gfx/skia/trunk/src/gpu/GrPathUtils.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/gfx/skia/trunk/src/gpu/GrPathUtils.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,173 @@
     1.4 +/*
     1.5 + * Copyright 2011 Google Inc.
     1.6 + *
     1.7 + * Use of this source code is governed by a BSD-style license that can be
     1.8 + * found in the LICENSE file.
     1.9 + */
    1.10 +
    1.11 +#ifndef GrPathUtils_DEFINED
    1.12 +#define GrPathUtils_DEFINED
    1.13 +
    1.14 +#include "GrPoint.h"
    1.15 +#include "SkRect.h"
    1.16 +#include "SkPath.h"
    1.17 +#include "SkTArray.h"
    1.18 +
    1.19 +class SkMatrix;
    1.20 +
    1.21 +/**
    1.22 + *  Utilities for evaluating paths.
    1.23 + */
    1.24 +namespace GrPathUtils {
    1.25 +    SkScalar scaleToleranceToSrc(SkScalar devTol,
    1.26 +                                 const SkMatrix& viewM,
    1.27 +                                 const SkRect& pathBounds);
    1.28 +
    1.29 +    /// Since we divide by tol if we're computing exact worst-case bounds,
    1.30 +    /// very small tolerances will be increased to gMinCurveTol.
    1.31 +    int worstCasePointCount(const SkPath&,
    1.32 +                            int* subpaths,
    1.33 +                            SkScalar tol);
    1.34 +
    1.35 +    /// Since we divide by tol if we're computing exact worst-case bounds,
    1.36 +    /// very small tolerances will be increased to gMinCurveTol.
    1.37 +    uint32_t quadraticPointCount(const GrPoint points[], SkScalar tol);
    1.38 +
    1.39 +    uint32_t generateQuadraticPoints(const GrPoint& p0,
    1.40 +                                     const GrPoint& p1,
    1.41 +                                     const GrPoint& p2,
    1.42 +                                     SkScalar tolSqd,
    1.43 +                                     GrPoint** points,
    1.44 +                                     uint32_t pointsLeft);
    1.45 +
    1.46 +    /// Since we divide by tol if we're computing exact worst-case bounds,
    1.47 +    /// very small tolerances will be increased to gMinCurveTol.
    1.48 +    uint32_t cubicPointCount(const GrPoint points[], SkScalar tol);
    1.49 +
    1.50 +    uint32_t generateCubicPoints(const GrPoint& p0,
    1.51 +                                 const GrPoint& p1,
    1.52 +                                 const GrPoint& p2,
    1.53 +                                 const GrPoint& p3,
    1.54 +                                 SkScalar tolSqd,
    1.55 +                                 GrPoint** points,
    1.56 +                                 uint32_t pointsLeft);
    1.57 +
    1.58 +    // A 2x3 matrix that goes from the 2d space coordinates to UV space where
    1.59 +    // u^2-v = 0 specifies the quad. The matrix is determined by the control
    1.60 +    // points of the quadratic.
    1.61 +    class QuadUVMatrix {
    1.62 +    public:
    1.63 +        QuadUVMatrix() {};
    1.64 +        // Initialize the matrix from the control pts
    1.65 +        QuadUVMatrix(const GrPoint controlPts[3]) { this->set(controlPts); }
    1.66 +        void set(const GrPoint controlPts[3]);
    1.67 +
    1.68 +        /**
    1.69 +         * Applies the matrix to vertex positions to compute UV coords. This
    1.70 +         * has been templated so that the compiler can easliy unroll the loop
    1.71 +         * and reorder to avoid stalling for loads. The assumption is that a
    1.72 +         * path renderer will have a small fixed number of vertices that it
    1.73 +         * uploads for each quad.
    1.74 +         *
    1.75 +         * N is the number of vertices.
    1.76 +         * STRIDE is the size of each vertex.
    1.77 +         * UV_OFFSET is the offset of the UV values within each vertex.
    1.78 +         * vertices is a pointer to the first vertex.
    1.79 +         */
    1.80 +        template <int N, size_t STRIDE, size_t UV_OFFSET>
    1.81 +        void apply(const void* vertices) {
    1.82 +            intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
    1.83 +            intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
    1.84 +            float sx = fM[0];
    1.85 +            float kx = fM[1];
    1.86 +            float tx = fM[2];
    1.87 +            float ky = fM[3];
    1.88 +            float sy = fM[4];
    1.89 +            float ty = fM[5];
    1.90 +            for (int i = 0; i < N; ++i) {
    1.91 +                const GrPoint* xy = reinterpret_cast<const GrPoint*>(xyPtr);
    1.92 +                GrPoint* uv = reinterpret_cast<GrPoint*>(uvPtr);
    1.93 +                uv->fX = sx * xy->fX + kx * xy->fY + tx;
    1.94 +                uv->fY = ky * xy->fX + sy * xy->fY + ty;
    1.95 +                xyPtr += STRIDE;
    1.96 +                uvPtr += STRIDE;
    1.97 +            }
    1.98 +        }
    1.99 +    private:
   1.100 +        float fM[6];
   1.101 +    };
   1.102 +
   1.103 +    // Input is 3 control points and a weight for a bezier conic. Calculates the
   1.104 +    // three linear functionals (K,L,M) that represent the implicit equation of the
   1.105 +    // conic, K^2 - LM.
