1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/include/core/SkTArray.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,510 @@ 1.4 +/* 1.5 + * Copyright 2011 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#ifndef SkTArray_DEFINED 1.12 +#define SkTArray_DEFINED 1.13 + 1.14 +#include <new> 1.15 +#include "SkTypes.h" 1.16 +#include "SkTemplates.h" 1.17 + 1.18 +template <typename T, bool MEM_COPY = false> class SkTArray; 1.19 + 1.20 +namespace SkTArrayExt { 1.21 + 1.22 +template<typename T> 1.23 +inline void copy(SkTArray<T, true>* self, const T* array) { 1.24 + memcpy(self->fMemArray, array, self->fCount * sizeof(T)); 1.25 +} 1.26 +template<typename T> 1.27 +inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) { 1.28 + memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T)); 1.29 +} 1.30 + 1.31 +template<typename T> 1.32 +inline void copy(SkTArray<T, false>* self, const T* array) { 1.33 + for (int i = 0; i < self->fCount; ++i) { 1.34 + SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i])); 1.35 + } 1.36 +} 1.37 +template<typename T> 1.38 +inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) { 1.39 + for (int i = 0; i < self->fCount; ++i) { 1.40 + SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i])); 1.41 + self->fItemArray[i].~T(); 1.42 + } 1.43 +} 1.44 + 1.45 +} 1.46 + 1.47 +template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int); 1.48 + 1.49 +/** When MEM_COPY is true T will be bit copied when moved. 1.50 + When MEM_COPY is false, T will be copy constructed / destructed. 1.51 + In all cases T's constructor will be called on allocation, 1.52 + and its destructor will be called from this object's destructor. 1.53 +*/ 1.54 +template <typename T, bool MEM_COPY> class SkTArray { 1.55 +public: 1.56 + /** 1.57 + * Creates an empty array with no initial storage 1.58 + */ 1.59 + SkTArray() { 1.60 + fCount = 0; 1.61 + fReserveCount = gMIN_ALLOC_COUNT; 1.62 + fAllocCount = 0; 1.63 + fMemArray = NULL; 1.64 + fPreAllocMemArray = NULL; 1.65 + } 1.66 + 1.67 + /** 1.68 + * Creates an empty array that will preallocate space for reserveCount 1.69 + * elements. 1.70 + */ 1.71 + explicit SkTArray(int reserveCount) { 1.72 + this->init(NULL, 0, NULL, reserveCount); 1.73 + } 1.74 + 1.75 + /** 1.76 + * Copies one array to another. The new array will be heap allocated. 1.77 + */ 1.78 + explicit SkTArray(const SkTArray& array) { 1.79 + this->init(array.fItemArray, array.fCount, NULL, 0); 1.80 + } 1.81 + 1.82 + /** 1.83 + * Creates a SkTArray by copying contents of a standard C array. The new 1.84 + * array will be heap allocated. Be careful not to use this constructor 1.85 + * when you really want the (void*, int) version. 1.86 + */ 1.87 + SkTArray(const T* array, int count) { 1.88 + this->init(array, count, NULL, 0); 1.89 + } 1.90 + 1.91 + /** 1.92 + * assign copy of array to this 1.93 + */ 1.94 + SkTArray& operator =(const SkTArray& array) { 1.95 + for (int i = 0; i < fCount; ++i) { 1.96 + fItemArray[i].~T(); 1.97 + } 1.98 + fCount = 0; 1.99 + this->checkRealloc((int)array.count()); 1.100 + fCount = array.count(); 1.101 + SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray)); 1.102 + return *this; 1.103 + } 1.104 + 1.105 + virtual ~SkTArray() { 1.106 + for (int i = 0; i < fCount; ++i) { 1.107 + fItemArray[i].~T(); 1.108 + } 1.109 + if (fMemArray != fPreAllocMemArray) { 1.110 + sk_free(fMemArray); 1.111 + } 1.112 + } 1.113 + 1.114 + /** 1.115 + * Resets to count() == 0 1.116 + */ 1.117 + void reset() { this->pop_back_n(fCount); } 1.118 + 1.119 + /** 1.120 + * Resets to count() = n newly constructed T objects. 1.121 + */ 1.122 + void reset(int n) { 1.123 + SkASSERT(n >= 0); 1.124 + for (int i = 0; i < fCount; ++i) { 1.125 + fItemArray[i].~T(); 1.126 + } 1.127 + // set fCount to 0 before calling checkRealloc so that no copy cons. are called. 