      case 1: pixelHLSL += " = input.v" + n + ".x;\n";   break;
  1.1583 +                      case 2: pixelHLSL += " = input.v" + n + ".xy;\n";  break;
  1.1584 +                      case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break;
  1.1585 +                      case 4: pixelHLSL += " = input.v" + n + ";\n";     break;
  1.1586 +                      default: UNREACHABLE();
  1.1587 +                    }
  1.1588 +                }
  1.1589 +            }
  1.1590 +        }
  1.1591 +        else UNREACHABLE();
  1.1592 +    }
  1.1593 +
  1.1594 +    pixelHLSL += "\n"
  1.1595 +                 "    gl_main();\n"
  1.1596 +                 "\n"
  1.1597 +                 "    PS_OUTPUT output;\n";
  1.1598 +
  1.1599 +    for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++)
  1.1600 +    {
  1.1601 +        unsigned int sourceColorIndex = broadcast ? 0 : renderTargetIndex;
  1.1602 +
  1.1603 +        pixelHLSL += "    output.gl_Color" + str(renderTargetIndex) + " = gl_Color[" + str(sourceColorIndex) + "];\n";
  1.1604 +    }
  1.1605 +
  1.1606 +    if (fragmentShader->mUsesFragDepth)
  1.1607 +    {
  1.1608 +        pixelHLSL += "    output.gl_Depth = gl_Depth;\n";
  1.1609 +    }
  1.1610 +
  1.1611 +    pixelHLSL += "\n"
  1.1612 +                 "    return output;\n"
  1.1613 +                 "}\n";
  1.1614 +
  1.1615 +    return true;
  1.1616 +}
  1.1617 +
  1.1618 +bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length)
  1.1619 +{
  1.1620 +    BinaryInputStream stream(binary, length);
  1.1621 +
  1.1622 +    int format = 0;
  1.1623 +    stream.read(&format);
  1.1624 +    if (format != GL_PROGRAM_BINARY_ANGLE)
  1.1625 +    {
  1.1626 +        infoLog.append("Invalid program binary format.");
  1.1627 +        return false;
  1.1628 +    }
  1.1629 +
  1.1630 +    int version = 0;
  1.1631 +    stream.read(&version);
  1.1632 +    if (version != VERSION_DWORD)
  1.1633 +    {
  1.1634 +        infoLog.append("Invalid program binary version.");
  1.1635 +        return false;
  1.1636 +    }
  1.1637 +
  1.1638 +    int compileFlags = 0;
  1.1639 +    stream.read(&compileFlags);
  1.1640 +    if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
  1.1641 +    {
  1.1642 +        infoLog.append("Mismatched compilation flags.");
  1.1643 +        return false;
  1.1644 +    }
  1.1645 +
  1.1646 +    for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
  1.1647 +    {
  1.1648 +        stream.read(&mLinkedAttribute[i].type);
  1.1649 +        std::string name;
  1.1650 +        stream.read(&name);
  1.1651 +        mLinkedAttribute[i].name = name;
  1.1652 +        stream.read(&mSemanticIndex[i]);
  1.1653 +    }
  1.1654 +
  1.1655 +    for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
  1.1656 +    {
  1.1657 +        stream.read(&mSamplersPS[i].active);
  1.1658 +        stream.read(&mSamplersPS[i].logicalTextureUnit);
  1.1659 +        
  1.1660 +        int textureType;
  1.1661 +        stream.read(&textureType);
  1.1662 +        mSamplersPS[i].textureType = (TextureType) textureType;
  1.1663 +    }
  1.1664 +
  1.1665 +    for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
  1.1666 +    {
  1.1667 +        stream.read(&mSamplersVS[i].active);
  1.1668 +        stream.read(&mSamplersVS[i].logicalTextureUnit);
  1.1669 +        
  1.1670 +        int textureType;
  1.1671 +        stream.read(&textureType);
  1.1672 +        mSamplersVS[i].textureType = (TextureType) textureType;
  1.1673 +    }
  1.1674 +
  1.1675 +    stream.read(&mUsedVertexSamplerRange);
  1.1676 +    stream.read(&mUsedPixelSamplerRange);
  1.1677 +    stream.read(&mUsesPointSize);
  1.1678 +
  1.1679 +    size_t size;
  1.1680 +    stream.read(&size);
  1.1681 +    if (stream.error())
  1.1682 +    {
  1.1683 +        infoLog.append("Invalid program binary.");
  1.1684 +        return false;
  1.1685 +    }
  1.1686 +
  1.1687 +    mUniforms.resize(size);
  1.1688 +    for (unsigned int i = 0; i < size; ++i)
  1.1689 +    {
  1.1690 +        GLenum type;
  1.1691 +        GLenum precision;
  1.1692 +        std::string name;
  1.1693 +        unsigned int arraySize;
  1.1694 +
  1.1695 +        stream.read(&type);
  1.1696 +        stream.read(&precision);
  1.1697 +        stream.read(&name);
  1.1698 +        stream.read(&arraySize);
  1.1699 +
  1.1700 +        mUniforms[i] = new Uniform(type, precision, name, arraySize);
  1.1701 +        
  1.1702 +        stream.read(&mUniforms[i]->psRegisterIndex);
  1.1703 +        stream.read(&mUniforms[i]->vsRegisterIndex);
  1.1704 +        stream.read(&mUniforms[i]->registerCount);
  1.1705 +    }
  1.1706 +
  1.1707 +    stream.read(&size);
  1.1708 +    if (stream.error())
  1.1709 +    {
  1.1710 +        infoLog.append("Invalid program binary.");
  1.1711 +        return false;
  1.1712 +    }
  1.1713 +
  1.1714 +    mUniformIndex.resize(size);