   1.106 +    //
   1.107 +    // Output:
   1.108 +    //  K = (klm[0], klm[1], klm[2])
   1.109 +    //  L = (klm[3], klm[4], klm[5])
   1.110 +    //  M = (klm[6], klm[7], klm[8])
   1.111 +    void getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]);
   1.112 +
   1.113 +    // Converts a cubic into a sequence of quads. If working in device space
   1.114 +    // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
   1.115 +    // result is sets of 3 points in quads (TODO: share endpoints in returned
   1.116 +    // array)
   1.117 +    // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
   1.118 +    // ensure that the new control point lies between the lines ab and cd. The
   1.119 +    // convex path renderer requires this. It starts with a path where all the
   1.120 +    // control points taken together form a convex polygon. It relies on this
   1.121 +    // property and the quadratic approximation of cubics step cannot alter it.
   1.122 +    // Setting constrainWithinTangents to true enforces this property. When this
   1.123 +    // is true the cubic must be simple and dir must specify the orientation of
   1.124 +    // the cubic. Otherwise, dir is ignored.
   1.125 +    void convertCubicToQuads(const GrPoint p[4],
   1.126 +                             SkScalar tolScale,
   1.127 +                             bool constrainWithinTangents,
   1.128 +                             SkPath::Direction dir,
   1.129 +                             SkTArray<SkPoint, true>* quads);
   1.130 +
   1.131 +    // Chops the cubic bezier passed in by src, at the double point (intersection point)
   1.132 +    // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
   1.133 +    // the double point: ls and ms. We chop the cubic at these values if they are between 0 and 1.
   1.134 +    // Return value:
   1.135 +    // Value of 3: ls and ms are both between (0,1), and dst will contain the three cubics,
   1.136 +    //             dst[0..3], dst[3..6], and dst[6..9] if dst is not NULL
   1.137 +    // Value of 2: Only one of ls and ms are between (0,1), and dst will contain the two cubics,
   1.138 +    //             dst[0..3] and dst[3..6] if dst is not NULL
   1.139 +    // Value of 1: Neither ls or ms are between (0,1), and dst will contain the one original cubic,
   1.140 +    //             dst[0..3] if dst is not NULL
   1.141 +    //
   1.142 +    // Optional KLM Calculation:
   1.143 +    // The function can also return the KLM linear functionals for the chopped cubic implicit form
   1.144 +    // of K^3 - LM.
   1.145 +    // It will calculate a single set of KLM values that can be shared by all sub cubics, except
   1.146 +    // for the subsection that is "the loop" the K and L values need to be negated.
   1.147 +    // Output:
   1.148 +    // klm:     Holds the values for the linear functionals as:
   1.149 +    //          K = (klm[0], klm[1], klm[2])
   1.150 +    //          L = (klm[3], klm[4], klm[5])
   1.151 +    //          M = (klm[6], klm[7], klm[8])
   1.152 +    // klm_rev: These values are flags for the corresponding sub cubic saying whether or not
   1.153 +    //          the K and L values need to be flipped. A value of -1.f means flip K and L and
   1.154 +    //          a value of 1.f means do nothing.
   1.155 +    //          *****DO NOT FLIP M, JUST K AND L*****
   1.156 +    //
   1.157 +    // Notice that the klm lines are calculated in the same space as the input control points.
   1.158 +    // If you transform the points the lines will also need to be transformed. This can be done
   1.159 +    // by mapping the lines with the inverse-transpose of the matrix used to map the points.
   1.160 +    int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = NULL,
   1.161 +                                    SkScalar klm[9] = NULL, SkScalar klm_rev[3] = NULL);
   1.162 +
   1.163 +    // Input is p which holds the 4 control points of a non-rational cubic Bezier curve.
   1.164 +    // Output is the coefficients of the three linear functionals K, L, & M which
   1.165 +    // represent the implicit form of the cubic as f(x,y,w) = K^3 - LM. The w term
   1.166 +    // will always be 1. The output is stored in the array klm, where the values are:
   1.167 +    // K = (klm[0], klm[1], klm[2])
   1.168 +    // L = (klm[3], klm[4], klm[5])
   1.169 +    // M = (klm[6], klm[7], klm[8])
   1.170 +    //
   1.171 +    // Notice that the klm lines are calculated in the same space as the input control points.
   1.172 +    // If you transform the points the lines will also need to be transformed. This can be done
   1.173 +    // by mapping the lines with the inverse-transpose of the matrix used to map the points.
   1.174 +    void getCubicKLM(const SkPoint p[4], SkScalar klm[9]);
   1.175 +};
   1.176 +#endif

mercurial