gfx/skia/trunk/src/core/SkRTree.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/core/SkRTree.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,482 @@
     1.4 +/*
     1.5 + * Copyright 2012 Google Inc.
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + */
    1.10 +
    1.11 +#include "SkRTree.h"
    1.12 +#include "SkTSort.h"
    1.13 +
    1.14 +static inline uint32_t get_area(const SkIRect& rect);
    1.15 +static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2);
    1.16 +static inline uint32_t get_margin(const SkIRect& rect);
    1.17 +static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2);
    1.18 +static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out);
    1.19 +
    1.20 +///////////////////////////////////////////////////////////////////////////////////////////////////
    1.21 +
    1.22 +SkRTree* SkRTree::Create(int minChildren, int maxChildren, SkScalar aspectRatio,
    1.23 +            bool sortWhenBulkLoading) {
    1.24 +    if (minChildren < maxChildren && (maxChildren + 1) / 2 >= minChildren &&
    1.25 +        minChildren > 0 && maxChildren < static_cast<int>(SK_MaxU16)) {
    1.26 +        return new SkRTree(minChildren, maxChildren, aspectRatio, sortWhenBulkLoading);
    1.27 +    }
    1.28 +    return NULL;
    1.29 +}
    1.30 +
    1.31 +SkRTree::SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio,
    1.32 +        bool sortWhenBulkLoading)
    1.33 +    : fMinChildren(minChildren)
    1.34 +    , fMaxChildren(maxChildren)
    1.35 +    , fNodeSize(sizeof(Node) + sizeof(Branch) * maxChildren)
    1.36 +    , fCount(0)
    1.37 +    , fNodes(fNodeSize * 256)
    1.38 +    , fAspectRatio(aspectRatio)
    1.39 +    , fSortWhenBulkLoading(sortWhenBulkLoading) {
    1.40 +    SkASSERT(minChildren < maxChildren && minChildren > 0 && maxChildren <
    1.41 +             static_cast<int>(SK_MaxU16));
    1.42 +    SkASSERT((maxChildren + 1) / 2 >= minChildren);
    1.43 +    this->validate();
    1.44 +}
    1.45 +
    1.46 +SkRTree::~SkRTree() {
    1.47 +    this->clear();
    1.48 +}
    1.49 +
    1.50 +void SkRTree::insert(void* data, const SkIRect& bounds, bool defer) {
    1.51 +    this->validate();
    1.52 +    if (bounds.isEmpty()) {
    1.53 +        SkASSERT(false);
    1.54 +        return;
    1.55 +    }
    1.56 +    Branch newBranch;
    1.57 +    newBranch.fBounds = bounds;
    1.58 +    newBranch.fChild.data = data;
    1.59 +    if (this->isEmpty()) {
    1.60 +        // since a bulk-load into an existing tree is as of yet unimplemented (and arguably not
    1.61 +        // of vital importance right now), we only batch up inserts if the tree is empty.
    1.62 +        if (defer) {
    1.63 +            fDeferredInserts.push(newBranch);
    1.64 +            return;
    1.65 +        } else {
    1.66 +            fRoot.fChild.subtree = allocateNode(0);
    1.67 +            fRoot.fChild.subtree->fNumChildren = 0;
    1.68 +        }
    1.69 +    }
    1.70 +
    1.71 +    Branch* newSibling = insert(fRoot.fChild.subtree, &newBranch);
    1.72 +    fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree);
    1.73 +
    1.74 +    if (NULL != newSibling) {
    1.75 +        Node* oldRoot = fRoot.fChild.subtree;
    1.76 +        Node* newRoot = this->allocateNode(oldRoot->fLevel + 1);
    1.77 +        newRoot->fNumChildren = 2;
    1.78 +        *newRoot->child(0) = fRoot;
    1.79 +        *newRoot->child(1) = *newSibling;
    1.80 +        fRoot.fChild.subtree = newRoot;
    1.81 +        fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree);
    1.82 +    }
    1.83 +
    1.84 +    ++fCount;
    1.85 +    this->validate();
    1.86 +}
    1.87 +
    1.88 +void SkRTree::flushDeferredInserts() {
    1.89 +    this->validate();
    1.90 +    if (this->isEmpty() && fDeferredInserts.count() > 0) {
    1.91 +        fCount = fDeferredInserts.count();