  1.1715 +    for (unsigned int i = 0; i < size; ++i)
  1.1716 +    {
  1.1717 +        stream.read(&mUniformIndex[i].name);
  1.1718 +        stream.read(&mUniformIndex[i].element);
  1.1719 +        stream.read(&mUniformIndex[i].index);
  1.1720 +    }
  1.1721 +
  1.1722 +    unsigned int pixelShaderSize;
  1.1723 +    stream.read(&pixelShaderSize);
  1.1724 +
  1.1725 +    unsigned int vertexShaderSize;
  1.1726 +    stream.read(&vertexShaderSize);
  1.1727 +
  1.1728 +    unsigned int geometryShaderSize;
  1.1729 +    stream.read(&geometryShaderSize);
  1.1730 +
  1.1731 +    const char *ptr = (const char*) binary + stream.offset();
  1.1732 +
  1.1733 +    const GUID *binaryIdentifier = (const GUID *) ptr;
  1.1734 +    ptr += sizeof(GUID);
  1.1735 +
  1.1736 +    GUID identifier = mRenderer->getAdapterIdentifier();
  1.1737 +    if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0)
  1.1738 +    {
  1.1739 +        infoLog.append("Invalid program binary.");
  1.1740 +        return false;
  1.1741 +    }
  1.1742 +
  1.1743 +    const char *pixelShaderFunction = ptr;
  1.1744 +    ptr += pixelShaderSize;
  1.1745 +
  1.1746 +    const char *vertexShaderFunction = ptr;
  1.1747 +    ptr += vertexShaderSize;
  1.1748 +
  1.1749 +    const char *geometryShaderFunction = geometryShaderSize > 0 ? ptr : NULL;
  1.1750 +    ptr += geometryShaderSize;
  1.1751 +
  1.1752 +    mPixelExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(pixelShaderFunction),
  1.1753 +                                                 pixelShaderSize, rx::SHADER_PIXEL);
  1.1754 +    if (!mPixelExecutable)
  1.1755 +    {
  1.1756 +        infoLog.append("Could not create pixel shader.");
  1.1757 +        return false;
  1.1758 +    }
  1.1759 +
  1.1760 +    mVertexExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(vertexShaderFunction),
  1.1761 +                                                  vertexShaderSize, rx::SHADER_VERTEX);
  1.1762 +    if (!mVertexExecutable)
  1.1763 +    {
  1.1764 +        infoLog.append("Could not create vertex shader.");
  1.1765 +        delete mPixelExecutable;
  1.1766 +        mPixelExecutable = NULL;
  1.1767 +        return false;
  1.1768 +    }
  1.1769 +
  1.1770 +    if (geometryShaderFunction != NULL && geometryShaderSize > 0)
  1.1771 +    {
  1.1772 +        mGeometryExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(geometryShaderFunction),
  1.1773 +                                                        geometryShaderSize, rx::SHADER_GEOMETRY);
  1.1774 +        if (!mGeometryExecutable)
  1.1775 +        {
  1.1776 +            infoLog.append("Could not create geometry shader.");
  1.1777 +            delete mPixelExecutable;
  1.1778 +            mPixelExecutable = NULL;
  1.1779 +            delete mVertexExecutable;
  1.1780 +            mVertexExecutable = NULL;
  1.1781 +            return false;
  1.1782 +        }
  1.1783 +    }
  1.1784 +    else
  1.1785 +    {
  1.1786 +        mGeometryExecutable = NULL;
  1.1787 +    }
  1.1788 +
  1.1789 +    return true;
  1.1790 +}
  1.1791 +
  1.1792 +bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length)
  1.1793 +{
  1.1794 +    BinaryOutputStream stream;
  1.1795 +
  1.1796 +    stream.write(GL_PROGRAM_BINARY_ANGLE);
  1.1797 +    stream.write(VERSION_DWORD);
  1.1798 +    stream.write(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
  1.1799 +
  1.1800 +    for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
  1.1801 +    {
  1.1802 +        stream.write(mLinkedAttribute[i].type);
  1.1803 +        stream.write(mLinkedAttribute[i].name);
  1.1804 +        stream.write(mSemanticIndex[i]);
  1.1805 +    }
  1.1806 +
  1.1807 +    for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
  1.1808 +    {
  1.1809 +        stream.write(mSamplersPS[i].active);
  1.1810 +        stream.write(mSamplersPS[i].logicalTextureUnit);
  1.1811 +        stream.write((int) mSamplersPS[i].textureType);
  1.1812 +    }
  1.1813 +
  1.1814 +    for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
  1.1815 +    {
  1.1816 +        stream.write(mSamplersVS[i].active);
  1.1817 +        stream.write(mSamplersVS[i].logicalTextureUnit);
  1.1818 +        stream.write((int) mSamplersVS[i].textureType);
  1.1819 +    }
  1.1820 +
  1.1821 +    stream.write(mUsedVertexSamplerRange);
  1.1822 +    stream.write(mUsedPixelSamplerRange);
  1.1823 +    stream.write(mUsesPointSize);
  1.1824 +
  1.1825 +    stream.write(mUniforms.size());
  1.1826 +    for (unsigned int i = 0; i < mUniforms.size(); ++i)
  1.1827 +    {
  1.1828 +        stream.write(mUniforms[i]->type);
  1.1829 +        stream.write(mUniforms[i]->precision);
  1.1830 +        stream.write(mUniforms[i]->name);
  1.1831 +        stream.write(mUniforms[i]->arraySize);
  1.1832 +
  1.1833 +        stream.write(mUniforms[i]->psRegisterIndex);
  1.1834 +        stream.write(mUniforms[i]->vsRegisterIndex);
