1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/include/core/SkRect.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,792 @@ 1.4 + 1.5 +/* 1.6 + * Copyright 2006 The Android Open Source Project 1.7 + * 1.8 + * Use of this source code is governed by a BSD-style license that can be 1.9 + * found in the LICENSE file. 1.10 + */ 1.11 + 1.12 + 1.13 +#ifndef SkRect_DEFINED 1.14 +#define SkRect_DEFINED 1.15 + 1.16 +#include "SkPoint.h" 1.17 +#include "SkSize.h" 1.18 + 1.19 +/** \struct SkIRect 1.20 + 1.21 + SkIRect holds four 32 bit integer coordinates for a rectangle 1.22 +*/ 1.23 +struct SK_API SkIRect { 1.24 + int32_t fLeft, fTop, fRight, fBottom; 1.25 + 1.26 + static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() { 1.27 + SkIRect r; 1.28 + r.setEmpty(); 1.29 + return r; 1.30 + } 1.31 + 1.32 + static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() { 1.33 + SkIRect r; 1.34 + r.setLargest(); 1.35 + return r; 1.36 + } 1.37 + 1.38 + static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) { 1.39 + SkIRect r; 1.40 + r.set(0, 0, w, h); 1.41 + return r; 1.42 + } 1.43 + 1.44 + static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) { 1.45 + SkIRect r; 1.46 + r.set(0, 0, size.width(), size.height()); 1.47 + return r; 1.48 + } 1.49 + 1.50 + static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) { 1.51 + SkIRect rect; 1.52 + rect.set(l, t, r, b); 1.53 + return rect; 1.54 + } 1.55 + 1.56 + static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) { 1.57 + SkIRect r; 1.58 + r.set(x, y, x + w, y + h); 1.59 + return r; 1.60 + } 1.61 + 1.62 + int left() const { return fLeft; } 1.63 + int top() const { return fTop; } 1.64 + int right() const { return fRight; } 1.65 + int bottom() const { return fBottom; } 1.66 + 1.67 + /** return the left edge of the rect */ 1.68 + int x() const { return fLeft; } 1.69 + /** return the top edge of the rect */ 1.70 + int y() const { return fTop; } 1.71 + /** 1.72 + * Returns the rectangle's width. This does not check for a valid rect 1.73 + * (i.e. left <= right) so the result may be negative. 1.74 + */ 1.75 + int width() const { return fRight - fLeft; } 1.76 + 1.77 + /** 1.78 + * Returns the rectangle's height. This does not check for a valid rect 1.79 + * (i.e. top <= bottom) so the result may be negative. 1.80 + */ 1.81 + int height() const { return fBottom - fTop; } 1.82 + 1.83 + /** 1.84 + * Since the center of an integer rect may fall on a factional value, this 1.85 + * method is defined to return (right + left) >> 1. 1.86 + * 1.87 + * This is a specific "truncation" of the average, which is different than 1.88 + * (right + left) / 2 when the sum is negative. 1.89 + */ 1.90 + int centerX() const { return (fRight + fLeft) >> 1; } 1.91 + 1.92 + /** 1.93 + * Since the center of an integer rect may fall on a factional value, this 1.94 + * method is defined to return (bottom + top) >> 1 1.95 + * 1.96 + * This is a specific "truncation" of the average, which is different than 1.97 + * (bottom + top) / 2 when the sum is negative. 1.98 + */ 1.99 + int centerY() const { return (fBottom + fTop) >> 1; } 1.100 + 1.101 + /** 1.102 + * Return true if the rectangle's width or height are <= 0 1.103 + */ 1.104 + bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } 1.105 + 1.106 + bool isLargest() const { return SK_MinS32 == fLeft && 1.107 + SK_MinS32 == fTop && 1.108 + SK_MaxS32 == fRight && 1.109 + SK_MaxS32 == fBottom; } 1.110 + 1.111 + friend bool operator==(const SkIRect& a, const SkIRect& b) { 1.112 + return !memcmp(&a, &b, sizeof(a)); 1.113 + } 1.114 + 1.115 + friend bool operator!