1.128 + fCount = 0; 1.129 + this->checkRealloc(n); 1.130 + fCount = n; 1.131 + for (int i = 0; i < fCount; ++i) { 1.132 + SkNEW_PLACEMENT(fItemArray + i, T); 1.133 + } 1.134 + } 1.135 + 1.136 + /** 1.137 + * Resets to a copy of a C array. 1.138 + */ 1.139 + void reset(const T* array, int count) { 1.140 + for (int i = 0; i < fCount; ++i) { 1.141 + fItemArray[i].~T(); 1.142 + } 1.143 + int delta = count - fCount; 1.144 + this->checkRealloc(delta); 1.145 + fCount = count; 1.146 + for (int i = 0; i < count; ++i) { 1.147 + SkTArrayExt::copy(this, array); 1.148 + } 1.149 + } 1.150 + 1.151 + /** 1.152 + * Number of elements in the array. 1.153 + */ 1.154 + int count() const { return fCount; } 1.155 + 1.156 + /** 1.157 + * Is the array empty. 1.158 + */ 1.159 + bool empty() const { return !fCount; } 1.160 + 1.161 + /** 1.162 + * Adds 1 new default-constructed T value and returns in by reference. Note 1.163 + * the reference only remains valid until the next call that adds or removes 1.164 + * elements. 1.165 + */ 1.166 + T& push_back() { 1.167 + T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); 1.168 + SkNEW_PLACEMENT(newT, T); 1.169 + return *newT; 1.170 + } 1.171 + 1.172 + /** 1.173 + * Version of above that uses a copy constructor to initialize the new item 1.174 + */ 1.175 + T& push_back(const T& t) { 1.176 + T* newT = reinterpret_cast<T*>(this->push_back_raw(1)); 1.177 + SkNEW_PLACEMENT_ARGS(newT, T, (t)); 1.178 + return *newT; 1.179 + } 1.180 + 1.181 + /** 1.182 + * Allocates n more default T values, and returns the address of the start 1.183 + * of that new range. Note: this address is only valid until the next API 1.184 + * call made on the array that might add or remove elements. 1.185 + */ 1.186 + T* push_back_n(int n) { 1.187 + SkASSERT(n >= 0); 1.188 + T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); 1.189 + for (int i = 0; i < n; ++i) { 1.190 + SkNEW_PLACEMENT(newTs + i, T); 1.191 + } 1.192 + return newTs; 1.193 + } 1.194 + 1.195 + /** 1.196 + * Version of above that uses a copy constructor to initialize all n items 1.197 + * to the same T. 1.198 + */ 1.199 + T* push_back_n(int n, const T& t) { 1.200 + SkASSERT(n >= 0); 1.201 + T* newTs = reinterpret_cast<T*>(this->push_back_raw(n)); 1.202 + for (int i = 0; i < n; ++i) { 1.203 + SkNEW_PLACEMENT_ARGS(newTs[i], T, (t)); 1.204 + } 1.205 + return newTs; 1.206 + } 1.207 + 1.208 + /** 1.209 + * Version of above that uses a copy constructor to initialize the n items 1.210 + * to separate T values. 1.211 + */ 1.212 + T* push_back_n(int n, const T t[]) { 1.213 + SkASSERT(n >= 0); 1.214 + this->checkRealloc(n); 1.215 + for (int i = 0; i < n; ++i) { 1.216 + SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i])); 1.217 + } 1.218 + fCount += n; 1.219 + return fItemArray + fCount - n; 1.220 + } 1.221 + 1.222 + /** 1.223 + * Removes the last element. Not safe to call when count() == 0. 1.224 + */ 1.225 + void pop_back() { 1.226 + SkASSERT(fCount > 0); 1.227 + --fCount; 1.228 + fItemArray[fCount].~T(); 1.229 + this->checkRealloc(0); 1.230 + } 1.231 + 1.232 + /** 1.233 + * Removes the last n elements. Not safe to call when count() < n. 1.234 + */ 1.235 + void pop_back_n(int n) { 1.236 + SkASSERT(n >= 0); 1.237 + SkASSERT(fCount >= n); 1.238 + fCount -= n; 1.239 + for (int i = 0; i < n; ++i) { 1.240 + fItemArray[fCount + i].~T(); 1.241 + } 1.242 + this->checkRealloc(0); 1.243 + } 1.244 + 1.245 + /** 1.246 + * Pushes or pops from the back to resize. Pushes will be default 1.247 + * initialized. 1.248 + */ 1.249 + void resize_back(int newCount) { 1.250 + SkASSERT(newCount >= 0); 1.251 + 1.252 + if (newCount > fCount) { 1.253 + this->push_back_n(newCount - fCount); 1.254 + } else if (newCount < fCount) { 1.255 + this->pop_back_n(fCount - newCount); 1.256 + } 1.257 + } 1.258 + 1.259 + T* begin() { 1.260 + return fItemArray; 1.261 + } 1.262 + const T* begin() const { 1.263 + return fItemArray; 1.264 + } 1.265 + T* end() { 1.266 + return fItemArray ? fItemArray + fCount : NULL; 1.267 + } 1.268 + const T* end() const { 1.269 + return fItemArray ? fItemArray + fCount : NULL;; 1.270 + } 1.271 + 1.272 + /** 1.273 + * Get the i^th element. 