  1.1835 +        stream.write(mUniforms[i]->registerCount);
  1.1836 +    }
  1.1837 +
  1.1838 +    stream.write(mUniformIndex.size());
  1.1839 +    for (unsigned int i = 0; i < mUniformIndex.size(); ++i)
  1.1840 +    {
  1.1841 +        stream.write(mUniformIndex[i].name);
  1.1842 +        stream.write(mUniformIndex[i].element);
  1.1843 +        stream.write(mUniformIndex[i].index);
  1.1844 +    }
  1.1845 +
  1.1846 +    UINT pixelShaderSize = mPixelExecutable->getLength();
  1.1847 +    stream.write(pixelShaderSize);
  1.1848 +
  1.1849 +    UINT vertexShaderSize = mVertexExecutable->getLength();
  1.1850 +    stream.write(vertexShaderSize);
  1.1851 +
  1.1852 +    UINT geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0;
  1.1853 +    stream.write(geometryShaderSize);
  1.1854 +
  1.1855 +    GUID identifier = mRenderer->getAdapterIdentifier();
  1.1856 +
  1.1857 +    GLsizei streamLength = stream.length();
  1.1858 +    const void *streamData = stream.data();
  1.1859 +
  1.1860 +    GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize + geometryShaderSize;
  1.1861 +    if (totalLength > bufSize)
  1.1862 +    {
  1.1863 +        if (length)
  1.1864 +        {
  1.1865 +            *length = 0;
  1.1866 +        }
  1.1867 +
  1.1868 +        return false;
  1.1869 +    }
  1.1870 +
  1.1871 +    if (binary)
  1.1872 +    {
  1.1873 +        char *ptr = (char*) binary;
  1.1874 +
  1.1875 +        memcpy(ptr, streamData, streamLength);
  1.1876 +        ptr += streamLength;
  1.1877 +
  1.1878 +        memcpy(ptr, &identifier, sizeof(GUID));
  1.1879 +        ptr += sizeof(GUID);
  1.1880 +
  1.1881 +        memcpy(ptr, mPixelExecutable->getFunction(), pixelShaderSize);
  1.1882 +        ptr += pixelShaderSize;
  1.1883 +
  1.1884 +        memcpy(ptr, mVertexExecutable->getFunction(), vertexShaderSize);
  1.1885 +        ptr += vertexShaderSize;
  1.1886 +
  1.1887 +        if (mGeometryExecutable != NULL && geometryShaderSize > 0)
  1.1888 +        {
  1.1889 +            memcpy(ptr, mGeometryExecutable->getFunction(), geometryShaderSize);
  1.1890 +            ptr += geometryShaderSize;
  1.1891 +        }
  1.1892 +
  1.1893 +        ASSERT(ptr - totalLength == binary);
  1.1894 +    }
  1.1895 +
  1.1896 +    if (length)
  1.1897 +    {
  1.1898 +        *length = totalLength;
  1.1899 +    }
  1.1900 +
  1.1901 +    return true;
  1.1902 +}
  1.1903 +
  1.1904 +GLint ProgramBinary::getLength()
  1.1905 +{
  1.1906 +    GLint length;
  1.1907 +    if (save(NULL, INT_MAX, &length))
  1.1908 +    {
  1.1909 +        return length;
  1.1910 +    }
  1.1911 +    else
  1.1912 +    {
  1.1913 +        return 0;
  1.1914 +    }
  1.1915 +}
  1.1916 +
  1.1917 +bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
  1.1918 +{
  1.1919 +    if (!fragmentShader || !fragmentShader->isCompiled())
  1.1920 +    {
  1.1921 +        return false;
  1.1922 +    }
  1.1923 +
  1.1924 +    if (!vertexShader || !vertexShader->isCompiled())
  1.1925 +    {
  1.1926 +        return false;
  1.1927 +    }
  1.1928 +
  1.1929 +    std::string pixelHLSL = fragmentShader->getHLSL();
  1.1930 +    std::string vertexHLSL = vertexShader->getHLSL();
  1.1931 +
  1.1932 +    // Map the varyings to the register file
  1.1933 +    const Varying *packing[IMPLEMENTATION_MAX_VARYING_VECTORS][4] = {NULL};
  1.1934 +    int registers = packVaryings(infoLog, packing, fragmentShader);
  1.1935 +
  1.1936 +    if (registers < 0)
  1.1937 +    {
  1.1938 +        return false;
  1.1939 +    }
  1.1940 +
  1.1941 +    if (!linkVaryings(infoLog, registers, packing, pixelHLSL, vertexHLSL, fragmentShader, vertexShader))
  1.1942 +    {
  1.1943 +        return false;
  1.1944 +    }
  1.1945 +
  1.1946 +    bool success = true;
  1.1947 +
  1.1948 +    if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader))
  1.1949 +    {
  1.1950 +        success = false;
  1.1951 +    }
  1.1952 +
  1.1953 +    if (!linkUniforms(infoLog, vertexShader->getUniforms(), fragmentShader->getUniforms()))
  1.1954 +    {
  1.1955 +        success = false;
  1.1956 +    }
  1.1957 +
  1.1958 +    // special case for gl_DepthRange, the only built-in uniform (also a struct)
  1.1959 +    if (vertexShader->mUsesDepthRange || fragmentShader->mUsesDepthRange)
  1.1960 +    {
  1.1961 +        mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0));
  1.1962 +        mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0));
  1.1963 +        mUniforms.push_back(new Uniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0));
  1.1964 +    }
  1.1965 +
  1.1966 +    if (success)
  1.1967 +    {
  1.1968 +        mVertexExecutable = mRenderer->compileToExecutable(infoLog, vertexHLSL.c_str(), rx::SHADER_VERTEX);
  1.1969 +        mPixelExecutable = mRenderer->compileToExecutable(infoLog, pixelHLSL.c_str(), rx::SHADER_PIXEL);
  1.1970 +
  1.1971 +        if (usesGeometryShader())
  1.1972 +        {