=(const SkIRect& a, const SkIRect& b) { 1.116 + return !(a == b); 1.117 + } 1.118 + 1.119 + bool is16Bit() const { 1.120 + return SkIsS16(fLeft) && SkIsS16(fTop) && 1.121 + SkIsS16(fRight) && SkIsS16(fBottom); 1.122 + } 1.123 + 1.124 + /** Set the rectangle to (0,0,0,0) 1.125 + */ 1.126 + void setEmpty() { memset(this, 0, sizeof(*this)); } 1.127 + 1.128 + void set(int32_t left, int32_t top, int32_t right, int32_t bottom) { 1.129 + fLeft = left; 1.130 + fTop = top; 1.131 + fRight = right; 1.132 + fBottom = bottom; 1.133 + } 1.134 + // alias for set(l, t, r, b) 1.135 + void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) { 1.136 + this->set(left, top, right, bottom); 1.137 + } 1.138 + 1.139 + void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) { 1.140 + fLeft = x; 1.141 + fTop = y; 1.142 + fRight = x + width; 1.143 + fBottom = y + height; 1.144 + } 1.145 + 1.146 + /** 1.147 + * Make the largest representable rectangle 1.148 + */ 1.149 + void setLargest() { 1.150 + fLeft = fTop = SK_MinS32; 1.151 + fRight = fBottom = SK_MaxS32; 1.152 + } 1.153 + 1.154 + /** 1.155 + * Make the largest representable rectangle, but inverted (e.g. fLeft will 1.156 + * be max 32bit and right will be min 32bit). 1.157 + */ 1.158 + void setLargestInverted() { 1.159 + fLeft = fTop = SK_MaxS32; 1.160 + fRight = fBottom = SK_MinS32; 1.161 + } 1.162 + 1.163 + /** Offset set the rectangle by adding dx to its left and right, 1.164 + and adding dy to its top and bottom. 1.165 + */ 1.166 + void offset(int32_t dx, int32_t dy) { 1.167 + fLeft += dx; 1.168 + fTop += dy; 1.169 + fRight += dx; 1.170 + fBottom += dy; 1.171 + } 1.172 + 1.173 + void offset(const SkIPoint& delta) { 1.174 + this->offset(delta.fX, delta.fY); 1.175 + } 1.176 + 1.177 + /** 1.178 + * Offset this rect such its new x() and y() will equal newX and newY. 1.179 + */ 1.180 + void offsetTo(int32_t newX, int32_t newY) { 1.181 + fRight += newX - fLeft; 1.182 + fBottom += newY - fTop; 1.183 + fLeft = newX; 1.184 + fTop = newY; 1.185 + } 1.186 + 1.187 + /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards, 1.188 + making the rectangle narrower. If dx is negative, then the sides are moved outwards, 1.189 + making the rectangle wider. The same holds true for dy and the top and bottom. 1.190 + */ 1.191 + void inset(int32_t dx, int32_t dy) { 1.192 + fLeft += dx; 1.193 + fTop += dy; 1.194 + fRight -= dx; 1.195 + fBottom -= dy; 1.196 + } 1.197 + 1.198 + /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are 1.199 + moved outwards, making the rectangle wider. If dx is negative, then the 1.200 + sides are moved inwards, making the rectangle narrower. The same holds 1.201 + true for dy and the top and bottom. 1.202 + */ 1.203 + void outset(int32_t dx, int32_t dy) { this->inset(-dx, -dy); } 1.204 + 1.205 + bool quickReject(int l, int t, int r, int b) const { 1.206 + return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b; 1.207 + } 1.208 + 1.209 + /** Returns true if (x,y) is inside the rectangle and the rectangle is not 1.210 + empty. The left and top are considered to be inside, while the right 1.211 + and bottom are not. Thus for the rectangle (0, 0, 5, 10), the 1.212 + points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not. 1.213 + */ 1.214 + bool contains(int32_t x, int32_t y) const { 1.215 + return (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) && 1.216 + (unsigned)(y - fTop) < (unsigned)(fBottom - fTop); 1.217 + } 1.218 + 1.219 + /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle. 1.220 + If either rectangle is empty, contains() returns false. 