1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/include/core/SkFloatingPoint.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,140 @@ 1.4 + 1.5 +/* 1.6 + * Copyright 2006 The Android Open Source Project 1.7 + * 1.8 + * Use of this source code is governed by a BSD-style license that can be 1.9 + * found in the LICENSE file. 1.10 + */ 1.11 + 1.12 + 1.13 +#ifndef SkFloatingPoint_DEFINED 1.14 +#define SkFloatingPoint_DEFINED 1.15 + 1.16 +#include "SkTypes.h" 1.17 + 1.18 +#include <math.h> 1.19 +#include <float.h> 1.20 +#include "SkFloatBits.h" 1.21 + 1.22 +// C++98 cmath std::pow seems to be the earliest portable way to get float pow. 1.23 +// However, on Linux including cmath undefines isfinite. 1.24 +// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 1.25 +static inline float sk_float_pow(float base, float exp) { 1.26 + return powf(base, exp); 1.27 +} 1.28 + 1.29 +static inline float sk_float_copysign(float x, float y) { 1.30 + int32_t xbits = SkFloat2Bits(x); 1.31 + int32_t ybits = SkFloat2Bits(y); 1.32 + return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000)); 1.33 +} 1.34 + 1.35 +#ifdef SK_BUILD_FOR_WINCE 1.36 + #define sk_float_sqrt(x) (float)::sqrt(x) 1.37 + #define sk_float_sin(x) (float)::sin(x) 1.38 + #define sk_float_cos(x) (float)::cos(x) 1.39 + #define sk_float_tan(x) (float)::tan(x) 1.40 + #define sk_float_acos(x) (float)::acos(x) 1.41 + #define sk_float_asin(x) (float)::asin(x) 1.42 + #define sk_float_atan2(y,x) (float)::atan2(y,x) 1.43 + #define sk_float_abs(x) (float)::fabs(x) 1.44 + #define sk_float_mod(x,y) (float)::fmod(x,y) 1.45 + #define sk_float_exp(x) (float)::exp(x) 1.46 + #define sk_float_log(x) (float)::log(x) 1.47 + #define sk_float_floor(x) (float)::floor(x) 1.48 + #define sk_float_ceil(x) (float)::ceil(x) 1.49 +#else 1.50 + #define sk_float_sqrt(x) sqrtf(x) 1.51 + #define sk_float_sin(x) sinf(x) 1.52 + #define sk_float_cos(x) cosf(x) 1.53 + #define sk_float_tan(x) tanf(x) 1.54 + #define sk_float_floor(x) floorf(x) 1.55 + #define sk_float_ceil(x) ceilf(x) 1.56 +#ifdef SK_BUILD_FOR_MAC 1.57 + #define sk_float_acos(x) static_cast<float>(acos(x)) 1.58 + #define sk_float_asin(x) static_cast<float>(asin(x)) 1.59 +#else 1.60 + #define sk_float_acos(x) acosf(x) 1.61 + #define sk_float_asin(x) asinf(x) 1.62 +#endif 1.63 + #define sk_float_atan2(y,x) atan2f(y,x) 1.64 + #define sk_float_abs(x) fabsf(x) 1.65 + #define sk_float_mod(x,y) fmodf(x,y) 1.66 + #define sk_float_exp(x) expf(x) 1.67 + #define sk_float_log(x) logf(x) 1.68 +#endif 1.69 + 1.70 +#ifdef SK_BUILD_FOR_WIN 1.71 + #define sk_float_isfinite(x) _finite(x) 1.72 + #define sk_float_isnan(x) _isnan(x) 1.73 + static inline int sk_float_isinf(float x) { 1.74 + int32_t bits = SkFloat2Bits(x); 1.75 + return (bits << 1) == (0xFF << 24); 1.76 + } 1.77 +#else 1.78 + #define sk_float_isfinite(x) isfinite(x) 1.79 + #define sk_float_isnan(x) isnan(x) 1.80 + #define sk_float_isinf(x) isinf(x) 1.81 +#endif 1.82 + 1.83 +#define sk_double_isnan(a) sk_float_isnan(a) 1.84 + 1.85 +#ifdef SK_USE_FLOATBITS 1.86 + #define sk_float_floor2int(x) SkFloatToIntFloor(x) 1.87 + #define sk_float_round2int(x) SkFloatToIntRound(x) 1.88 + #define sk_float_ceil2int(x) SkFloatToIntCeil(x) 1.89 +#else 1.90 + #define sk_float_floor2int(x) (int)sk_float_floor(x) 1.91 + #define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f) 1.92 + #define sk_float_ceil2int(x) (int)sk_float_ceil(x) 1.93 +#endif 1.94 + 1.95 +extern const uint32_t gIEEENotANumber; 1.96 +extern const uint32_t gIEEEInfinity; 1.97 +extern const uint32_t gIEEENegativeInfinity; 1.98 + 1.99 +#define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber)) 1.100 +#define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity)) 1.101 +#define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity)) 1.102 + 1.103 +#if defined(__SSE__) 1.104 +#include <xmmintrin.h> 1.105 +#elif defined(__ARM_NEON__) 1.106 +#include <arm_neon.h> 1.107 +#endif 1.108 + 1.109 +// Fast, approximate inverse square root. 1.110 +// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. 1.111 +static inline float sk_float_rsqrt(const float x) { 1.112 +// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got 1.113 +// it at compile time. This is going to be too fast to productively hide behind a function pointer. 1.114 +// 1.115 +// We do one step of Newton's method to refine the estimates in the NEON and null paths. No 1.116 +// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. 1.117 +#if defined(__SSE__) 1.118 + float result; 1.119 + _mm_store_ss(&result, _mm_rsqrt_ss(_mm_set_ss(x))); 1.120 + return result; 1.121 +#elif defined(__ARM_NEON__) 1.122 + // Get initial estimate. 1.123 + const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. 1.124 + float32x2_t estimate = vrsqrte_f32(xx); 1.125 + 1.126 + // One step of Newton's method to refine. 1.127 + const float32x2_t estimate_sq = vmul_f32(estimate, estimate); 1.128 + estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); 1.129 + return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. 1.130 +#else 1.131 + // Get initial estimate. 1.132 + int i = *SkTCast<int*>(&x); 1.133 + i = 0x5f3759df - (i>>1); 1.134 + float estimate = *SkTCast<float*>(&i); 1.135 + 1.136 + // One step of Newton's method to refine. 1.137 + const float estimate_sq = estimate*estimate; 1.138 + estimate *= (1.5f-0.5f*x*estimate_sq); 1.139 + return estimate; 1.140 +#endif 1.141 +} 1.142 + 1.143 +#endif