gfx/skia/trunk/src/gpu/GrPathUtils.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * Copyright 2011 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     8 #ifndef GrPathUtils_DEFINED
     9 #define GrPathUtils_DEFINED
    11 #include "GrPoint.h"
    12 #include "SkRect.h"
    13 #include "SkPath.h"
    14 #include "SkTArray.h"
    16 class SkMatrix;
    18 /**
    19  *  Utilities for evaluating paths.
    20  */
    21 namespace GrPathUtils {
    22     SkScalar scaleToleranceToSrc(SkScalar devTol,
    23                                  const SkMatrix& viewM,
    24                                  const SkRect& pathBounds);
    26     /// Since we divide by tol if we're computing exact worst-case bounds,
    27     /// very small tolerances will be increased to gMinCurveTol.
    28     int worstCasePointCount(const SkPath&,
    29                             int* subpaths,
    30                             SkScalar tol);
    32     /// Since we divide by tol if we're computing exact worst-case bounds,
    33     /// very small tolerances will be increased to gMinCurveTol.
    34     uint32_t quadraticPointCount(const GrPoint points[], SkScalar tol);
    36     uint32_t generateQuadraticPoints(const GrPoint& p0,
    37                                      const GrPoint& p1,
    38                                      const GrPoint& p2,
    39                                      SkScalar tolSqd,
    40                                      GrPoint** points,
    41                                      uint32_t pointsLeft);
    43     /// Since we divide by tol if we're computing exact worst-case bounds,
    44     /// very small tolerances will be increased to gMinCurveTol.
    45     uint32_t cubicPointCount(const GrPoint points[], SkScalar tol);
    47     uint32_t generateCubicPoints(const GrPoint& p0,
    48                                  const GrPoint& p1,
    49                                  const GrPoint& p2,
    50                                  const GrPoint& p3,
    51                                  SkScalar tolSqd,
    52                                  GrPoint** points,
    53                                  uint32_t pointsLeft);
    55     // A 2x3 matrix that goes from the 2d space coordinates to UV space where
    56     // u^2-v = 0 specifies the quad. The matrix is determined by the control
    57     // points of the quadratic.
    58     class QuadUVMatrix {
    59     public:
    60         QuadUVMatrix() {};
    61         // Initialize the matrix from the control pts
    62         QuadUVMatrix(const GrPoint controlPts[3]) { this->set(controlPts); }
    63         void set(const GrPoint controlPts[3]);
    65         /**
    66          * Applies the matrix to vertex positions to compute UV coords. This
    67          * has been templated so that the compiler can easliy unroll the loop
    68          * and reorder to avoid stalling for loads. The assumption is that a
    69          * path renderer will have a small fixed number of vertices that it
    70          * uploads for each quad.
    71          *
    72          * N is the number of vertices.
    73          * STRIDE is the size of each vertex.
    74          * UV_OFFSET is the offset of the UV values within each vertex.
    75          * vertices is a pointer to the first vertex.
    76          */
    77         template <int N, size_t STRIDE, size_t UV_OFFSET>
    78         void apply(const void* vertices) {
    79             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
    80             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
    81             float sx = fM[0];
    82             float kx = fM[1];
    83             float tx = fM[2];
    84             float ky = fM[3];
    85             float sy = fM[4];
    86             float ty = fM[5];
    87             for (int i = 0; i < N; ++i) {
    88                 const GrPoint* xy = reinterpret_cast<const GrPoint*>(xyPtr);
    89                 GrPoint* uv = reinterpret_cast<GrPoint*>(uvPtr);
    90                 uv->fX = sx * xy->fX + kx * xy->fY + tx;
    91                 uv->fY = ky * xy->fX + sy * xy->fY + ty;
    92                 xyPtr += STRIDE;
    93                 uvPtr += STRIDE;
    94             }
    95         }
    96     private:
    97         float fM[6];
    98     };
   100     // Input is 3 control points and a weight for a bezier conic. Calculates the
   101     // three linear functionals (K,L,M) that represent the implicit equation of the
   102     // conic, K^2 - LM.