1.221 + */ 1.222 + bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const { 1.223 + return left < right && top < bottom && !this->isEmpty() && // check for empties 1.224 + fLeft <= left && fTop <= top && 1.225 + fRight >= right && fBottom >= bottom; 1.226 + } 1.227 + 1.228 + /** Returns true if the specified rectangle r is inside or equal to this rectangle. 1.229 + */ 1.230 + bool contains(const SkIRect& r) const { 1.231 + return !r.isEmpty() && !this->isEmpty() && // check for empties 1.232 + fLeft <= r.fLeft && fTop <= r.fTop && 1.233 + fRight >= r.fRight && fBottom >= r.fBottom; 1.234 + } 1.235 + 1.236 + /** Return true if this rectangle contains the specified rectangle. 1.237 + For speed, this method does not check if either this or the specified 1.238 + rectangles are empty, and if either is, its return value is undefined. 1.239 + In the debugging build however, we assert that both this and the 1.240 + specified rectangles are non-empty. 1.241 + */ 1.242 + bool containsNoEmptyCheck(int32_t left, int32_t top, 1.243 + int32_t right, int32_t bottom) const { 1.244 + SkASSERT(fLeft < fRight && fTop < fBottom); 1.245 + SkASSERT(left < right && top < bottom); 1.246 + 1.247 + return fLeft <= left && fTop <= top && 1.248 + fRight >= right && fBottom >= bottom; 1.249 + } 1.250 + 1.251 + bool containsNoEmptyCheck(const SkIRect& r) const { 1.252 + return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom); 1.253 + } 1.254 + 1.255 + /** If r intersects this rectangle, return true and set this rectangle to that 1.256 + intersection, otherwise return false and do not change this rectangle. 1.257 + If either rectangle is empty, do nothing and return false. 1.258 + */ 1.259 + bool intersect(const SkIRect& r) { 1.260 + SkASSERT(&r); 1.261 + return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); 1.262 + } 1.263 + 1.264 + /** If rectangles a and b intersect, return true and set this rectangle to 1.265 + that intersection, otherwise return false and do not change this 1.266 + rectangle. If either rectangle is empty, do nothing and return false. 1.267 + */ 1.268 + bool intersect(const SkIRect& a, const SkIRect& b) { 1.269 + SkASSERT(&a && &b); 1.270 + 1.271 + if (!a.isEmpty() && !b.isEmpty() && 1.272 + a.fLeft < b.fRight && b.fLeft < a.fRight && 1.273 + a.fTop < b.fBottom && b.fTop < a.fBottom) { 1.274 + fLeft = SkMax32(a.fLeft, b.fLeft); 1.275 + fTop = SkMax32(a.fTop, b.fTop); 1.276 + fRight = SkMin32(a.fRight, b.fRight); 1.277 + fBottom = SkMin32(a.fBottom, b.fBottom); 1.278 + return true; 1.279 + } 1.280 + return false; 1.281 + } 1.282 + 1.283 + /** If rectangles a and b intersect, return true and set this rectangle to 1.284 + that intersection, otherwise return false and do not change this 1.285 + rectangle. For speed, no check to see if a or b are empty is performed. 1.286 + If either is, then the return result is undefined. In the debug build, 1.287 + we assert that both rectangles are non-empty. 1.288 + */ 1.289 + bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) { 1.290 + SkASSERT(&a && &b); 1.291 + SkASSERT(!a.isEmpty() && !b.isEmpty()); 1.292 + 1.293 + if (a.fLeft < b.fRight && b.fLeft < a.fRight && 1.294 + a.fTop < b.fBottom && b.fTop < a.fBottom) { 1.295 + fLeft = SkMax32(a.fLeft, b.fLeft); 1.296 + fTop = SkMax32(a.fTop, b.fTop); 1.297 + fRight = SkMin32(a.fRight, b.fRight); 1.298 + fBottom = SkMin32(a.fBottom, b.fBottom); 1.299 + return true; 1.300 + } 1.301 + return false; 1.302 + } 1.303 + 1.304 + /** If the rectangle specified by left,top,right,bottom intersects this rectangle, 1.305 + return true and set this rectangle to that intersection, 1.306 + otherwise return false and do not change this rectangle. 