1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/opts/SkBitmapProcState_opts_SSSE3.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,760 @@ 1.4 +/* 1.5 + * Copyright 2012 The Android Open Source Project 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#include "SkBitmapProcState_opts_SSSE3.h" 1.12 +#include "SkPaint.h" 1.13 +#include "SkUtils.h" 1.14 + 1.15 +/* With the exception of the Android framework we always build the SSSE3 functions 1.16 + * and enable the caller to determine SSSE3 support. However for the Android framework 1.17 + * if the device does not support SSSE3 then the compiler will not supply the required 1.18 + * -mssse3 option needed to build this file, so instead we provide a stub implementation. 1.19 + */ 1.20 +#if !defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) || SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 1.21 + 1.22 +#include <tmmintrin.h> // SSSE3 1.23 + 1.24 +// adding anonymous namespace seemed to force gcc to inline directly the 1.25 +// instantiation, instead of creating the functions 1.26 +// S32_generic_D32_filter_DX_SSSE3<true> and 1.27 +// S32_generic_D32_filter_DX_SSSE3<false> which were then called by the 1.28 +// external functions. 1.29 +namespace { 1.30 +// In this file, variations for alpha and non alpha versions are implemented 1.31 +// with a template, as it makes the code more compact and a bit easier to 1.32 +// maintain, while making the compiler generate the same exact code as with 1.33 +// two functions that only differ by a few lines. 1.34 + 1.35 + 1.36 +// Prepare all necessary constants for a round of processing for two pixel 1.37 +// pairs. 1.38 +// @param xy is the location where the xy parameters for four pixels should be 1.39 +// read from. It is identical in concept with argument two of 1.40 +// S32_{opaque}_D32_filter_DX methods. 1.41 +// @param mask_3FFF vector of 32 bit constants containing 3FFF, 1.42 +// suitable to mask the bottom 14 bits of a XY value. 1.43 +// @param mask_000F vector of 32 bit constants containing 000F, 1.44 +// suitable to mask the bottom 4 bits of a XY value. 1.45 +// @param sixteen_8bit vector of 8 bit components containing the value 16. 1.46 +// @param mask_dist_select vector of 8 bit components containing the shuffling 1.47 +// parameters to reorder x[0-3] parameters. 1.48 +// @param all_x_result vector of 8 bit components that will contain the 1.49 +// (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return. 1.50 +// @param sixteen_minus_x vector of 8 bit components, containing 1.51 +// (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0)) 1.52 +inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy, 1.53 + const __m128i& mask_3FFF, 1.54 + const __m128i& mask_000F, 1.55 + const __m128i& sixteen_8bit, 1.56 + const __m128i& mask_dist_select, 1.57 + __m128i* all_x_result, 1.58 + __m128i* sixteen_minus_x, 1.59 + int* x0, 1.60 + int* x1) { 1.61 + const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); 1.62 + 1.63 + // 4 delta X 1.64 + // (x03, x02, x01, x00) 1.65 + const __m128i x0_wide = _mm_srli_epi32(xx, 18); 1.66 + // (x13, x12, x11, x10) 1.67 + const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF); 1.68 + 1.69 + _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide); 1.70 + _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide); 1.71 + 1.72 + __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F); 1.73 + 1.74 + // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) 1.75 + all_x = _mm_shuffle_epi8(all_x, mask_dist_select); 1.76 + 1.77 + *all_x_result = all_x; 1.78 + // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0)) 1.79 + *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x); 1.80 +} 1.81 + 1.82 +// Prepare all necessary constants for a round of processing for two pixel 1.83 +// pairs. 