  1.1973 +            std::string geometryHLSL = generateGeometryShaderHLSL(registers, packing, fragmentShader, vertexShader);
  1.1974 +            mGeometryExecutable = mRenderer->compileToExecutable(infoLog, geometryHLSL.c_str(), rx::SHADER_GEOMETRY);
  1.1975 +        }
  1.1976 +
  1.1977 +        if (!mVertexExecutable || !mPixelExecutable || (usesGeometryShader() && !mGeometryExecutable))
  1.1978 +        {
  1.1979 +            infoLog.append("Failed to create D3D shaders.");
  1.1980 +            success = false;
  1.1981 +
  1.1982 +            delete mVertexExecutable;
  1.1983 +            mVertexExecutable = NULL;
  1.1984 +            delete mPixelExecutable;
  1.1985 +            mPixelExecutable = NULL;
  1.1986 +            delete mGeometryExecutable;
  1.1987 +            mGeometryExecutable = NULL;
  1.1988 +        }
  1.1989 +    }
  1.1990 +
  1.1991 +    return success;
  1.1992 +}
  1.1993 +
  1.1994 +// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
  1.1995 +bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
  1.1996 +{
  1.1997 +    unsigned int usedLocations = 0;
  1.1998 +
  1.1999 +    // Link attributes that have a binding location
  1.2000 +    for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
  1.2001 +    {
  1.2002 +        int location = attributeBindings.getAttributeBinding(attribute->name);
  1.2003 +
  1.2004 +        if (location != -1)   // Set by glBindAttribLocation
  1.2005 +        {
  1.2006 +            if (!mLinkedAttribute[location].name.empty())
  1.2007 +            {
  1.2008 +                // Multiple active attributes bound to the same location; not an error
  1.2009 +            }
  1.2010 +
  1.2011 +            mLinkedAttribute[location] = *attribute;
  1.2012 +
  1.2013 +            int rows = VariableRowCount(attribute->type);
  1.2014 +
  1.2015 +            if (rows + location > MAX_VERTEX_ATTRIBS)
  1.2016 +            {
  1.2017 +                infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
  1.2018 +
  1.2019 +                return false;
  1.2020 +            }
  1.2021 +
  1.2022 +            for (int i = 0; i < rows; i++)
  1.2023 +            {
  1.2024 +                usedLocations |= 1 << (location + i);
  1.2025 +            }
  1.2026 +        }
  1.2027 +    }
  1.2028 +
  1.2029 +    // Link attributes that don't have a binding location
  1.2030 +    for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
  1.2031 +    {
  1.2032 +        int location = attributeBindings.getAttributeBinding(attribute->name);
  1.2033 +
  1.2034 +        if (location == -1)   // Not set by glBindAttribLocation
  1.2035 +        {
  1.2036 +            int rows = VariableRowCount(attribute->type);
  1.2037 +            int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
  1.2038 +
  1.2039 +            if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
  1.2040 +            {
  1.2041 +                infoLog.append("Too many active attributes (%s)", attribute->name.c_str());
  1.2042 +
  1.2043 +                return false;   // Fail to link
  1.2044 +            }
  1.2045 +
  1.2046 +            mLinkedAttribute[availableIndex] = *attribute;
  1.2047 +        }
  1.2048 +    }
  1.2049 +
  1.2050 +    for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
  1.2051 +    {
  1.2052 +        int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
  1.2053 +        int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1);
  1.2054 +
  1.2055 +        for (int r = 0; r < rows; r++)
  1.2056 +        {
  1.2057 +            mSemanticIndex[attributeIndex++] = index++;
  1.2058 +        }
  1.2059 +    }
  1.2060 +
  1.2061 +    return true;
  1.2062 +}
  1.2063 +
  1.2064 +bool ProgramBinary::linkUniforms(InfoLog &infoLog, const sh::ActiveUniforms &vertexUniforms, const sh::ActiveUniforms &fragmentUniforms)
  1.2065 +{
  1.2066 +    for (sh::ActiveUniforms::const_iterator uniform = vertexUniforms.begin(); uniform != vertexUniforms.end(); uniform++)
  1.2067 +    {
  1.2068 +        if (!defineUniform(GL_VERTEX_SHADER, *uniform, infoLog))
  1.2069 +        {
  1.2070 +            return false;
  1.2071 +        }
  1.2072 +    }
  1.2073 +
  1.2074 +    for (sh::ActiveUniforms::const_iterator uniform = fragmentUniforms.begin(); uniform != fragmentUniforms.end(); uniform++)
  1.2075 +    {
  1.2076 +        if (!defineUniform(GL_FRAGMENT_SHADER, *uniform, infoLog))
  1.2077 +        {
  1.2078 +            return false;
  1.2079 +        }
  1.2080 +    }
  1.2081 +
  1.2082 +    return true;
  1.2083 +}
  1.2084 +
  1.2085 +bool ProgramBinary::defineUniform(GLenum shader, const sh::Uniform &constant, InfoLog &infoLog)
  1.2086 +{
  1.2087 +    if (constant.type == GL_SAMPLER_2D ||
  1.2088 +        constant.type == GL_SAMPLER_CUBE)
  1.2089 +    {
  1.2090 +        unsigned int samplerIndex = constant.registerIndex;
  1.2091 +            
  1.2092 +        do
  1.2093 +        {
