1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/pathops/SkDCubicIntersection.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,647 @@ 1.4 +/* 1.5 + * Copyright 2012 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 + 1.11 +#include "SkIntersections.h" 1.12 +#include "SkPathOpsCubic.h" 1.13 +#include "SkPathOpsLine.h" 1.14 +#include "SkPathOpsPoint.h" 1.15 +#include "SkPathOpsQuad.h" 1.16 +#include "SkPathOpsRect.h" 1.17 +#include "SkReduceOrder.h" 1.18 +#include "SkTSort.h" 1.19 + 1.20 +#if ONE_OFF_DEBUG 1.21 +static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; 1.22 +static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; 1.23 +#endif 1.24 + 1.25 +#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 1.26 +#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 1.27 +#define SWAP_TOP_DEBUG 0 1.28 + 1.29 +static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision 1.30 + 1.31 +static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { 1.32 + SkDCubic part = cubic.subDivide(tStart, tEnd); 1.33 + SkDQuad quad = part.toQuad(); 1.34 + // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an 1.35 + // extremely shallow quadratic? 1.36 + int order = reducer->reduce(quad); 1.37 +#if DEBUG_QUAD_PART 1.38 + SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" 1.39 + " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, 1.40 + cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, 1.41 + cubic[3].fX, cubic[3].fY, tStart, tEnd); 1.42 + SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" 1.43 + " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", 1.44 + part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, 1.45 + part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, 1.46 + quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); 1.47 +#if DEBUG_QUAD_PART_SHOW_SIMPLE 1.48 + SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); 1.49 + if (order > 1) { 1.50 + SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); 1.51 + } 1.52 + if (order > 2) { 1.53 + SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); 1.54 + } 1.55 + SkDebugf(")\n"); 1.56 + SkASSERT(order < 4 && order > 0); 1.57 +#endif 1.58 +#endif 1.59 + return order; 1.60 +} 1.61 + 1.62 +static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, 1.63 + int order2, SkIntersections& i) { 1.64 + if (order1 == 3 && order2 == 3) { 1.65 + i.intersect(simple1, simple2); 1.66 + } else if (order1 <= 2 && order2 <= 2) { 1.67 + i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); 1.68 + } else if (order1 == 3 && order2 <= 2) { 1.69 + i.intersect(simple1, (const SkDLine&) simple2); 1.70 + } else { 1.71 + SkASSERT(order1 <= 2 && order2 == 3); 1.72 + i.intersect(simple2, (const SkDLine&) simple1); 1.73 + i.swapPts(); 1.74 + } 1.75 +} 1.76 + 1.77 +// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently 1.78 +// chase intersections near quadratic ends, requiring odd hacks to find them. 1.79 +static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, 1.80 + double t2s, double t2e, double precisionScale, SkIntersections& i) { 1.81 + i.upDepth(); 1.82 + SkDCubic c1 = cubic1.subDivide(t1s, t1e); 1.83 + SkDCubic c2 = cubic2.subDivide(t2s, t2e); 1.84 + SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1; 1.85 + // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) 1.86 + c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); 1.87 + SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2; 1.88 + c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); 1.89 + double t1Start = t1s; 1.90 + int ts1Count = ts1.count(); 1.91 + for (int i1 = 0; i1 <= ts1Count; ++i1) { 1.92 + const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; 1.93 + const double t1 = t1s + (t1e - t1s) * tEnd1; 1.94 + SkReduceOrder s1; 1.95 + int o1 = quadPart(cubic1, t1Start, t1, &s1); 1.96 + double t2Start = t2s; 1.97 + int ts2Count = ts2.count(); 1.98 + for (int i2 = 0; i2 <= ts2Count; ++i2) { 1.99 + const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; 1.100 + const double t2 = t2s + (t2e - t2s) * tEnd2; 1.101 + if (&cubic1 == &cubic2 && t1Start >= t2Start) { 1.102 + t2Start = t2; 1.103 + continue; 1.104 + } 1.105 + SkReduceOrder s2; 1.106 + int o2 = quadPart(cubic2, t2Start, t2, &s2); 1.107 + #if ONE_OFF_DEBUG 1.108 + char tab[] = " "; 1.109 + if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 1.110 + && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { 1.111 + SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, 1.112 + __FUNCTION__, t1Start, t1, t2Start, t2); 1.113 + SkIntersections xlocals; 1.114 + xlocals.allowNear(false); 1.115 + intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); 1.116 + SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); 1.117 + } 1.118 + #endif 1.119 + SkIntersections locals; 1.120 + locals.allowNear(false); 1.121 + intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); 1.122 + int tCount = locals.used(); 1.123 + for (int tIdx = 0; tIdx < tCount; ++tIdx) { 1.124 + double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; 1.125 + double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; 1.126 + // if the computed t is not sufficiently precise, iterate 1.127 + SkDPoint p1 = cubic1.ptAtT(to1); 1.128 + SkDPoint p2 = cubic2.ptAtT(to2); 1.129 + if (p1.approximatelyEqual(p2)) { 1.130 + // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller 1.131 +// SkASSERT(!locals.isCoincident(tIdx)); 1.132 + if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { 1.133 + if (i.swapped()) { // FIXME: insert should respect swap 1.134 + i.insert(to2, to1, p1); 1.135 + } else { 1.136 + i.insert(to1, to2, p1); 1.137 + } 1.138 + } 1.139 + } else { 1.140 + double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine 1.141 + double c1Bottom = tIdx == 0 ? 0 : 1.142 + (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; 1.143 + double c1Min = SkTMax(c1Bottom, to1 - offset); 1.144 + double c1Top = tIdx == tCount - 1 ? 