1.307 + If either rectangle is empty, do nothing and return false. 1.308 + */ 1.309 + bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) { 1.310 + if (left < right && top < bottom && !this->isEmpty() && 1.311 + fLeft < right && left < fRight && fTop < bottom && top < fBottom) { 1.312 + if (fLeft < left) fLeft = left; 1.313 + if (fTop < top) fTop = top; 1.314 + if (fRight > right) fRight = right; 1.315 + if (fBottom > bottom) fBottom = bottom; 1.316 + return true; 1.317 + } 1.318 + return false; 1.319 + } 1.320 + 1.321 + /** Returns true if a and b are not empty, and they intersect 1.322 + */ 1.323 + static bool Intersects(const SkIRect& a, const SkIRect& b) { 1.324 + return !a.isEmpty() && !b.isEmpty() && // check for empties 1.325 + a.fLeft < b.fRight && b.fLeft < a.fRight && 1.326 + a.fTop < b.fBottom && b.fTop < a.fBottom; 1.327 + } 1.328 + 1.329 + /** 1.330 + * Returns true if a and b intersect. debug-asserts that neither are empty. 1.331 + */ 1.332 + static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) { 1.333 + SkASSERT(!a.isEmpty()); 1.334 + SkASSERT(!b.isEmpty()); 1.335 + return a.fLeft < b.fRight && b.fLeft < a.fRight && 1.336 + a.fTop < b.fBottom && b.fTop < a.fBottom; 1.337 + } 1.338 + 1.339 + /** Update this rectangle to enclose itself and the specified rectangle. 1.340 + If this rectangle is empty, just set it to the specified rectangle. If the specified 1.341 + rectangle is empty, do nothing. 1.342 + */ 1.343 + void join(int32_t left, int32_t top, int32_t right, int32_t bottom); 1.344 + 1.345 + /** Update this rectangle to enclose itself and the specified rectangle. 1.346 + If this rectangle is empty, just set it to the specified rectangle. If the specified 1.347 + rectangle is empty, do nothing. 1.348 + */ 1.349 + void join(const SkIRect& r) { 1.350 + this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); 1.351 + } 1.352 + 1.353 + /** Swap top/bottom or left/right if there are flipped. 1.354 + This can be called if the edges are computed separately, 1.355 + and may have crossed over each other. 1.356 + When this returns, left <= right && top <= bottom 1.357 + */ 1.358 + void sort(); 1.359 + 1.360 + static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() { 1.361 + static const SkIRect gEmpty = { 0, 0, 0, 0 }; 1.362 + return gEmpty; 1.363 + } 1.364 +}; 1.365 + 1.366 +/** \struct SkRect 1.367 +*/ 1.368 +struct SK_API SkRect { 1.369 + SkScalar fLeft, fTop, fRight, fBottom; 1.370 + 1.371 + static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() { 1.372 + SkRect r; 1.373 + r.setEmpty(); 1.374 + return r; 1.375 + } 1.376 + 1.377 + static SkRect SK_WARN_UNUSED_RESULT MakeLargest() { 1.378 + SkRect r; 1.379 + r.setLargest(); 1.380 + return r; 1.381 + } 1.382 + 1.383 + static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) { 1.384 + SkRect r; 1.385 + r.set(0, 0, w, h); 1.386 + return r; 1.387 + } 1.388 + 1.389 + static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) { 1.390 + SkRect r; 1.391 + r.set(0, 0, size.width(), size.height()); 1.392 + return r; 1.393 + } 1.394 + 1.395 + static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { 1.396 + SkRect rect; 1.397 + rect.set(l, t, r, b); 1.398 + return rect; 1.399 + } 1.400 + 1.401 + static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) { 1.402 + SkRect r; 1.403 + r.set(x, y, x + w, y + h); 1.404 + return r; 1.405 + } 1.406 + 1.407 + SK_ATTR_DEPRECATED("use Make()") 1.408 + static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) { 1.409 + SkRect r; 1.410 + r.set(SkIntToScalar(irect.fLeft), 