  1.2094 +            if (shader == GL_VERTEX_SHADER)
  1.2095 +            {
  1.2096 +                if (samplerIndex < mRenderer->getMaxVertexTextureImageUnits())
  1.2097 +                {
  1.2098 +                    mSamplersVS[samplerIndex].active = true;
  1.2099 +                    mSamplersVS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
  1.2100 +                    mSamplersVS[samplerIndex].logicalTextureUnit = 0;
  1.2101 +                    mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange);
  1.2102 +                }
  1.2103 +                else
  1.2104 +                {
  1.2105 +                    infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).", mRenderer->getMaxVertexTextureImageUnits());
  1.2106 +                    return false;
  1.2107 +                }
  1.2108 +            }
  1.2109 +            else if (shader == GL_FRAGMENT_SHADER)
  1.2110 +            {
  1.2111 +                if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
  1.2112 +                {
  1.2113 +                    mSamplersPS[samplerIndex].active = true;
  1.2114 +                    mSamplersPS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
  1.2115 +                    mSamplersPS[samplerIndex].logicalTextureUnit = 0;
  1.2116 +                    mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange);
  1.2117 +                }
  1.2118 +                else
  1.2119 +                {
  1.2120 +                    infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
  1.2121 +                    return false;
  1.2122 +                }
  1.2123 +            }
  1.2124 +            else UNREACHABLE();
  1.2125 +
  1.2126 +            samplerIndex++;
  1.2127 +        }
  1.2128 +        while (samplerIndex < constant.registerIndex + constant.arraySize);
  1.2129 +    }
  1.2130 +
  1.2131 +    Uniform *uniform = NULL;
  1.2132 +    GLint location = getUniformLocation(constant.name);
  1.2133 +
  1.2134 +    if (location >= 0)   // Previously defined, type and precision must match
  1.2135 +    {
  1.2136 +        uniform = mUniforms[mUniformIndex[location].index];
  1.2137 +
  1.2138 +        if (uniform->type != constant.type)
  1.2139 +        {
  1.2140 +            infoLog.append("Types for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
  1.2141 +            return false;
  1.2142 +        }
  1.2143 +
  1.2144 +        if (uniform->precision != constant.precision)
  1.2145 +        {
  1.2146 +            infoLog.append("Precisions for uniform %s do not match between the vertex and fragment shader", uniform->name.c_str());
  1.2147 +            return false;
  1.2148 +        }
  1.2149 +    }
  1.2150 +    else
  1.2151 +    {
  1.2152 +        uniform = new Uniform(constant.type, constant.precision, constant.name, constant.arraySize);
  1.2153 +    }
  1.2154 +
  1.2155 +    if (!uniform)
  1.2156 +    {
  1.2157 +        return false;
  1.2158 +    }
  1.2159 +
  1.2160 +    if (shader == GL_FRAGMENT_SHADER)
  1.2161 +    {
  1.2162 +        uniform->psRegisterIndex = constant.registerIndex;
  1.2163 +    }
  1.2164 +    else if (shader == GL_VERTEX_SHADER)
  1.2165 +    {
  1.2166 +        uniform->vsRegisterIndex = constant.registerIndex;
  1.2167 +    }
  1.2168 +    else UNREACHABLE();
  1.2169 +
  1.2170 +    if (location >= 0)
  1.2171 +    {
  1.2172 +        return uniform->type == constant.type;
  1.2173 +    }
  1.2174 +
  1.2175 +    mUniforms.push_back(uniform);
  1.2176 +    unsigned int uniformIndex = mUniforms.size() - 1;
  1.2177 +
  1.2178 +    for (unsigned int i = 0; i < uniform->elementCount(); i++)
  1.2179 +    {
  1.2180 +        mUniformIndex.push_back(UniformLocation(constant.name, i, uniformIndex));
  1.2181 +    }
  1.2182 +
  1.2183 +    if (shader == GL_VERTEX_SHADER)
  1.2184 +    {
  1.2185 +        if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedVertexUniformVectors() + mRenderer->getMaxVertexUniformVectors())
  1.2186 +        {
  1.2187 +            infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)", mRenderer->getMaxVertexUniformVectors());
  1.2188 +            return false;
  1.2189 +        }
  1.2190 +    }
  1.2191 +    else if (shader == GL_FRAGMENT_SHADER)
  1.2192 +    {
  1.2193 +        if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedFragmentUniformVectors() + mRenderer->getMaxFragmentUniformVectors())
  1.2194 +        {
  1.2195 +            infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)", mRenderer->getMaxFragmentUniformVectors());
  1.2196 +            return false;
  1.2197 +        }
  1.2198 +    }
  1.2199 +    else UNREACHABLE();
  1.2200 +
  1.2201 +    return true;
  1.2202 +}
  1.2203 +
  1.2204 +std::string ProgramBinary::generateGeometryShaderHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const
  1.2205 +{
  1.2206 +    // for now we only handle point sprite emulation