   103     //
   104     // Output:
   105     //  K = (klm[0], klm[1], klm[2])
   106     //  L = (klm[3], klm[4], klm[5])
   107     //  M = (klm[6], klm[7], klm[8])
   108     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]);
   110     // Converts a cubic into a sequence of quads. If working in device space
   111     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
   112     // result is sets of 3 points in quads (TODO: share endpoints in returned
   113     // array)
   114     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
   115     // ensure that the new control point lies between the lines ab and cd. The
   116     // convex path renderer requires this. It starts with a path where all the
   117     // control points taken together form a convex polygon. It relies on this
   118     // property and the quadratic approximation of cubics step cannot alter it.
   119     // Setting constrainWithinTangents to true enforces this property. When this
   120     // is true the cubic must be simple and dir must specify the orientation of
   121     // the cubic. Otherwise, dir is ignored.
   122     void convertCubicToQuads(const GrPoint p[4],
   123                              SkScalar tolScale,
   124                              bool constrainWithinTangents,
   125                              SkPath::Direction dir,
   126                              SkTArray<SkPoint, true>* quads);
   128     // Chops the cubic bezier passed in by src, at the double point (intersection point)
   129     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
   130     // the double point: ls and ms. We chop the cubic at these values if they are between 0 and 1.
   131     // Return value:
   132     // Value of 3: ls and ms are both between (0,1), and dst will contain the three cubics,
   133     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not NULL
   134     // Value of 2: Only one of ls and ms are between (0,1), and dst will contain the two cubics,
   135     //             dst[0..3] and dst[3..6] if dst is not NULL
   136     // Value of 1: Neither ls or ms are between (0,1), and dst will contain the one original cubic,
   137     //             dst[0..3] if dst is not NULL
   138     //
   139     // Optional KLM Calculation:
   140     // The function can also return the KLM linear functionals for the chopped cubic implicit form
   141     // of K^3 - LM.
   142     // It will calculate a single set of KLM values that can be shared by all sub cubics, except
   143     // for the subsection that is "the loop" the K and L values need to be negated.
   144     // Output:
   145     // klm:     Holds the values for the linear functionals as:
   146     //          K = (klm[0], klm[1], klm[2])
   147     //          L = (klm[3], klm[4], klm[5])
   148     //          M = (klm[6], klm[7], klm[8])
   149     // klm_rev: These values are flags for the corresponding sub cubic saying whether or not
   150     //          the K and L values need to be flipped. A value of -1.f means flip K and L and
   151     //          a value of 1.f means do nothing.
   152     //          *****DO NOT FLIP M, JUST K AND L*****
   153     //
   154     // Notice that the klm lines are calculated in the same space as the input control points.
   155     // If you transform the points the lines will also need to be transformed. This can be done
   156     // by mapping the lines with the inverse-transpose of the matrix used to map the points.
   157     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = NULL,
   158                                     SkScalar klm[9] = NULL, SkScalar klm_rev[3] = NULL);
   160     // Input is p which holds the 4 control points of a non-rational cubic Bezier curve.
   161     // Output is the coefficients of the three linear functionals K, L, & M which
   162     // represent the implicit form of the cubic as f(x,y,w) = K^3 - LM. The w term
   163     // will always be 1. The output is stored in the array klm, where the values are:
   164     // K = (klm[0], klm[1], klm[2])
   165     // L = (klm[3], klm[4], klm[5])
   166     // M = (klm[6], klm[7], klm[8])
   167     //
   168     // Notice that the klm lines are calculated in the same space as the input control points.
   169     // If you transform the points the lines will also need to be transformed. This can be done
   170     // by mapping the lines with the inverse-transpose of the matrix used to map the points.
   171     void getCubicKLM(const SkPoint p[4], SkScalar klm[9]);
   172 };
   173 #endif

mercurial