1.411 + SkIntToScalar(irect.fTop), 1.412 + SkIntToScalar(irect.fRight), 1.413 + SkIntToScalar(irect.fBottom)); 1.414 + return r; 1.415 + } 1.416 + 1.417 + static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) { 1.418 + SkRect r; 1.419 + r.set(SkIntToScalar(irect.fLeft), 1.420 + SkIntToScalar(irect.fTop), 1.421 + SkIntToScalar(irect.fRight), 1.422 + SkIntToScalar(irect.fBottom)); 1.423 + return r; 1.424 + } 1.425 + 1.426 + /** 1.427 + * Return true if the rectangle's width or height are <= 0 1.428 + */ 1.429 + bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } 1.430 + 1.431 + bool isLargest() const { return SK_ScalarMin == fLeft && 1.432 + SK_ScalarMin == fTop && 1.433 + SK_ScalarMax == fRight && 1.434 + SK_ScalarMax == fBottom; } 1.435 + 1.436 + /** 1.437 + * Returns true iff all values in the rect are finite. If any are 1.438 + * infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this 1.439 + * returns false. 1.440 + */ 1.441 + bool isFinite() const { 1.442 + float accum = 0; 1.443 + accum *= fLeft; 1.444 + accum *= fTop; 1.445 + accum *= fRight; 1.446 + accum *= fBottom; 1.447 + 1.448 + // accum is either NaN or it is finite (zero). 1.449 + SkASSERT(0 == accum || !(accum == accum)); 1.450 + 1.451 + // value==value will be true iff value is not NaN 1.452 + // TODO: is it faster to say !accum or accum==accum? 1.453 + return accum == accum; 1.454 + } 1.455 + 1.456 + SkScalar x() const { return fLeft; } 1.457 + SkScalar y() const { return fTop; } 1.458 + SkScalar left() const { return fLeft; } 1.459 + SkScalar top() const { return fTop; } 1.460 + SkScalar right() const { return fRight; } 1.461 + SkScalar bottom() const { return fBottom; } 1.462 + SkScalar width() const { return fRight - fLeft; } 1.463 + SkScalar height() const { return fBottom - fTop; } 1.464 + SkScalar centerX() const { return SkScalarHalf(fLeft + fRight); } 1.465 + SkScalar centerY() const { return SkScalarHalf(fTop + fBottom); } 1.466 + 1.467 + friend bool operator==(const SkRect& a, const SkRect& b) { 1.468 + return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); 1.469 + } 1.470 + 1.471 + friend bool operator!=(const SkRect& a, const SkRect& b) { 1.472 + return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); 1.473 + } 1.474 + 1.475 + /** return the 4 points that enclose the rectangle (top-left, top-right, bottom-right, 1.476 + bottom-left). TODO: Consider adding param to control whether quad is CW or CCW. 1.477 + */ 1.478 + void toQuad(SkPoint quad[4]) const; 1.479 + 1.480 + /** Set this rectangle to the empty rectangle (0,0,0,0) 1.481 + */ 1.482 + void setEmpty() { memset(this, 0, sizeof(*this)); } 1.483 + 1.484 + void set(const SkIRect& src) { 1.485 + fLeft = SkIntToScalar(src.fLeft); 1.486 + fTop = SkIntToScalar(src.fTop); 1.487 + fRight = SkIntToScalar(src.fRight); 1.488 + fBottom = SkIntToScalar(src.fBottom); 1.489 + } 1.490 + 1.491 + void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { 1.492 + fLeft = left; 1.493 + fTop = top; 1.494 + fRight = right; 1.495 + fBottom = bottom; 1.496 + } 1.497 + // alias for set(l, t, r, b) 1.498 + void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { 1.499 + this->set(left, top, right, bottom); 1.500 + } 1.501 + 1.502 + /** Initialize the rect with the 4 specified integers. The routine handles 1.503 + converting them to scalars (by calling SkIntToScalar) 1.504 + */ 1.505 + void iset(int left, int top, int right, int bottom) { 1.506 + fLeft = SkIntToScalar(left); 1.507 + fTop = SkIntToScalar(top); 1.508 + fRight = SkIntToScalar(right); 1.509 + fBottom = SkIntToScalar(bottom); 1.510 + } 1.511 + 1.512 + /** 1.513 + * Set this rectangle to be left/top at 0,0, and have the specified width 1.514 + * and height (automatically converted to SkScalar). 