1.84 +// @param xy is the location where the xy parameters for four pixels should be 1.85 +// read from. It is identical in concept with argument two of 1.86 +// S32_{opaque}_D32_filter_DXDY methods. 1.87 +// @param mask_3FFF vector of 32 bit constants containing 3FFF, 1.88 +// suitable to mask the bottom 14 bits of a XY value. 1.89 +// @param mask_000F vector of 32 bit constants containing 000F, 1.90 +// suitable to mask the bottom 4 bits of a XY value. 1.91 +// @param sixteen_8bit vector of 8 bit components containing the value 16. 1.92 +// @param mask_dist_select vector of 8 bit components containing the shuffling 1.93 +// parameters to reorder x[0-3] parameters. 1.94 +// @param all_xy_result vector of 8 bit components that will contain the 1.95 +// (4x(y1), 4x(y0), 4x(x1), 4x(x0)) upon return. 1.96 +// @param sixteen_minus_x vector of 8 bit components, containing 1.97 +// (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)). 1.98 +inline void PrepareConstantsTwoPixelPairsDXDY(const uint32_t* xy, 1.99 + const __m128i& mask_3FFF, 1.100 + const __m128i& mask_000F, 1.101 + const __m128i& sixteen_8bit, 1.102 + const __m128i& mask_dist_select, 1.103 + __m128i* all_xy_result, 1.104 + __m128i* sixteen_minus_xy, 1.105 + int* xy0, int* xy1) { 1.106 + const __m128i xy_wide = 1.107 + _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); 1.108 + 1.109 + // (x10, y10, x00, y00) 1.110 + __m128i xy0_wide = _mm_srli_epi32(xy_wide, 18); 1.111 + // (y10, y00, x10, x00) 1.112 + xy0_wide = _mm_shuffle_epi32(xy0_wide, _MM_SHUFFLE(2, 0, 3, 1)); 1.113 + // (x11, y11, x01, y01) 1.114 + __m128i xy1_wide = _mm_and_si128(xy_wide, mask_3FFF); 1.115 + // (y11, y01, x11, x01) 1.116 + xy1_wide = _mm_shuffle_epi32(xy1_wide, _MM_SHUFFLE(2, 0, 3, 1)); 1.117 + 1.118 + _mm_storeu_si128(reinterpret_cast<__m128i *>(xy0), xy0_wide); 1.119 + _mm_storeu_si128(reinterpret_cast<__m128i *>(xy1), xy1_wide); 1.120 + 1.121 + // (x1, y1, x0, y0) 1.122 + __m128i all_xy = _mm_and_si128(_mm_srli_epi32(xy_wide, 14), mask_000F); 1.123 + // (y1, y0, x1, x0) 1.124 + all_xy = _mm_shuffle_epi32(all_xy, _MM_SHUFFLE(2, 0, 3, 1)); 1.125 + // (4x(y1), 4x(y0), 4x(x1), 4x(x0)) 1.126 + all_xy = _mm_shuffle_epi8(all_xy, mask_dist_select); 1.127 + 1.128 + *all_xy_result = all_xy; 1.129 + // (4x(16-y1), 4x(16-y0), 4x(16-x1), 4x(16-x0)) 1.130 + *sixteen_minus_xy = _mm_sub_epi8(sixteen_8bit, all_xy); 1.131 +} 1.132 + 1.133 +// Helper function used when processing one pixel pair. 1.134 +// @param pixel0..3 are the four input pixels 1.135 +// @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This 1.136 +// will contain (4x(x1, 16-x1), 4x(x0, 16-x0)) 1.137 +// or (4x(x3, 16-x3), 4x(x2, 16-x2)) 1.138 +// @return a vector of 16 bit components containing: 1.139 +// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) 1.140 +inline __m128i ProcessPixelPairHelper(uint32_t pixel0, 1.141 + uint32_t pixel1, 1.142 + uint32_t pixel2, 1.143 + uint32_t pixel3, 1.144 + const __m128i& scale_x) { 1.145 + __m128i a0, a1, a2, a3; 1.146 + // Load 2 pairs of pixels 1.147 + a0 = _mm_cvtsi32_si128(pixel0); 1.148 + a1 = _mm_cvtsi32_si128(pixel1); 1.149 + 1.150 + // Interleave pixels. 1.151 + // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) 1.152 + a0 = _mm_unpacklo_epi8(a0, a1); 1.153 + 1.154 + a2 = _mm_cvtsi32_si128(pixel2); 1.155 + a3 = _mm_cvtsi32_si128(pixel3); 1.156 + // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2) 1.157 + a2 = _mm_unpacklo_epi8(a2, a3); 1.158 + 1.159 + // two pairs of pixel pairs, interleaved. 1.160 + // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2, 1.161 + // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) 1.162 + a0 = _mm_unpacklo_epi64(a0, a2); 1.163 + 1.164 + // multiply and sum to 16 bit components. 