  1.2207 +    ASSERT(usesPointSpriteEmulation());
  1.2208 +    return generatePointSpriteHLSL(registers, packing, fragmentShader, vertexShader);
  1.2209 +}
  1.2210 +
  1.2211 +std::string ProgramBinary::generatePointSpriteHLSL(int registers, const Varying *packing[][4], FragmentShader *fragmentShader, VertexShader *vertexShader) const
  1.2212 +{
  1.2213 +    ASSERT(registers >= 0);
  1.2214 +    ASSERT(vertexShader->mUsesPointSize);
  1.2215 +    ASSERT(mRenderer->getMajorShaderModel() >= 4);
  1.2216 +
  1.2217 +    std::string geomHLSL;
  1.2218 +
  1.2219 +    std::string varyingSemantic = "TEXCOORD";
  1.2220 +
  1.2221 +    std::string fragCoordSemantic;
  1.2222 +    std::string pointCoordSemantic;
  1.2223 +
  1.2224 +    int reservedRegisterIndex = registers;
  1.2225 +
  1.2226 +    if (fragmentShader->mUsesFragCoord)
  1.2227 +    {
  1.2228 +        fragCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
  1.2229 +    }
  1.2230 +
  1.2231 +    if (fragmentShader->mUsesPointCoord)
  1.2232 +    {
  1.2233 +        pointCoordSemantic = varyingSemantic + str(reservedRegisterIndex++);
  1.2234 +    }
  1.2235 +
  1.2236 +    geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n"
  1.2237 +                "\n"
  1.2238 +                "struct GS_INPUT\n"
  1.2239 +                "{\n";
  1.2240 +
  1.2241 +    for (int r = 0; r < registers; r++)
  1.2242 +    {
  1.2243 +        int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
  1.2244 +
  1.2245 +        geomHLSL += "    float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
  1.2246 +    }
  1.2247 +
  1.2248 +    if (fragmentShader->mUsesFragCoord)
  1.2249 +    {
  1.2250 +        geomHLSL += "    float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
  1.2251 +    }
  1.2252 +
  1.2253 +    geomHLSL += "    float gl_PointSize : PSIZE;\n"
  1.2254 +                "    float4 gl_Position : SV_Position;\n"
  1.2255 +                "};\n"
  1.2256 +                "\n"
  1.2257 +                "struct GS_OUTPUT\n"
  1.2258 +                "{\n";
  1.2259 +
  1.2260 +    for (int r = 0; r < registers; r++)
  1.2261 +    {
  1.2262 +        int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
  1.2263 +
  1.2264 +        geomHLSL += "    float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
  1.2265 +    }
  1.2266 +
  1.2267 +    if (fragmentShader->mUsesFragCoord)
  1.2268 +    {
  1.2269 +        geomHLSL += "    float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
  1.2270 +    }
  1.2271 +
  1.2272 +    if (fragmentShader->mUsesPointCoord)
  1.2273 +    {
  1.2274 +        geomHLSL += "    float2 gl_PointCoord : " + pointCoordSemantic + ";\n";
  1.2275 +    }
  1.2276 +
  1.2277 +    geomHLSL +=   "    float gl_PointSize : PSIZE;\n"
  1.2278 +                  "    float4 gl_Position : SV_Position;\n"
  1.2279 +                  "};\n"
  1.2280 +                  "\n"
  1.2281 +                  "static float2 pointSpriteCorners[] = \n"
  1.2282 +                  "{\n"
  1.2283 +                  "    float2( 0.5f, -0.5f),\n"
  1.2284 +                  "    float2( 0.5f,  0.5f),\n"
  1.2285 +                  "    float2(-0.5f, -0.5f),\n"
  1.2286 +                  "    float2(-0.5f,  0.5f)\n"
  1.2287 +                  "};\n"
  1.2288 +                  "\n"
  1.2289 +                  "static float2 pointSpriteTexcoords[] = \n"
  1.2290 +                  "{\n"
  1.2291 +                  "    float2(1.0f, 1.0f),\n"
  1.2292 +                  "    float2(1.0f, 0.0f),\n"
  1.2293 +                  "    float2(0.0f, 1.0f),\n"
  1.2294 +                  "    float2(0.0f, 0.0f)\n"
  1.2295 +                  "};\n"
  1.2296 +                  "\n"
  1.2297 +                  "static float minPointSize = " + str(ALIASED_POINT_SIZE_RANGE_MIN) + ".0f;\n"
  1.2298 +                  "static float maxPointSize = " + str(mRenderer->getMaxPointSize()) + ".0f;\n"
  1.2299 +                  "\n"
  1.2300 +                  "[maxvertexcount(4)]\n"
  1.2301 +                  "void main(point GS_INPUT input[1], inout TriangleStream<GS_OUTPUT> outStream)\n"
  1.2302 +                  "{\n"
  1.2303 +                  "    GS_OUTPUT output = (GS_OUTPUT)0;\n"
  1.2304 +                  "    output.gl_PointSize = input[0].gl_PointSize;\n";
  1.2305 +
  1.2306 +    for (int r = 0; r < registers; r++)
  1.2307 +    {
  1.2308 +        geomHLSL += "    output.v" + str(r) + " = input[0].v" + str(r) + ";\n";
  1.2309 +    }
  1.2310 +
  1.2311 +    if (fragmentShader->mUsesFragCoord)
  1.2312 +    {
  1.2313 +        geomHLSL += "    output.gl_FragCoord = input[0].gl_FragCoord;\n";
  1.2314 +    }
  1.2315 +
  1.2316 +    geomHLSL += "    \n"
  1.2317 +                "    float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n"
  1.2318 +                "    float4 gl_Position = input[0].gl_Position;\n"
  1.2319 +                "    float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * gl_Position.w;\n";