    1.92 +        if (1 == fCount) {
    1.93 +            fRoot.fChild.subtree = allocateNode(0);
    1.94 +            fRoot.fChild.subtree->fNumChildren = 0;
    1.95 +            this->insert(fRoot.fChild.subtree, &fDeferredInserts[0]);
    1.96 +            fRoot.fBounds = fDeferredInserts[0].fBounds;
    1.97 +        } else {
    1.98 +            fRoot = this->bulkLoad(&fDeferredInserts);
    1.99 +        }
   1.100 +    } else {
   1.101 +        // TODO: some algorithm for bulk loading into an already populated tree
   1.102 +        SkASSERT(0 == fDeferredInserts.count());
   1.103 +    }
   1.104 +    fDeferredInserts.rewind();
   1.105 +    this->validate();
   1.106 +}
   1.107 +
   1.108 +void SkRTree::search(const SkIRect& query, SkTDArray<void*>* results) {
   1.109 +    this->validate();
   1.110 +    if (0 != fDeferredInserts.count()) {
   1.111 +        this->flushDeferredInserts();
   1.112 +    }
   1.113 +    if (!this->isEmpty() && SkIRect::IntersectsNoEmptyCheck(fRoot.fBounds, query)) {
   1.114 +        this->search(fRoot.fChild.subtree, query, results);
   1.115 +    }
   1.116 +    this->validate();
   1.117 +}
   1.118 +
   1.119 +void SkRTree::clear() {
   1.120 +    this->validate();
   1.121 +    fNodes.reset();
   1.122 +    fDeferredInserts.rewind();
   1.123 +    fCount = 0;
   1.124 +    this->validate();
   1.125 +}
   1.126 +
   1.127 +SkRTree::Node* SkRTree::allocateNode(uint16_t level) {
   1.128 +    Node* out = static_cast<Node*>(fNodes.allocThrow(fNodeSize));
   1.129 +    out->fNumChildren = 0;
   1.130 +    out->fLevel = level;
   1.131 +    return out;
   1.132 +}
   1.133 +
   1.134 +SkRTree::Branch* SkRTree::insert(Node* root, Branch* branch, uint16_t level) {
   1.135 +    Branch* toInsert = branch;
   1.136 +    if (root->fLevel != level) {
   1.137 +        int childIndex = this->chooseSubtree(root, branch);
   1.138 +        toInsert = this->insert(root->child(childIndex)->fChild.subtree, branch, level);
   1.139 +        root->child(childIndex)->fBounds = this->computeBounds(
   1.140 +            root->child(childIndex)->fChild.subtree);
   1.141 +    }
   1.142 +    if (NULL != toInsert) {
   1.143 +        if (root->fNumChildren == fMaxChildren) {
   1.144 +            // handle overflow by splitting. TODO: opportunistic reinsertion
   1.145 +
   1.146 +            // decide on a distribution to divide with
   1.147 +            Node* newSibling = this->allocateNode(root->fLevel);
   1.148 +            Branch* toDivide = SkNEW_ARRAY(Branch, fMaxChildren + 1);
   1.149 +            for (int i = 0; i < fMaxChildren; ++i) {
   1.150 +                toDivide[i] = *root->child(i);
   1.151 +            }
   1.152 +            toDivide[fMaxChildren] = *toInsert;
   1.153 +            int splitIndex = this->distributeChildren(toDivide);
   1.154 +
   1.155 +            // divide up the branches
   1.156 +            root->fNumChildren = splitIndex;
   1.157 +            newSibling->fNumChildren = fMaxChildren + 1 - splitIndex;
   1.158 +            for (int i = 0; i < splitIndex; ++i) {
   1.159 +                *root->child(i) = toDivide[i];
   1.160 +            }
   1.161 +            for (int i = splitIndex; i < fMaxChildren + 1; ++i) {
   1.162 +                *newSibling->child(i - splitIndex) = toDivide[i];
   1.163 +            }
   1.164 +            SkDELETE_ARRAY(toDivide);
   1.165 +
   1.166 +            // pass the new sibling branch up to the parent
   1.167 +            branch->fChild.subtree = newSibling;
   1.168 +            branch->fBounds = this->computeBounds(newSibling);
   1.169 +            return branch;
   1.170 +        } else {
   1.171 +            *root->child(root->fNumChildren) = *toInsert;
   1.172 +            ++root->fNumChildren;
   1.173 +            return NULL;
   1.174 +        }
   1.175 +    }
   1.176 +    return NULL;
   1.177 +}