1.165 + // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) 1.166 + // At that point, we use up a bit less than 12 bits for each 16 bit 1.167 + // component: 1.168 + // All components are less than 255. So, 1.169 + // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16. 1.170 + return _mm_maddubs_epi16(a0, scale_x); 1.171 +} 1.172 + 1.173 +// Scale back the results after multiplications to the [0:255] range, and scale 1.174 +// by alpha when has_alpha is true. 1.175 +// Depending on whether one set or two sets of multiplications had been applied, 1.176 +// the results have to be shifted by four places (dividing by 16), or shifted 1.177 +// by eight places (dividing by 256), since each multiplication is by a quantity 1.178 +// in the range [0:16]. 1.179 +template<bool has_alpha, int scale> 1.180 +inline __m128i ScaleFourPixels(__m128i* pixels, 1.181 + const __m128i& alpha) { 1.182 + // Divide each 16 bit component by 16 (or 256 depending on scale). 1.183 + *pixels = _mm_srli_epi16(*pixels, scale); 1.184 + 1.185 + if (has_alpha) { 1.186 + // Multiply by alpha. 1.187 + *pixels = _mm_mullo_epi16(*pixels, alpha); 1.188 + 1.189 + // Divide each 16 bit component by 256. 1.190 + *pixels = _mm_srli_epi16(*pixels, 8); 1.191 + } 1.192 + return *pixels; 1.193 +} 1.194 + 1.195 +// Wrapper to calculate two output pixels from four input pixels. The 1.196 +// arguments are the same as ProcessPixelPairHelper. Technically, there are 1.197 +// eight input pixels, but since sub_y == 0, the factors applied to half of the 1.198 +// pixels is zero (sub_y), and are therefore omitted here to save on some 1.199 +// processing. 1.200 +// @param alpha when has_alpha is true, scale all resulting components by this 1.201 +// value. 1.202 +// @return a vector of 16 bit components containing: 1.203 +// ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ..., 1.204 +// (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true) 1.205 +// otherwise 1.206 +// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) 1.207 +// In both cases, the results are renormalized (divided by 16) to match the 1.208 +// expected formats when storing back the results into memory. 1.209 +template<bool has_alpha> 1.210 +inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0, 1.211 + uint32_t pixel1, 1.212 + uint32_t pixel2, 1.213 + uint32_t pixel3, 1.214 + const __m128i& scale_x, 1.215 + const __m128i& alpha) { 1.216 + __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, 1.217 + scale_x); 1.218 + return ScaleFourPixels<has_alpha, 4>(&sum, alpha); 1.219 +} 1.220 + 1.221 +// Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a 1.222 +// time instead of two. As in the above function, only two pixels are needed 1.223 +// to generate a single pixel since sub_y == 0. 1.224 +// @return same as ProcessPixelPairZeroSubY, except that only the bottom 4 1.225 +// 16 bit components are set. 1.226 +template<bool has_alpha> 1.227 +inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0, 1.228 + uint32_t pixel1, 1.229 + __m128i scale_x, 1.230 + __m128i alpha) { 1.231 + __m128i a0 = _mm_cvtsi32_si128(pixel0); 1.232 + __m128i a1 = _mm_cvtsi32_si128(pixel1); 1.233 + 1.234 + // Interleave 1.235 + a0 = _mm_unpacklo_epi8(a0, a1); 1.236 + 1.237 + // (a0 * (16-x) + a1 * x) 1.238 + __m128i sum = _mm_maddubs_epi16(a0, scale_x); 1.239 + 1.240 + return ScaleFourPixels<has_alpha, 4>(&sum, alpha); 1.241 +} 1.242 + 1.243 +// Methods when sub_y != 0 1.244 + 1.245 + 1.246 +// Same as ProcessPixelPairHelper, except that the values are scaled by y. 1.247 +// @param y vector of 16 bit components containing 'y' values. There are two 1.248 +// cases in practice, where y will contain the sub_y constant, or will 1.249 +// contain the 16 - sub_y constant. 