1.274 + */ 1.275 + T& operator[] (int i) { 1.276 + SkASSERT(i < fCount); 1.277 + SkASSERT(i >= 0); 1.278 + return fItemArray[i]; 1.279 + } 1.280 + 1.281 + const T& operator[] (int i) const { 1.282 + SkASSERT(i < fCount); 1.283 + SkASSERT(i >= 0); 1.284 + return fItemArray[i]; 1.285 + } 1.286 + 1.287 + /** 1.288 + * equivalent to operator[](0) 1.289 + */ 1.290 + T& front() { SkASSERT(fCount > 0); return fItemArray[0];} 1.291 + 1.292 + const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} 1.293 + 1.294 + /** 1.295 + * equivalent to operator[](count() - 1) 1.296 + */ 1.297 + T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} 1.298 + 1.299 + const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} 1.300 + 1.301 + /** 1.302 + * equivalent to operator[](count()-1-i) 1.303 + */ 1.304 + T& fromBack(int i) { 1.305 + SkASSERT(i >= 0); 1.306 + SkASSERT(i < fCount); 1.307 + return fItemArray[fCount - i - 1]; 1.308 + } 1.309 + 1.310 + const T& fromBack(int i) const { 1.311 + SkASSERT(i >= 0); 1.312 + SkASSERT(i < fCount); 1.313 + return fItemArray[fCount - i - 1]; 1.314 + } 1.315 + 1.316 + bool operator==(const SkTArray<T, MEM_COPY>& right) const { 1.317 + int leftCount = this->count(); 1.318 + if (leftCount != right.count()) { 1.319 + return false; 1.320 + } 1.321 + for (int index = 0; index < leftCount; ++index) { 1.322 + if (fItemArray[index] != right.fItemArray[index]) { 1.323 + return false; 1.324 + } 1.325 + } 1.326 + return true; 1.327 + } 1.328 + 1.329 + bool operator!=(const SkTArray<T, MEM_COPY>& right) const { 1.330 + return !(*this == right); 1.331 + } 1.332 + 1.333 +protected: 1.334 + /** 1.335 + * Creates an empty array that will use the passed storage block until it 1.336 + * is insufficiently large to hold the entire array. 1.337 + */ 1.338 + template <int N> 1.339 + SkTArray(SkAlignedSTStorage<N,T>* storage) { 1.340 + this->init(NULL, 0, storage->get(), N); 1.341 + } 1.342 + 1.343 + /** 1.344 + * Copy another array, using preallocated storage if preAllocCount >= 1.345 + * array.count(). Otherwise storage will only be used when array shrinks 1.346 + * to fit. 1.347 + */ 1.348 + template <int N> 1.349 + SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) { 1.350 + this->init(array.fItemArray, array.fCount, storage->get(), N); 1.351 + } 1.352 + 1.353 + /** 1.354 + * Copy a C array, using preallocated storage if preAllocCount >= 1.355 + * count. Otherwise storage will only be used when array shrinks 1.356 + * to fit. 1.357 + */ 1.358 + template <int N> 1.359 + SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) { 1.360 + this->init(array, count, storage->get(), N); 1.361 + } 1.362 + 1.363 + void init(const T* array, int count, 1.364 + void* preAllocStorage, int preAllocOrReserveCount) { 1.365 + SkASSERT(count >= 0); 1.366 + SkASSERT(preAllocOrReserveCount >= 0); 1.367 + fCount = count; 1.368 + fReserveCount = (preAllocOrReserveCount > 0) ? 1.369 + preAllocOrReserveCount : 1.370 + gMIN_ALLOC_COUNT; 1.371 + fPreAllocMemArray = preAllocStorage; 1.372 + if (fReserveCount >= fCount && 1.373 + NULL != preAllocStorage) { 1.374 + fAllocCount = fReserveCount; 1.375 + fMemArray = preAllocStorage; 1.376 + } else { 1.377 + fAllocCount = SkMax32(fCount, fReserveCount); 1.378 + fMemArray = sk_malloc_throw(fAllocCount * sizeof(T)); 1.379 + } 1.380 + 1.381 + SkTArrayExt::copy(this, array); 1.382 + } 1.383 + 1.384 +private: 1.385 + 1.386 + static const int gMIN_ALLOC_COUNT = 8; 1.387 + 1.388 + // Helper function that makes space for n objects, adjusts the count, but does not initialize 1.389 + // the new objects. 