   1.178 +
   1.179 +int SkRTree::chooseSubtree(Node* root, Branch* branch) {
   1.180 +    SkASSERT(!root->isLeaf());
   1.181 +    if (1 < root->fLevel) {
   1.182 +        // root's child pointers do not point to leaves, so minimize area increase
   1.183 +        int32_t minAreaIncrease = SK_MaxS32;
   1.184 +        int32_t minArea         = SK_MaxS32;
   1.185 +        int32_t bestSubtree     = -1;
   1.186 +        for (int i = 0; i < root->fNumChildren; ++i) {
   1.187 +            const SkIRect& subtreeBounds = root->child(i)->fBounds;
   1.188 +            int32_t areaIncrease = get_area_increase(subtreeBounds, branch->fBounds);
   1.189 +            // break ties in favor of subtree with smallest area
   1.190 +            if (areaIncrease < minAreaIncrease || (areaIncrease == minAreaIncrease &&
   1.191 +                static_cast<int32_t>(get_area(subtreeBounds)) < minArea)) {
   1.192 +                minAreaIncrease = areaIncrease;
   1.193 +                minArea = get_area(subtreeBounds);
   1.194 +                bestSubtree = i;
   1.195 +            }
   1.196 +        }
   1.197 +        SkASSERT(-1 != bestSubtree);
   1.198 +        return bestSubtree;
   1.199 +    } else if (1 == root->fLevel) {
   1.200 +        // root's child pointers do point to leaves, so minimize overlap increase
   1.201 +        int32_t minOverlapIncrease = SK_MaxS32;
   1.202 +        int32_t minAreaIncrease    = SK_MaxS32;
   1.203 +        int32_t bestSubtree = -1;
   1.204 +        for (int32_t i = 0; i < root->fNumChildren; ++i) {
   1.205 +            const SkIRect& subtreeBounds = root->child(i)->fBounds;
   1.206 +            SkIRect expandedBounds = subtreeBounds;
   1.207 +            join_no_empty_check(branch->fBounds, &expandedBounds);
   1.208 +            int32_t overlap = 0;
   1.209 +            for (int32_t j = 0; j < root->fNumChildren; ++j) {
   1.210 +                if (j == i) continue;
   1.211 +                // Note: this would be more correct if we subtracted the original pre-expanded
   1.212 +                // overlap, but computing overlaps is expensive and omitting it doesn't seem to
   1.213 +                // hurt query performance. See get_overlap_increase()
   1.214 +                overlap += get_overlap(expandedBounds, root->child(j)->fBounds);
   1.215 +            }
   1.216 +            // break ties with lowest area increase
   1.217 +            if (overlap < minOverlapIncrease || (overlap == minOverlapIncrease &&
   1.218 +                static_cast<int32_t>(get_area_increase(branch->fBounds, subtreeBounds)) <
   1.219 +                minAreaIncrease)) {
   1.220 +                minOverlapIncrease = overlap;
   1.221 +                minAreaIncrease = get_area_increase(branch->fBounds, subtreeBounds);
   1.222 +                bestSubtree = i;
   1.223 +            }
   1.224 +        }
   1.225 +        return bestSubtree;
   1.226 +    } else {
   1.227 +        SkASSERT(false);
   1.228 +        return 0;
   1.229 +    }
   1.230 +}
   1.231 +
   1.232 +SkIRect SkRTree::computeBounds(Node* n) {
   1.233 +    SkIRect r = n->child(0)->fBounds;
   1.234 +    for (int i = 1; i < n->fNumChildren; ++i) {
   1.235 +        join_no_empty_check(n->child(i)->fBounds, &r);
   1.236 +    }
   1.237 +    return r;
   1.238 +}
   1.239 +
   1.240 +int SkRTree::distributeChildren(Branch* children) {
   1.241 +    // We have two sides to sort by on each of two axes:
   1.242 +    const static SortSide sorts[2][2] = {
   1.243 +        {&SkIRect::fLeft, &SkIRect::fRight},
   1.244 +        {&SkIRect::fTop, &SkIRect::fBottom}
   1.245 +    };
   1.246 +
   1.247 +    // We want to choose an axis to split on, then a distribution along that axis; we'll need
   1.248 +    // three pieces of info: the split axis, the side to sort by on that axis, and the index
   1.249 +    // to split the sorted array on.