1.250 +// @return vector of 16 bit components containing: 1.251 +// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0)) 1.252 +inline __m128i ProcessPixelPair(uint32_t pixel0, 1.253 + uint32_t pixel1, 1.254 + uint32_t pixel2, 1.255 + uint32_t pixel3, 1.256 + const __m128i& scale_x, 1.257 + const __m128i& y) { 1.258 + __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, 1.259 + scale_x); 1.260 + 1.261 + // first row times 16-y or y depending on whether 'y' represents one or 1.262 + // the other. 1.263 + // Values will be up to 255 * 16 * 16 = 65280. 1.264 + // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , 1.265 + // y * (Ra0 * (16 - x0) + Ra1 * x0)) 1.266 + sum = _mm_mullo_epi16(sum, y); 1.267 + 1.268 + return sum; 1.269 +} 1.270 + 1.271 +// Process two pixel pairs out of eight input pixels. 1.272 +// In other methods, the distinct pixels are passed one by one, but in this 1.273 +// case, the rows, and index offsets to the pixels into the row are passed 1.274 +// to generate the 8 pixels. 1.275 +// @param row0..1 top and bottom row where to find input pixels. 1.276 +// @param x0..1 offsets into the row for all eight input pixels. 1.277 +// @param all_y vector of 16 bit components containing the constant sub_y 1.278 +// @param neg_y vector of 16 bit components containing the constant 16 - sub_y 1.279 +// @param alpha vector of 16 bit components containing the alpha value to scale 1.280 +// the results by, when has_alpha is true. 1.281 +// @return 1.282 +// (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + 1.283 +// y * (Aa2' * (16-x1) + Aa3' * x1)), 1.284 +// ... 1.285 +// alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) + 1.286 +// y * (Ra0' * (16-x0) + Ra1' * x0)) 1.287 +// With the factor alpha removed when has_alpha is false. 1.288 +// The values are scaled back to 16 bit components, but with only the bottom 1.289 +// 8 bits being set. 1.290 +template<bool has_alpha> 1.291 +inline __m128i ProcessTwoPixelPairs(const uint32_t* row0, 1.292 + const uint32_t* row1, 1.293 + const int* x0, 1.294 + const int* x1, 1.295 + const __m128i& scale_x, 1.296 + const __m128i& all_y, 1.297 + const __m128i& neg_y, 1.298 + const __m128i& alpha) { 1.299 + __m128i sum0 = ProcessPixelPair( 1.300 + row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], 1.301 + scale_x, neg_y); 1.302 + __m128i sum1 = ProcessPixelPair( 1.303 + row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]], 1.304 + scale_x, all_y); 1.305 + 1.306 + // 2 samples fully summed. 1.307 + // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + 1.308 + // y * (Aa2' * (16-x1) + Aa3' * x1), 1.309 + // ... 1.310 + // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) + 1.311 + // y * (Ra0' * (16-x0) + Ra1' * x0)) 1.312 + // Each component, again can be at most 256 * 255 = 65280, so no overflow. 1.313 + sum0 = _mm_add_epi16(sum0, sum1); 1.314 + 1.315 + return ScaleFourPixels<has_alpha, 8>(&sum0, alpha); 1.316 +} 1.317 + 1.318 +// Similar to ProcessTwoPixelPairs except the pixel indexes. 1.319 +template<bool has_alpha> 1.320 +inline __m128i ProcessTwoPixelPairsDXDY(const uint32_t* row00, 1.321 + const uint32_t* row01, 1.322 + const uint32_t* row10, 1.323 + const uint32_t* row11, 1.324 + const int* xy0, 1.325 + const int* xy1, 1.326 + const __m128i& scale_x, 1.327 + const __m128i& all_y, 1.328 + const __m128i& neg_y, 1.329 + const __m128i& alpha) { 1.330 + // first row 1.331 + __m128i sum0 = ProcessPixelPair( 1.332 + row00[xy0[0]], row00[xy1[0]], row10[xy0[1]], row10[xy1[1]], 1.333 + scale_x, neg_y); 1.334 + // second row 1.335 + __m128i sum1 = ProcessPixelPair( 1.336 + row01[xy0[0]], row01[xy1[0]], row11[xy0[1]], row11[xy1[1]], 1.337 + scale_x, all_y); 1.338 + 1.339 + // 2 samples fully summed. 1.340 + // ((16-y1) * (Aa2 * (16-x1) + Aa3 * x1) + 1.341 + // y0 * (Aa2' * (16-x1) + Aa3' * x1), 1.342 + // ... 