  1.2320 +
  1.2321 +    for (int corner = 0; corner < 4; corner++)
  1.2322 +    {
  1.2323 +        geomHLSL += "    \n"
  1.2324 +                    "    output.gl_Position = gl_Position + float4(pointSpriteCorners[" + str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n";
  1.2325 +
  1.2326 +        if (fragmentShader->mUsesPointCoord)
  1.2327 +        {
  1.2328 +            geomHLSL += "    output.gl_PointCoord = pointSpriteTexcoords[" + str(corner) + "];\n";
  1.2329 +        }
  1.2330 +
  1.2331 +        geomHLSL += "    outStream.Append(output);\n";
  1.2332 +    }
  1.2333 +
  1.2334 +    geomHLSL += "    \n"
  1.2335 +                "    outStream.RestartStrip();\n"
  1.2336 +                "}\n";
  1.2337 +
  1.2338 +    return geomHLSL;
  1.2339 +}
  1.2340 +
  1.2341 +// This method needs to match OutputHLSL::decorate
  1.2342 +std::string ProgramBinary::decorateAttribute(const std::string &name)
  1.2343 +{
  1.2344 +    if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0)
  1.2345 +    {
  1.2346 +        return "_" + name;
  1.2347 +    }
  1.2348 +    
  1.2349 +    return name;
  1.2350 +}
  1.2351 +
  1.2352 +bool ProgramBinary::isValidated() const 
  1.2353 +{
  1.2354 +    return mValidated;
  1.2355 +}
  1.2356 +
  1.2357 +void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
  1.2358 +{
  1.2359 +    // Skip over inactive attributes
  1.2360 +    unsigned int activeAttribute = 0;
  1.2361 +    unsigned int attribute;
  1.2362 +    for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
  1.2363 +    {
  1.2364 +        if (mLinkedAttribute[attribute].name.empty())
  1.2365 +        {
  1.2366 +            continue;
  1.2367 +        }
  1.2368 +
  1.2369 +        if (activeAttribute == index)
  1.2370 +        {
  1.2371 +            break;
  1.2372 +        }
  1.2373 +
  1.2374 +        activeAttribute++;
  1.2375 +    }
  1.2376 +
  1.2377 +    if (bufsize > 0)
  1.2378 +    {
  1.2379 +        const char *string = mLinkedAttribute[attribute].name.c_str();
  1.2380 +
  1.2381 +        strncpy(name, string, bufsize);
  1.2382 +        name[bufsize - 1] = '\0';
  1.2383 +
  1.2384 +        if (length)
  1.2385 +        {
  1.2386 +            *length = strlen(name);
  1.2387 +        }
  1.2388 +    }
  1.2389 +
  1.2390 +    *size = 1;   // Always a single 'type' instance
  1.2391 +
  1.2392 +    *type = mLinkedAttribute[attribute].type;
  1.2393 +}
  1.2394 +
  1.2395 +GLint ProgramBinary::getActiveAttributeCount() const
  1.2396 +{
  1.2397 +    int count = 0;
  1.2398 +
  1.2399 +    for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
  1.2400 +    {
  1.2401 +        if (!mLinkedAttribute[attributeIndex].name.empty())
  1.2402 +        {
  1.2403 +            count++;
  1.2404 +        }
  1.2405 +    }
  1.2406 +
  1.2407 +    return count;
  1.2408 +}
  1.2409 +
  1.2410 +GLint ProgramBinary::getActiveAttributeMaxLength() const
  1.2411 +{
  1.2412 +    int maxLength = 0;
  1.2413 +
  1.2414 +    for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
  1.2415 +    {
  1.2416 +        if (!mLinkedAttribute[attributeIndex].name.empty())
  1.2417 +        {
  1.2418 +            maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
  1.2419 +        }
  1.2420 +    }
  1.2421 +
  1.2422 +    return maxLength;
  1.2423 +}
  1.2424 +
  1.2425 +void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
  1.2426 +{
  1.2427 +    ASSERT(index < mUniforms.size());   // index must be smaller than getActiveUniformCount()
  1.2428 +
  1.2429 +    if (bufsize > 0)
  1.2430 +    {
  1.2431 +        std::string string = mUniforms[index]->name;
  1.2432 +
  1.2433 +        if (mUniforms[index]->isArray())
  1.2434 +        {
  1.2435 +            string += "[0]";
  1.2436 +        }
  1.2437 +
  1.2438 +        strncpy(name, string.c_str(), bufsize);
  1.2439 +        name[bufsize - 1] = '\0';
  1.2440 +
  1.2441 +        if (length)
  1.2442 +        {
  1.2443 +            *length = strlen(name);
  1.2444 +        }
  1.2445 +    }
  1.2446 +
  1.2447 +    *size = mUniforms[index]->elementCount();
  1.2448 +
  1.2449 +    *type = mUniforms[index]->type;
  1.2450 +}
  1.2451 +
  1.2452 +GLint ProgramBinary::getActiveUniformCount() const
  1.2453 +{
  1.2454 +    return mUniforms.size();
  1.2455 +}
  1.2456 +
  1.2457 +GLint ProgramBinary::getActiveUniformMaxLength() const
  1.2458 +{
  1.2459 +    int maxLength = 0;
  1.2460 +
  1.2461 +    unsigned int numUniforms = mUniforms.size();
  1.2462 +    for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
  1.2463 +    {
  1.2464 +        if (!mUniforms[uniformIndex]->name.empty())
  1.2465 +        {
  1.2466 +            int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
  1.2467 +            if (mUniforms[uniformIndex]->isArray())
  1.2468 +            {
  1.2469 +                length += 3;  // Counting in "[0]".