   1.250 +    int32_t sortSide = -1;
   1.251 +    int32_t k        = -1;
   1.252 +    int32_t axis     = -1;
   1.253 +    int32_t bestS    = SK_MaxS32;
   1.254 +
   1.255 +    // Evaluate each axis, we want the min summed margin-value (s) over all distributions
   1.256 +    for (int i = 0; i < 2; ++i) {
   1.257 +        int32_t minOverlap   = SK_MaxS32;
   1.258 +        int32_t minArea      = SK_MaxS32;
   1.259 +        int32_t axisBestK    = 0;
   1.260 +        int32_t axisBestSide = 0;
   1.261 +        int32_t s = 0;
   1.262 +
   1.263 +        // Evaluate each sort
   1.264 +        for (int j = 0; j < 2; ++j) {
   1.265 +            SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[i][j]));
   1.266 +
   1.267 +            // Evaluate each split index
   1.268 +            for (int32_t k = 1; k <= fMaxChildren - 2 * fMinChildren + 2; ++k) {
   1.269 +                SkIRect r1 = children[0].fBounds;
   1.270 +                SkIRect r2 = children[fMinChildren + k - 1].fBounds;
   1.271 +                for (int32_t l = 1; l < fMinChildren - 1 + k; ++l) {
   1.272 +                    join_no_empty_check(children[l].fBounds, &r1);
   1.273 +                }
   1.274 +                for (int32_t l = fMinChildren + k; l < fMaxChildren + 1; ++l) {
   1.275 +                    join_no_empty_check(children[l].fBounds, &r2);
   1.276 +                }
   1.277 +
   1.278 +                int32_t area = get_area(r1) + get_area(r2);
   1.279 +                int32_t overlap = get_overlap(r1, r2);
   1.280 +                s += get_margin(r1) + get_margin(r2);
   1.281 +
   1.282 +                if (overlap < minOverlap || (overlap == minOverlap && area < minArea)) {
   1.283 +                    minOverlap = overlap;
   1.284 +                    minArea = area;
   1.285 +                    axisBestSide = j;
   1.286 +                    axisBestK = k;
   1.287 +                }
   1.288 +            }
   1.289 +        }
   1.290 +
   1.291 +        if (s < bestS) {
   1.292 +            bestS = s;
   1.293 +            axis = i;
   1.294 +            sortSide = axisBestSide;
   1.295 +            k = axisBestK;
   1.296 +        }
   1.297 +    }
   1.298 +
   1.299 +    // replicate the sort of the winning distribution, (we can skip this if the last
   1.300 +    // sort ended up being best)
   1.301 +    if (!(axis == 1 && sortSide == 1)) {
   1.302 +        SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[axis][sortSide]));
   1.303 +    }
   1.304 +
   1.305 +    return fMinChildren - 1 + k;
   1.306 +}
   1.307 +
   1.308 +void SkRTree::search(Node* root, const SkIRect query, SkTDArray<void*>* results) const {
   1.309 +    for (int i = 0; i < root->fNumChildren; ++i) {
   1.310 +        if (SkIRect::IntersectsNoEmptyCheck(root->child(i)->fBounds, query)) {
   1.311 +            if (root->isLeaf()) {
   1.312 +                results->push(root->child(i)->fChild.data);
   1.313 +            } else {
   1.314 +                this->search(root->child(i)->fChild.subtree, query, results);
   1.315 +            }
   1.316 +        }
   1.317 +    }
   1.318 +}
   1.319 +
   1.320 +SkRTree::Branch SkRTree::bulkLoad(SkTDArray<Branch>* branches, int level) {
   1.321 +    if (branches->count() == 1) {
   1.322 +        // Only one branch: it will be the root
   1.323 +        Branch out = (*branches)[0];
   1.324 +        branches->rewind();
   1.325 +        return out;
   1.326 +    } else {
   1.327 +        // We sort the whole list by y coordinates, if we are told to do so.