1.343 + // (16-y0) * (Ra0 * (16 - x0) + Ra1 * x0)) + 1.344 + // y0 * (Ra0' * (16-x0) + Ra1' * x0)) 1.345 + // Each component, again can be at most 256 * 255 = 65280, so no overflow. 1.346 + sum0 = _mm_add_epi16(sum0, sum1); 1.347 + 1.348 + return ScaleFourPixels<has_alpha, 8>(&sum0, alpha); 1.349 +} 1.350 + 1.351 + 1.352 +// Same as ProcessPixelPair, except that performing the math one output pixel 1.353 +// at a time. This means that only the bottom four 16 bit components are set. 1.354 +inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1, 1.355 + const __m128i& scale_x, const __m128i& y) { 1.356 + __m128i a0 = _mm_cvtsi32_si128(pixel0); 1.357 + __m128i a1 = _mm_cvtsi32_si128(pixel1); 1.358 + 1.359 + // Interleave 1.360 + // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) 1.361 + a0 = _mm_unpacklo_epi8(a0, a1); 1.362 + 1.363 + // (a0 * (16-x) + a1 * x) 1.364 + a0 = _mm_maddubs_epi16(a0, scale_x); 1.365 + 1.366 + // scale row by y 1.367 + return _mm_mullo_epi16(a0, y); 1.368 +} 1.369 + 1.370 +// Notes about the various tricks that are used in this implementation: 1.371 +// - specialization for sub_y == 0. 1.372 +// Statistically, 1/16th of the samples will have sub_y == 0. When this 1.373 +// happens, the math goes from: 1.374 +// (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11 1.375 +// to: 1.376 +// (16 - x)*a00 + 16*x*a01 1.377 +// much simpler. The simplification makes for an easy boost in performance. 1.378 +// - calculating 4 output pixels at a time. 1.379 +// This allows loading the coefficients x0 and x1 and shuffling them to the 1.380 +// optimum location only once per loop, instead of twice per loop. 1.381 +// This also allows us to store the four pixels with a single store. 1.382 +// - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction 1.383 +// version): 1.384 +// _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded 1.385 +// in 32 bit values to 8 bit values repeated four times. 1.386 +// _mm_maddubs_epi16 : this allows us to perform multiplications and additions 1.387 +// in one swoop of 8bit values storing the results in 16 bit values. This 1.388 +// instruction is actually crucial for the speed of the implementation since 1.389 +// as one can see in the SSE2 implementation, all inputs have to be used as 1.390 +// 16 bits because the results are 16 bits. This basically allows us to process 1.391 +// twice as many pixel components per iteration. 1.392 +// 1.393 +// As a result, this method behaves faster than the traditional SSE2. The actual 1.394 +// boost varies greatly on the underlying architecture. 1.395 +template<bool has_alpha> 1.396 +void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s, 1.397 + const uint32_t* xy, 1.398 + int count, uint32_t* colors) { 1.399 + SkASSERT(count > 0 && colors != NULL); 1.400 + SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel); 1.401 + SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config); 1.402 + if (has_alpha) { 1.403 + SkASSERT(s.fAlphaScale < 256); 1.404 + } else { 1.405 + SkASSERT(s.fAlphaScale == 256); 1.406 + } 1.407 + 1.408 + const uint8_t* src_addr = 1.409 + static_cast<const uint8_t*>(s.fBitmap->getPixels()); 1.410 + const size_t rb = s.fBitmap->rowBytes(); 1.411 + const uint32_t XY = *xy++; 1.412 + const unsigned y0 = XY >> 14; 1.413 + const uint32_t* row0 = 1.414 + reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb); 1.415 + const uint32_t* row1 = 1.416 + reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb); 1.417 + const unsigned sub_y = y0 & 0xF; 1.418 + 1.419 + // vector constants 1.420 + const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, 1.421 + 8, 8, 8, 8, 1.422 + 4, 4, 4, 4, 1.423 + 0, 0, 0, 0); 1.424 + const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); 1.425 + const __m128i mask_000F = _mm_set1_epi32(0x000F); 1.426 + const __m128i sixteen_8bit = _mm_set1_epi8(16); 1.427 + // (0, 0, 0, 0, 0, 0, 0, 0) 1.428 + const __m128i zero = _mm_setzero_si128(); 1.429 + 1.430 + __m128i alpha = _mm_setzero_si128(); 1.431 + if (has_alpha) 1.432 + // 8x(alpha) 1.433 + alpha = _mm_set1_epi16(s.fAlphaScale); 1.434 + 1.435 + if (sub_y == 0) { 1.436 + // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) 1.437 + while (count > 3) { 1.438 + count -= 4; 1.439 + 1.440 + int x0[4]; 1.441 + int x1[4]; 1.442 + __m128i all_x, sixteen_minus_x; 1.443 + PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, 1.444 + sixteen_8bit, mask_dist_select, 1.445 + &all_x, &sixteen_minus_x, x0, x1); 1.446 + xy += 4; 1.447 + 1.448 + // First pair of pixel pairs. 1.449 + // (4x(x1, 16-x1), 4x(x0, 16-x0)) 1.450 + __m128i scale_x; 1.451 + scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); 1.452 + 1.453 + __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>( 1.454 + row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], 1.455 + scale_x, alpha); 1.456 + 1.457 + // second pair of pixel pairs 1.458 + // (4x (x3, 16-x3), 4x (16-x2, x2)) 1.459 + scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); 1.460 + 1.461 + __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>( 1.462 + row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]], 1.463 + scale_x, alpha); 1.464 + 1.465 + // Pack lower 4 16 bit values of sum into lower 4 bytes. 1.466 + sum0 = _mm_packus_epi16(sum0, sum1); 1.467 + 1.468 + // Extract low int and store. 1.469 + _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); 1.470 + 1.471 + colors += 4; 1.472 + } 1.473 + 1.474 + // handle remainder 1.475 + while (count-- > 0) { 1.476 + uint32_t xx = *xy++; // x0:14 | 4 | x1:14 1.477 + unsigned x0 = xx >> 18; 1.478 + unsigned x1 = xx & 0x3FFF; 1.479 + 1.480 + // 16x(x) 1.481 + const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); 1.482 + 1.483 + // (16x(16-x)) 1.484 + __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); 1.485 + 1.486 + scale_x = _mm_unpacklo_epi8(scale_x, all_x); 1.487 + 1.488 + __m128i sum = ProcessOnePixelZeroSubY<has_alpha>( 1.489 + row0[x0], row0[x1], 1.490 + scale_x, alpha); 1.491 + 1.492 + // Pack lower 4 16 bit values of sum into lower 4 bytes. 1.493 + sum = _mm_packus_epi16(sum, zero); 1.494 + 1.495 + // Extract low int and store. 1.496 + *colors++ = _mm_cvtsi128_si32(sum); 1.497 + } 1.498 + } else { // more general case, y != 0 1.499 + // 8x(16) 1.500 + const __m128i sixteen_16bit = _mm_set1_epi16(16); 1.501 + 1.502 + // 8x (y) 1.503 + const __m128i all_y = _mm_set1_epi16(sub_y); 1.504 + 1.505 + // 8x (16-y) 1.506 + const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); 1.507 + 1.508 + // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) 1.509 + while (count > 3) { 1.510 + count -= 4; 1.511 + 1.512 + int x0[4]; 1.513 + int x1[4]; 1.514 + __m128i all_x, sixteen_minus_x; 1.515 + PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, 1.516 + sixteen_8bit, mask_dist_select, 1.517 + &all_x, &sixteen_minus_x, x0, x1); 1.518 + xy += 4; 1.519 + 1.520 + // First pair of pixel pairs 1.521 + // (4x(x1, 16-x1), 4x(x0, 16-x0)) 1.522 + __m128i scale_x; 1.523 + scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); 1.524 + 1.525 + __m128i sum0 = ProcessTwoPixelPairs<has_alpha>( 1.526 + row0, row1, x0, x1, 1.527 + scale_x, all_y, neg_y, alpha); 1.528 + 1.529 + // second pair of pixel pairs 1.530 + // (4x (x3, 16-x3), 4x (16-x2, x2)) 1.531 + scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); 1.532 + 1.533 + __m128i sum1 = ProcessTwoPixelPairs<has_alpha>( 1.534 + row0, row1, x0 + 2, x1 + 2, 1.535 + scale_x, all_y, neg_y, alpha); 1.536 + 1.537 + // Do the final packing of the two results 1.538 + 1.539 + // Pack lower 4 16 bit values of sum into lower 4 bytes. 