  1.2470 +            }
  1.2471 +            maxLength = std::max(length, maxLength);
  1.2472 +        }
  1.2473 +    }
  1.2474 +
  1.2475 +    return maxLength;
  1.2476 +}
  1.2477 +
  1.2478 +void ProgramBinary::validate(InfoLog &infoLog)
  1.2479 +{
  1.2480 +    applyUniforms();
  1.2481 +    if (!validateSamplers(&infoLog))
  1.2482 +    {
  1.2483 +        mValidated = false;
  1.2484 +    }
  1.2485 +    else
  1.2486 +    {
  1.2487 +        mValidated = true;
  1.2488 +    }
  1.2489 +}
  1.2490 +
  1.2491 +bool ProgramBinary::validateSamplers(InfoLog *infoLog)
  1.2492 +{
  1.2493 +    // if any two active samplers in a program are of different types, but refer to the same
  1.2494 +    // texture image unit, and this is the current program, then ValidateProgram will fail, and
  1.2495 +    // DrawArrays and DrawElements will issue the INVALID_OPERATION error.
  1.2496 +
  1.2497 +    const unsigned int maxCombinedTextureImageUnits = mRenderer->getMaxCombinedTextureImageUnits();
  1.2498 +    TextureType textureUnitType[IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS];
  1.2499 +
  1.2500 +    for (unsigned int i = 0; i < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i)
  1.2501 +    {
  1.2502 +        textureUnitType[i] = TEXTURE_UNKNOWN;
  1.2503 +    }
  1.2504 +
  1.2505 +    for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
  1.2506 +    {
  1.2507 +        if (mSamplersPS[i].active)
  1.2508 +        {
  1.2509 +            unsigned int unit = mSamplersPS[i].logicalTextureUnit;
  1.2510 +            
  1.2511 +            if (unit >= maxCombinedTextureImageUnits)
  1.2512 +            {
  1.2513 +                if (infoLog)
  1.2514 +                {
  1.2515 +                    infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
  1.2516 +                }
  1.2517 +
  1.2518 +                return false;
  1.2519 +            }
  1.2520 +
  1.2521 +            if (textureUnitType[unit] != TEXTURE_UNKNOWN)
  1.2522 +            {
  1.2523 +                if (mSamplersPS[i].textureType != textureUnitType[unit])
  1.2524 +                {
  1.2525 +                    if (infoLog)
  1.2526 +                    {
  1.2527 +                        infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
  1.2528 +                    }
  1.2529 +
  1.2530 +                    return false;
  1.2531 +                }
  1.2532 +            }
  1.2533 +            else
  1.2534 +            {
  1.2535 +                textureUnitType[unit] = mSamplersPS[i].textureType;
  1.2536 +            }
  1.2537 +        }
  1.2538 +    }
  1.2539 +
  1.2540 +    for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
  1.2541 +    {
  1.2542 +        if (mSamplersVS[i].active)
  1.2543 +        {
  1.2544 +            unsigned int unit = mSamplersVS[i].logicalTextureUnit;
  1.2545 +            
  1.2546 +            if (unit >= maxCombinedTextureImageUnits)
  1.2547 +            {
  1.2548 +                if (infoLog)
  1.2549 +                {
  1.2550 +                    infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
  1.2551 +                }
  1.2552 +
  1.2553 +                return false;
  1.2554 +            }
  1.2555 +
  1.2556 +            if (textureUnitType[unit] != TEXTURE_UNKNOWN)
  1.2557 +            {
  1.2558 +                if (mSamplersVS[i].textureType != textureUnitType[unit])
  1.2559 +                {
  1.2560 +                    if (infoLog)
  1.2561 +                    {
  1.2562 +                        infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
  1.2563 +                    }
  1.2564 +
  1.2565 +                    return false;
  1.2566 +                }
  1.2567 +            }
  1.2568 +            else
  1.2569 +            {
  1.2570 +                textureUnitType[unit] = mSamplersVS[i].textureType;
  1.2571 +            }
  1.2572 +        }
  1.2573 +    }
  1.2574 +
  1.2575 +    return true;
  1.2576 +}
  1.2577 +
  1.2578 +ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D)
  1.2579 +{
  1.2580 +}
  1.2581 +
  1.2582 +struct AttributeSorter
  1.2583 +{
  1.2584 +    AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS])
  1.2585 +        : originalIndices(semanticIndices)
  1.2586 +    {
  1.2587 +        for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
  1.2588 +        {
  1.2589 +            indices[i] = i;
  1.2590 +        }
  1.2591 +
  1.2592 +        std::sort(&indices[0], &indices[MAX_VERTEX_ATTRIBS], *this);
  1.2593 +    }
  1.2594 +
  1.2595 +    bool operator()(int a, int b)
  1.2596 +    {
  1.2597 +        return originalIndices[a] == -1 ? false : originalIndices[a] < originalIndices[b];
  1.2598 +    }
  1.2599 +
  1.2600 +    int indices[MAX_VERTEX_ATTRIBS];
  1.2601 +    const int (&originalIndices)[MAX_VERTEX_ATTRIBS];
  1.2602 +};
  1.2603 +
  1.2604 +void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const
  1.2605 +{
  1.2606 +    AttributeSorter sorter(mSemanticIndex);
  1.2607 +
  1.2608 +    int oldIndices[MAX_VERTEX_ATTRIBS];
  1.2609 +    rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS];
  1.2610 +
  1.2611 +    for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
  1.2612 +    {
  1.2613 +        oldIndices[i] = mSemanticIndex[i];
  1.2614 +        oldTranslatedAttributes[i] = attributes[i];
  1.2615 +    }
  1.2616 +
  1.2617 +    for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
  1.2618 +    {
  1.2619 +        int oldIndex = sorter.indices[i];
  1.2620 +        sortedSemanticIndices[i] = oldIndices[oldIndex];
  1.2621 +        attributes[i] = oldTranslatedAttributes[oldIndex];
  1.2622 +    }
  1.2623 +}
  1.2624 +
  1.2625 +}

mercurial