1.390 + void* push_back_raw(int n) { 1.391 + this->checkRealloc(n); 1.392 + void* ptr = fItemArray + fCount; 1.393 + fCount += n; 1.394 + return ptr; 1.395 + } 1.396 + 1.397 + inline void checkRealloc(int delta) { 1.398 + SkASSERT(fCount >= 0); 1.399 + SkASSERT(fAllocCount >= 0); 1.400 + 1.401 + SkASSERT(-delta <= fCount); 1.402 + 1.403 + int newCount = fCount + delta; 1.404 + int newAllocCount = fAllocCount; 1.405 + 1.406 + if (newCount > fAllocCount || newCount < (fAllocCount / 3)) { 1.407 + // whether we're growing or shrinking, we leave at least 50% extra space for future 1.408 + // growth (clamped to the reserve count). 1.409 + newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount); 1.410 + } 1.411 + if (newAllocCount != fAllocCount) { 1.412 + 1.413 + fAllocCount = newAllocCount; 1.414 + char* newMemArray; 1.415 + 1.416 + if (fAllocCount == fReserveCount && NULL != fPreAllocMemArray) { 1.417 + newMemArray = (char*) fPreAllocMemArray; 1.418 + } else { 1.419 + newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T)); 1.420 + } 1.421 + 1.422 + SkTArrayExt::copyAndDelete<T>(this, newMemArray); 1.423 + 1.424 + if (fMemArray != fPreAllocMemArray) { 1.425 + sk_free(fMemArray); 1.426 + } 1.427 + fMemArray = newMemArray; 1.428 + } 1.429 + } 1.430 + 1.431 + friend void* operator new<T>(size_t, SkTArray*, int); 1.432 + 1.433 + template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*); 1.434 + template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*); 1.435 + 1.436 + template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*); 1.437 + template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*); 1.438 + 1.439 + int fReserveCount; 1.440 + int fCount; 1.441 + int fAllocCount; 1.442 + void* fPreAllocMemArray; 1.443 + union { 1.444 + T* fItemArray; 1.445 + void* fMemArray; 1.446 + }; 1.447 +}; 1.448 + 1.449 +// Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly 1.450 +template <typename T, bool MEM_COPY> 1.451 +void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int atIndex) { 1.452 + // Currently, we only support adding to the end of the array. When the array class itself 1.453 + // supports random insertion then this should be updated. 1.454 + // SkASSERT(atIndex >= 0 && atIndex <= array->count()); 1.455 + SkASSERT(atIndex == array->count()); 1.456 + return array->push_back_raw(1); 1.457 +} 1.458 + 1.459 +// Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete 1.460 +// to match the op new silences warnings about missing op delete when a constructor throws an 1.461 +// exception. 1.462 +template <typename T, bool MEM_COPY> 1.463 +void operator delete(void*, SkTArray<T, MEM_COPY>* array, int atIndex) { 1.464 + SK_CRASH(); 1.465 +} 1.466 + 1.467 +// Constructs a new object as the last element of an SkTArray. 1.468 +#define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args) \ 1.469 + (new ((array_ptr), (array_ptr)->count()) type_name args) 1.470 + 1.471 + 1.472 +/** 1.473 + * Subclass of SkTArray that contains a preallocated memory block for the array. 1.474 + */ 1.475 +template <int N, typename T, bool MEM_COPY = false> 1.476 +class SkSTArray : public SkTArray<T, MEM_COPY> { 1.477 +private: 1.478 + typedef SkTArray<T, MEM_COPY> INHERITED; 1.479 + 1.480 +public: 1.481 + SkSTArray() : INHERITED(&fStorage) { 1.482 + } 1.483 + 1.484 + SkSTArray(const SkSTArray& array) 1.485 + : INHERITED(array, &fStorage) { 1.486 + } 1.487 + 1.488 + explicit SkSTArray(const INHERITED& array) 1.489 + : INHERITED(array, &fStorage) { 1.490 + } 1.491 + 1.492 + explicit SkSTArray(int reserveCount) 1.493 + : INHERITED(reserveCount) { 1.494 + } 1.495 + 1.496 + SkSTArray(const T* array, int count) 1.497 + : INHERITED(array, count, &fStorage) { 1.498 + } 1.499 + 1.500 + SkSTArray& operator= (const SkSTArray& array) { 1.501 + return *this = *(const INHERITED*)&array; 1.502 + } 1.503 + 1.504 + SkSTArray& operator= (const INHERITED& array) { 1.505 + INHERITED::operator=(array); 1.506 + return *this; 1.507 + } 1.508 + 1.509 +private: 1.510 + SkAlignedSTStorage<N,T> fStorage; 1.511 +}; 1.512 + 1.513 +#endif