1.540 + sum0 = _mm_packus_epi16(sum0, sum1); 1.541 + 1.542 + // Extract low int and store. 1.543 + _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); 1.544 + 1.545 + colors += 4; 1.546 + } 1.547 + 1.548 + // Left over. 1.549 + while (count-- > 0) { 1.550 + const uint32_t xx = *xy++; // x0:14 | 4 | x1:14 1.551 + const unsigned x0 = xx >> 18; 1.552 + const unsigned x1 = xx & 0x3FFF; 1.553 + 1.554 + // 16x(x) 1.555 + const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); 1.556 + 1.557 + // 16x (16-x) 1.558 + __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); 1.559 + 1.560 + // (8x (x, 16-x)) 1.561 + scale_x = _mm_unpacklo_epi8(scale_x, all_x); 1.562 + 1.563 + // first row. 1.564 + __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); 1.565 + // second row. 1.566 + __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); 1.567 + 1.568 + // Add both rows for full sample 1.569 + sum0 = _mm_add_epi16(sum0, sum1); 1.570 + 1.571 + sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha); 1.572 + 1.573 + // Pack lower 4 16 bit values of sum into lower 4 bytes. 1.574 + sum0 = _mm_packus_epi16(sum0, zero); 1.575 + 1.576 + // Extract low int and store. 1.577 + *colors++ = _mm_cvtsi128_si32(sum0); 1.578 + } 1.579 + } 1.580 +} 1.581 + 1.582 +/* 1.583 + * Similar to S32_generic_D32_filter_DX_SSSE3, we do not need to handle the 1.584 + * special case suby == 0 as suby is changing in every loop. 1.585 + */ 1.586 +template<bool has_alpha> 1.587 +void S32_generic_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, 1.588 + const uint32_t* xy, 1.589 + int count, uint32_t* colors) { 1.590 + SkASSERT(count > 0 && colors != NULL); 1.591 + SkASSERT(s.fFilterLevel != SkPaint::kNone_FilterLevel); 1.592 + SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config); 1.593 + if (has_alpha) { 1.594 + SkASSERT(s.fAlphaScale < 256); 1.595 + } else { 1.596 + SkASSERT(s.fAlphaScale == 256); 1.597 + } 1.598 + 1.599 + const uint8_t* src_addr = 1.600 + static_cast<const uint8_t*>(s.fBitmap->getPixels()); 1.601 + const size_t rb = s.fBitmap->rowBytes(); 1.602 + 1.603 + // vector constants 1.604 + const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, 1.605 + 8, 8, 8, 8, 1.606 + 4, 4, 4, 4, 1.607 + 0, 0, 0, 0); 1.608 + const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); 1.609 + const __m128i mask_000F = _mm_set1_epi32(0x000F); 1.610 + const __m128i sixteen_8bit = _mm_set1_epi8(16); 1.611 + 1.612 + __m128i alpha; 1.613 + if (has_alpha) { 1.614 + // 8x(alpha) 1.615 + alpha = _mm_set1_epi16(s.fAlphaScale); 1.616 + } 1.617 + 1.618 + // Unroll 2x, interleave bytes, use pmaddubsw (all_x is small) 1.619 + while (count >= 2) { 1.620 + int xy0[4]; 1.621 + int xy1[4]; 1.622 + __m128i all_xy, sixteen_minus_xy; 1.623 + PrepareConstantsTwoPixelPairsDXDY(xy, mask_3FFF, mask_000F, 1.624 + sixteen_8bit, mask_dist_select, 1.625 + &all_xy, &sixteen_minus_xy, xy0, xy1); 1.626 + 1.627 + // (4x(x1, 16-x1), 4x(x0, 16-x0)) 1.628 + __m128i scale_x = _mm_unpacklo_epi8(sixteen_minus_xy, all_xy); 1.629 + // (4x(0, y1), 4x(0, y0)) 1.630 + __m128i all_y = _mm_unpackhi_epi8(all_xy, _mm_setzero_si128()); 1.631 + __m128i neg_y = _mm_sub_epi16(_mm_set1_epi16(16), all_y); 1.632 + 1.633 + const uint32_t* row00 = 1.634 + reinterpret_cast<const uint32_t*>(src_addr + xy0[2] * rb); 1.635 + const uint32_t* row01 = 1.636 + reinterpret_cast<const uint32_t*>(src_addr + xy1[2] * rb); 1.637 + const uint32_t* row10 = 1.638 + reinterpret_cast<const uint32_t*>(src_addr + xy0[3] * rb); 1.639 + const uint32_t* row11 = 1.640 + reinterpret_cast<const uint32_t*>(src_addr + xy1[3] * rb); 1.641 + 1.642 + __m128i sum0 = ProcessTwoPixelPairsDXDY<has_alpha>( 1.643 + row00, row01, row10, row11, xy0, xy1, 1.644 + scale_x, all_y, neg_y, alpha); 1.645 + 1.646 + // Pack lower 4 16 bit values of sum into lower 4 bytes. 