   1.328 +        //
   1.329 +        // We expect Webkit / Blink to give us a reasonable x,y order.
   1.330 +        // Avoiding this call resulted in a 17% win for recording with
   1.331 +        // negligible difference in playback speed.
   1.332 +        if (fSortWhenBulkLoading) {
   1.333 +            SkTQSort(branches->begin(), branches->end() - 1, RectLessY());
   1.334 +        }
   1.335 +
   1.336 +        int numBranches = branches->count() / fMaxChildren;
   1.337 +        int remainder = branches->count() % fMaxChildren;
   1.338 +        int newBranches = 0;
   1.339 +
   1.340 +        if (0 != remainder) {
   1.341 +            ++numBranches;
   1.342 +            // If the remainder isn't enough to fill a node, we'll need to add fewer nodes to
   1.343 +            // some other branches to make up for it
   1.344 +            if (remainder >= fMinChildren) {
   1.345 +                remainder = 0;
   1.346 +            } else {
   1.347 +                remainder = fMinChildren - remainder;
   1.348 +            }
   1.349 +        }
   1.350 +
   1.351 +        int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) *
   1.352 +                                     SkScalarInvert(fAspectRatio)));
   1.353 +        int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) /
   1.354 +                                    SkIntToScalar(numStrips));
   1.355 +        int currentBranch = 0;
   1.356 +
   1.357 +        for (int i = 0; i < numStrips; ++i) {
   1.358 +            // Once again, if we are told to do so, we sort by x.
   1.359 +            if (fSortWhenBulkLoading) {
   1.360 +                int begin = currentBranch;
   1.361 +                int end = currentBranch + numTiles * fMaxChildren - SkMin32(remainder,
   1.362 +                        (fMaxChildren - fMinChildren) * numTiles);
   1.363 +                if (end > branches->count()) {
   1.364 +                    end = branches->count();
   1.365 +                }
   1.366 +
   1.367 +                // Now we sort horizontal strips of rectangles by their x coords
   1.368 +                SkTQSort(branches->begin() + begin, branches->begin() + end - 1, RectLessX());
   1.369 +            }
   1.370 +
   1.371 +            for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) {
   1.372 +                int incrementBy = fMaxChildren;
   1.373 +                if (remainder != 0) {
   1.374 +                    // if need be, omit some nodes to make up for remainder
   1.375 +                    if (remainder <= fMaxChildren - fMinChildren) {
   1.376 +                        incrementBy -= remainder;
   1.377 +                        remainder = 0;
   1.378 +                    } else {
   1.379 +                        incrementBy = fMinChildren;
   1.380 +                        remainder -= fMaxChildren - fMinChildren;
   1.381 +                    }
   1.382 +                }
   1.383 +                Node* n = allocateNode(level);
   1.384 +                n->fNumChildren = 1;
   1.385 +                *n->child(0) = (*branches)[currentBranch];
   1.386 +                Branch b;
   1.387 +                b.fBounds = (*branches)[currentBranch].fBounds;
   1.388 +                b.fChild.subtree = n;
   1.389 +                ++currentBranch;
   1.390 +                for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) {
   1.391 +                    b.fBounds.join((*branches)[currentBranch].fBounds);
   1.392 +                    *n->child(k) = (*branches)[currentBranch];
   1.393 +                    ++n->fNumChildren;
   1.394 +                    ++currentBranch;
   1.395 +                }
   1.396 +                (*branches)[newBranches] = b;
   1.397 +                ++newBranches;
   1.398 +            }
   1.399 +        }
   1.400 +        branches->setCount(newBranches);
   1.401 +        return this->bulkLoad(branches, level + 1);