1.515 + */ 1.516 + void isetWH(int width, int height) { 1.517 + fLeft = fTop = 0; 1.518 + fRight = SkIntToScalar(width); 1.519 + fBottom = SkIntToScalar(height); 1.520 + } 1.521 + 1.522 + /** Set this rectangle to be the bounds of the array of points. 1.523 + If the array is empty (count == 0), then set this rectangle 1.524 + to the empty rectangle (0,0,0,0) 1.525 + */ 1.526 + void set(const SkPoint pts[], int count) { 1.527 + // set() had been checking for non-finite values, so keep that behavior 1.528 + // for now. Now that we have setBoundsCheck(), we may decide to make 1.529 + // set() be simpler/faster, and not check for those. 1.530 + (void)this->setBoundsCheck(pts, count); 1.531 + } 1.532 + 1.533 + // alias for set(pts, count) 1.534 + void setBounds(const SkPoint pts[], int count) { 1.535 + (void)this->setBoundsCheck(pts, count); 1.536 + } 1.537 + 1.538 + /** 1.539 + * Compute the bounds of the array of points, and set this rect to that 1.540 + * bounds and return true... unless a non-finite value is encountered, 1.541 + * in which case this rect is set to empty and false is returned. 1.542 + */ 1.543 + bool setBoundsCheck(const SkPoint pts[], int count); 1.544 + 1.545 + void set(const SkPoint& p0, const SkPoint& p1) { 1.546 + fLeft = SkMinScalar(p0.fX, p1.fX); 1.547 + fRight = SkMaxScalar(p0.fX, p1.fX); 1.548 + fTop = SkMinScalar(p0.fY, p1.fY); 1.549 + fBottom = SkMaxScalar(p0.fY, p1.fY); 1.550 + } 1.551 + 1.552 + void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) { 1.553 + fLeft = x; 1.554 + fTop = y; 1.555 + fRight = x + width; 1.556 + fBottom = y + height; 1.557 + } 1.558 + 1.559 + void setWH(SkScalar width, SkScalar height) { 1.560 + fLeft = 0; 1.561 + fTop = 0; 1.562 + fRight = width; 1.563 + fBottom = height; 1.564 + } 1.565 + 1.566 + /** 1.567 + * Make the largest representable rectangle 1.568 + */ 1.569 + void setLargest() { 1.570 + fLeft = fTop = SK_ScalarMin; 1.571 + fRight = fBottom = SK_ScalarMax; 1.572 + } 1.573 + 1.574 + /** 1.575 + * Make the largest representable rectangle, but inverted (e.g. fLeft will 1.576 + * be max and right will be min). 1.577 + */ 1.578 + void setLargestInverted() { 1.579 + fLeft = fTop = SK_ScalarMax; 1.580 + fRight = fBottom = SK_ScalarMin; 1.581 + } 1.582 + 1.583 + /** Offset set the rectangle by adding dx to its left and right, 1.584 + and adding dy to its top and bottom. 1.585 + */ 1.586 + void offset(SkScalar dx, SkScalar dy) { 1.587 + fLeft += dx; 1.588 + fTop += dy; 1.589 + fRight += dx; 1.590 + fBottom += dy; 1.591 + } 1.592 + 1.593 + void offset(const SkPoint& delta) { 1.594 + this->offset(delta.fX, delta.fY); 1.595 + } 1.596 + 1.597 + /** 1.598 + * Offset this rect such its new x() and y() will equal newX and newY. 1.599 + */ 1.600 + void offsetTo(SkScalar newX, SkScalar newY) { 1.601 + fRight += newX - fLeft; 1.602 + fBottom += newY - fTop; 1.603 + fLeft = newX; 1.604 + fTop = newY; 1.605 + } 1.606 + 1.607 + /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are 1.608 + moved inwards, making the rectangle narrower. If dx is negative, then 1.609 + the sides are moved outwards, making the rectangle wider. The same holds 1.610 + true for dy and the top and bottom. 1.611 + */ 1.612 + void inset(SkScalar dx, SkScalar dy) { 1.613 + fLeft += dx; 1.614 + fTop += dy; 1.615 + fRight -= dx; 1.616 + fBottom -= dy; 1.617 + } 1.618 + 1.619 + /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are 1.620 + moved outwards, making the rectangle wider. If dx is negative, then the 1.621 + sides are moved inwards, making the rectangle narrower. The same holds 1.622 + true for dy and the top and bottom. 