1.647 + sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); 1.648 + 1.649 + // Extract low int and store. 1.650 + _mm_storel_epi64(reinterpret_cast<__m128i *>(colors), sum0); 1.651 + 1.652 + xy += 4; 1.653 + colors += 2; 1.654 + count -= 2; 1.655 + } 1.656 + 1.657 + // Handle the remainder 1.658 + while (count-- > 0) { 1.659 + uint32_t data = *xy++; 1.660 + unsigned y0 = data >> 14; 1.661 + unsigned y1 = data & 0x3FFF; 1.662 + unsigned subY = y0 & 0xF; 1.663 + y0 >>= 4; 1.664 + 1.665 + data = *xy++; 1.666 + unsigned x0 = data >> 14; 1.667 + unsigned x1 = data & 0x3FFF; 1.668 + unsigned subX = x0 & 0xF; 1.669 + x0 >>= 4; 1.670 + 1.671 + const uint32_t* row0 = 1.672 + reinterpret_cast<const uint32_t*>(src_addr + y0 * rb); 1.673 + const uint32_t* row1 = 1.674 + reinterpret_cast<const uint32_t*>(src_addr + y1 * rb); 1.675 + 1.676 + // 16x(x) 1.677 + const __m128i all_x = _mm_set1_epi8(subX); 1.678 + 1.679 + // 16x (16-x) 1.680 + __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); 1.681 + 1.682 + // (8x (x, 16-x)) 1.683 + scale_x = _mm_unpacklo_epi8(scale_x, all_x); 1.684 + 1.685 + // 8x(16) 1.686 + const __m128i sixteen_16bit = _mm_set1_epi16(16); 1.687 + 1.688 + // 8x (y) 1.689 + const __m128i all_y = _mm_set1_epi16(subY); 1.690 + 1.691 + // 8x (16-y) 1.692 + const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); 1.693 + 1.694 + // first row. 1.695 + __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); 1.696 + // second row. 1.697 + __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); 1.698 + 1.699 + // Add both rows for full sample 1.700 + sum0 = _mm_add_epi16(sum0, sum1); 1.701 + 1.702 + sum0 = ScaleFourPixels<has_alpha, 8>(&sum0, alpha); 1.703 + 1.704 + // Pack lower 4 16 bit values of sum into lower 4 bytes. 1.705 + sum0 = _mm_packus_epi16(sum0, _mm_setzero_si128()); 1.706 + 1.707 + // Extract low int and store. 1.708 + *colors++ = _mm_cvtsi128_si32(sum0); 1.709 + } 1.710 +} 1.711 +} // namepace 1.712 + 1.713 +void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, 1.714 + const uint32_t* xy, 1.715 + int count, uint32_t* colors) { 1.716 + S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors); 1.717 +} 1.718 + 1.719 +void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, 1.720 + const uint32_t* xy, 1.721 + int count, uint32_t* colors) { 1.722 + S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors); 1.723 +} 1.724 + 1.725 +void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, 1.726 + const uint32_t* xy, 1.727 + int count, uint32_t* colors) { 1.728 + S32_generic_D32_filter_DXDY_SSSE3<false>(s, xy, count, colors); 1.729 +} 1.730 + 1.731 +void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, 1.732 + const uint32_t* xy, 1.733 + int count, uint32_t* colors) { 1.734 + S32_generic_D32_filter_DXDY_SSSE3<true>(s, xy, count, colors); 1.735 +} 1.736 + 1.737 +#else // !defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) || SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 1.738 + 1.739 +void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, 1.740 + const uint32_t* xy, 1.741 + int count, uint32_t* colors) { 1.742 + sk_throw(); 1.743 +} 1.744 + 1.745 +void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, 1.746 + const uint32_t* xy, 1.747 + int count, uint32_t* colors) { 1.748 + sk_throw(); 1.749 +} 1.750 + 1.751 +void S32_opaque_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, 1.752 + const uint32_t* xy, 1.753 + int count, uint32_t* colors) { 1.754 + sk_throw(); 1.755 +} 1.756 + 1.757 +void S32_alpha_D32_filter_DXDY_SSSE3(const SkBitmapProcState& s, 1.758 + const uint32_t* xy, 1.759 + int count, uint32_t* colors) { 1.760 + sk_throw(); 1.761 +} 1.762 + 1.763 +#endif