   1.402 +    }
   1.403 +}
   1.404 +
   1.405 +void SkRTree::validate() {
   1.406 +#ifdef SK_DEBUG
   1.407 +    if (this->isEmpty()) {
   1.408 +        return;
   1.409 +    }
   1.410 +    SkASSERT(fCount == this->validateSubtree(fRoot.fChild.subtree, fRoot.fBounds, true));
   1.411 +#endif
   1.412 +}
   1.413 +
   1.414 +int SkRTree::validateSubtree(Node* root, SkIRect bounds, bool isRoot) {
   1.415 +    // make sure the pointer is pointing to a valid place
   1.416 +    SkASSERT(fNodes.contains(static_cast<void*>(root)));
   1.417 +
   1.418 +    if (isRoot) {
   1.419 +        // If the root of this subtree is the overall root, we have looser standards:
   1.420 +        if (root->isLeaf()) {
   1.421 +            SkASSERT(root->fNumChildren >= 1 && root->fNumChildren <= fMaxChildren);
   1.422 +        } else {
   1.423 +            SkASSERT(root->fNumChildren >= 2 && root->fNumChildren <= fMaxChildren);
   1.424 +        }
   1.425 +    } else {
   1.426 +        SkASSERT(root->fNumChildren >= fMinChildren && root->fNumChildren <= fMaxChildren);
   1.427 +    }
   1.428 +
   1.429 +    for (int i = 0; i < root->fNumChildren; ++i) {
   1.430 +        SkASSERT(bounds.contains(root->child(i)->fBounds));
   1.431 +    }
   1.432 +
   1.433 +    if (root->isLeaf()) {
   1.434 +        SkASSERT(0 == root->fLevel);
   1.435 +        return root->fNumChildren;
   1.436 +    } else {
   1.437 +        int childCount = 0;
   1.438 +        for (int i = 0; i < root->fNumChildren; ++i) {
   1.439 +            SkASSERT(root->child(i)->fChild.subtree->fLevel == root->fLevel - 1);
   1.440 +            childCount += this->validateSubtree(root->child(i)->fChild.subtree,
   1.441 +                                                root->child(i)->fBounds);
   1.442 +        }
   1.443 +        return childCount;
   1.444 +    }
   1.445 +}
   1.446 +
   1.447 +void SkRTree::rewindInserts() {
   1.448 +    SkASSERT(this->isEmpty()); // Currently only supports deferred inserts
   1.449 +    while (!fDeferredInserts.isEmpty() &&
   1.450 +           fClient->shouldRewind(fDeferredInserts.top().fChild.data)) {
   1.451 +        fDeferredInserts.pop();
   1.452 +    }
   1.453 +}
   1.454 +
   1.455 +///////////////////////////////////////////////////////////////////////////////////////////////////
   1.456 +
   1.457 +static inline uint32_t get_area(const SkIRect& rect) {
   1.458 +    return rect.width() * rect.height();
   1.459 +}
   1.460 +
   1.461 +static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2) {
   1.462 +    // I suspect there's a more efficient way of computing this...
   1.463 +    return SkMax32(0, SkMin32(rect1.fRight, rect2.fRight) - SkMax32(rect1.fLeft, rect2.fLeft)) *
   1.464 +           SkMax32(0, SkMin32(rect1.fBottom, rect2.fBottom) - SkMax32(rect1.fTop, rect2.fTop));
   1.465 +}
   1.466 +
   1.467 +// Get the margin (aka perimeter)
   1.468 +static inline uint32_t get_margin(const SkIRect& rect) {
   1.469 +    return 2 * (rect.width() + rect.height());
   1.470 +}
   1.471 +
   1.472 +static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2) {
   1.473 +    join_no_empty_check(rect1, &rect2);
   1.474 +    return get_area(rect2) - get_area(rect1);
   1.475 +}
   1.476 +
   1.477 +// Expand 'out' to include 'joinWith'
   1.478 +static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out) {
   1.479 +    // since we check for empty bounds on insert, we know we'll never have empty rects
   1.480 +    // and we can save the empty check that SkIRect::join requires
   1.481 +    if (joinWith.fLeft < out->fLeft) { out->fLeft = joinWith.fLeft; }
   1.482 +    if (joinWith.fTop < out->fTop) { out->fTop = joinWith.fTop; }
   1.483 +    if (joinWith.fRight > out->fRight) { out->fRight = joinWith.fRight; }
   1.484 +    if (joinWith.fBottom > out->fBottom) { out->fBottom = joinWith.fBottom; }
   1.485 +}

mercurial