1.623 + */ 1.624 + void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy); } 1.625 + 1.626 + /** If this rectangle intersects r, return true and set this rectangle to that 1.627 + intersection, otherwise return false and do not change this rectangle. 1.628 + If either rectangle is empty, do nothing and return false. 1.629 + */ 1.630 + bool intersect(const SkRect& r); 1.631 + bool intersect2(const SkRect& r); 1.632 + 1.633 + /** If this rectangle intersects the rectangle specified by left, top, right, bottom, 1.634 + return true and set this rectangle to that intersection, otherwise return false 1.635 + and do not change this rectangle. 1.636 + If either rectangle is empty, do nothing and return false. 1.637 + */ 1.638 + bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); 1.639 + 1.640 + /** 1.641 + * Return true if this rectangle is not empty, and the specified sides of 1.642 + * a rectangle are not empty, and they intersect. 1.643 + */ 1.644 + bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const { 1.645 + return // first check that both are not empty 1.646 + left < right && top < bottom && 1.647 + fLeft < fRight && fTop < fBottom && 1.648 + // now check for intersection 1.649 + fLeft < right && left < fRight && 1.650 + fTop < bottom && top < fBottom; 1.651 + } 1.652 + 1.653 + /** If rectangles a and b intersect, return true and set this rectangle to 1.654 + * that intersection, otherwise return false and do not change this 1.655 + * rectangle. If either rectangle is empty, do nothing and return false. 1.656 + */ 1.657 + bool intersect(const SkRect& a, const SkRect& b); 1.658 + 1.659 + /** 1.660 + * Return true if rectangles a and b are not empty and intersect. 1.661 + */ 1.662 + static bool Intersects(const SkRect& a, const SkRect& b) { 1.663 + return !a.isEmpty() && !b.isEmpty() && 1.664 + a.fLeft < b.fRight && b.fLeft < a.fRight && 1.665 + a.fTop < b.fBottom && b.fTop < a.fBottom; 1.666 + } 1.667 + 1.668 + /** 1.669 + * Update this rectangle to enclose itself and the specified rectangle. 1.670 + * If this rectangle is empty, just set it to the specified rectangle. 1.671 + * If the specified rectangle is empty, do nothing. 1.672 + */ 1.673 + void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); 1.674 + 1.675 + /** Update this rectangle to enclose itself and the specified rectangle. 1.676 + If this rectangle is empty, just set it to the specified rectangle. If the specified 1.677 + rectangle is empty, do nothing. 1.678 + */ 1.679 + void join(const SkRect& r) { 1.680 + this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); 1.681 + } 1.682 + // alias for join() 1.683 + void growToInclude(const SkRect& r) { this->join(r); } 1.684 + 1.685 + /** 1.686 + * Grow the rect to include the specified (x,y). After this call, the 1.687 + * following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom. 1.688 + * 1.689 + * This is close, but not quite the same contract as contains(), since 1.690 + * contains() treats the left and top different from the right and bottom. 1.691 + * contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note 1.692 + * that contains(x,y) always returns false if the rect is empty. 1.693 + */ 1.694 + void growToInclude(SkScalar x, SkScalar y) { 1.695 + fLeft = SkMinScalar(x, fLeft); 1.696 + fRight = SkMaxScalar(x, fRight); 1.697 + fTop = SkMinScalar(y, fTop); 1.698 + fBottom = SkMaxScalar(y, fBottom); 1.699 + } 1.700 + 1.701 + /** Bulk version of growToInclude */ 1.702 + void growToInclude(const SkPoint pts[], int count) { 1.703 + this->growToInclude(pts, sizeof(SkPoint), count); 1.704 + } 1.705 + 1.706 + /** Bulk version of growToInclude with stride. */ 1.707 + void growToInclude(const SkPoint pts[], size_t stride, int count) { 1.708 + SkASSERT(count >= 0); 1.709 + SkASSERT(stride >= sizeof(SkPoint)); 1.710 + const SkPoint* end = (const SkPoint*)((intptr_t)pts + count * stride); 1.711 + for (; pts < end; pts = (const SkPoint*)((intptr_t)pts + stride)) { 1.712 + this->growToInclude(pts->fX, pts->fY); 1.713 + } 1.714 + } 1.715 + 1.716 + /** 1.717 + * Return true if this rectangle contains r, and if both rectangles are 1.718 + * not empty. 1.719 + */ 1.720 + bool contains(const SkRect& r) const { 1.721 + // todo: can we eliminate the this->isEmpty check? 1.722 + return !r.isEmpty() && !this->isEmpty() && 1.723 + fLeft <= r.fLeft && fTop <= r.fTop && 1.724 + fRight >= r.fRight && fBottom >= r.fBottom; 1.725 + } 1.726 + 1.727 + /** 1.728 + * Set the dst rectangle by rounding this rectangle's coordinates to their 1.729 + * nearest integer values using SkScalarRoundToInt. 1.730 + */ 1.731 + void round(SkIRect* dst) const { 1.732 + SkASSERT(dst); 1.733 + dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop), 1.734 + SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)); 1.735 + } 1.736 + 1.737 + /** 1.738 + * Set the dst rectangle by rounding "out" this rectangle, choosing the 1.739 + * SkScalarFloor of top and left, and the SkScalarCeil of right and bottom. 1.740 + */ 1.741 + void roundOut(SkIRect* dst) const { 1.742 + SkASSERT(dst); 1.743 + dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop), 1.744 + SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)); 1.745 + } 1.746 + 1.747 + /** 1.748 + * Expand this rectangle by rounding its coordinates "out", choosing the 1.749 + * floor of top and left, and the ceil of right and bottom. If this rect 1.750 + * is already on integer coordinates, then it will be unchanged. 1.751 + */ 1.752 + void roundOut() { 1.753 + this->set(SkScalarFloorToScalar(fLeft), 1.754 + SkScalarFloorToScalar(fTop), 1.755 + SkScalarCeilToScalar(fRight), 1.756 + SkScalarCeilToScalar(fBottom)); 1.757 + } 1.758 + 1.759 + /** 1.760 + * Set the dst rectangle by rounding "in" this rectangle, choosing the 1.761 + * ceil of top and left, and the floor of right and bottom. This does *not* 1.762 + * call sort(), so it is possible that the resulting rect is inverted... 1.763 + * e.g. left >= right or top >= bottom. Call isEmpty() to detect that. 1.764 + */ 1.765 + void roundIn(SkIRect* dst) const { 1.766 + SkASSERT(dst); 1.767 + dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop), 1.768 + SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom)); 1.769 + } 1.770 + 1.771 + /** 1.772 + * Return a new SkIRect which is contains the rounded coordinates of this 1.773 + * rect using SkScalarRoundToInt. 1.774 + */ 1.775 + SkIRect round() const { 1.776 + SkIRect ir; 1.777 + this->round(&ir); 1.778 + return ir; 1.779 + } 1.780 + 1.781 + /** 1.782 + * Swap top/bottom or left/right if there are flipped (i.e. if width() 1.783 + * or height() would have returned a negative value.) This should be called 1.784 + * if the edges are computed separately, and may have crossed over each 1.785 + * other. When this returns, left <= right && top <= bottom 1.786 + */ 1.787 + void sort(); 1.788 + 1.789 + /** 1.790 + * cast-safe way to treat the rect as an array of (4) SkScalars. 1.791 + */ 1.792 + const SkScalar* asScalars() const { return &fLeft; } 1.793 +}; 1.794 + 1.795 +#endif