1 : 1.145 + (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; 1.146 + double c1Max = SkTMin(c1Top, to1 + offset); 1.147 + double c2Min = SkTMax(0., to2 - offset); 1.148 + double c2Max = SkTMin(1., to2 + offset); 1.149 + #if ONE_OFF_DEBUG 1.150 + SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, 1.151 + __FUNCTION__, 1.152 + c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max 1.153 + && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, 1.154 + to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset 1.155 + && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, 1.156 + c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max 1.157 + && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, 1.158 + to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset 1.159 + && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); 1.160 + SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" 1.161 + " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", 1.162 + i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., 1.163 + to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); 1.164 + SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" 1.165 + " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, 1.166 + c1Max, c2Min, c2Max); 1.167 + #endif 1.168 + intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); 1.169 + #if ONE_OFF_DEBUG 1.170 + SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 1.171 + i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); 1.172 + #endif 1.173 + if (tCount > 1) { 1.174 + c1Min = SkTMax(0., to1 - offset); 1.175 + c1Max = SkTMin(1., to1 + offset); 1.176 + double c2Bottom = tIdx == 0 ? to2 : 1.177 + (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; 1.178 + double c2Top = tIdx == tCount - 1 ? to2 : 1.179 + (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; 1.180 + if (c2Bottom > c2Top) { 1.181 + SkTSwap(c2Bottom, c2Top); 1.182 + } 1.183 + if (c2Bottom == to2) { 1.184 + c2Bottom = 0; 1.185 + } 1.186 + if (c2Top == to2) { 1.187 + c2Top = 1; 1.188 + } 1.189 + c2Min = SkTMax(c2Bottom, to2 - offset); 1.190 + c2Max = SkTMin(c2Top, to2 + offset); 1.191 + #if ONE_OFF_DEBUG 1.192 + SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, 1.193 + __FUNCTION__, 1.194 + c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max 1.195 + && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, 1.196 + to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset 1.197 + && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, 1.198 + c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max 1.199 + && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, 1.200 + to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset 1.201 + && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); 1.202 + SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" 1.203 + " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", 1.204 + i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, 1.205 + to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); 1.206 + SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" 1.207 + " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, 1.208 + c1Max, c2Min, c2Max); 1.209 + #endif 1.210 + intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); 1.211 + #if ONE_OFF_DEBUG 1.212 + SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 1.213 + i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); 1.214 + #endif 1.215 + c1Min = SkTMax(c1Bottom, to1 - offset); 1.216 + c1Max = SkTMin(c1Top, to1 + offset); 1.217 + #if ONE_OFF_DEBUG 1.218 + SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, 1.219 + __FUNCTION__, 1.220 + c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max 1.221 + && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, 1.222 + to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset 1.223 + && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, 1.224 + c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max 1.225 + && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, 1.226 + to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset 1.227 + && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); 1.228 + SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" 1.229 + " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", 1.230 + i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, 1.231 + to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); 1.232 + SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" 1.233 + " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, 1.234 + c1Max, c2Min, c2Max); 1.235 + #endif 1.236 + intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); 1.237 + #if ONE_OFF_DEBUG 1.238 + SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 1.239 + i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); 1.240 + #endif 1.241 + } 1.242 + // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); 1.243 + // FIXME: if no intersection is found, either quadratics intersected where 1.244 + // cubics did not, or the intersection was missed. In the former case, expect 1.245 + // the quadratics to be nearly parallel at the point of intersection, and check 1.246 + // for that. 1.247 + } 1.248 + } 1.249 + t2Start = t2; 1.250 + } 1.251 + t1Start = t1; 1.252 + } 1.253 + i.downDepth(); 1.254 +} 1.255 + 1.256 + // if two ends intersect, check middle for coincidence 1.257 +bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) { 1.258 + if (fUsed < 2) { 1.259 + return false; 1.260 + } 1.261 + int last = fUsed - 1; 1.262 + double tRange1 = fT[0][last] - fT[0][0]; 1.263 + double tRange2 = fT[1][last] - fT[1][0]; 1.264 + for (int index = 1; index < 5; ++index) { 1.265 + double testT1 = fT[0][0] + tRange1 * index / 5; 1.266 + double testT2 = fT[1][0] + tRange2 * index / 5; 1.267 + SkDPoint testPt1 = c1.ptAtT(testT1); 1.268 + SkDPoint testPt2 = c2.ptAtT(testT2); 1.269 + if (!testPt1.approximatelyEqual(testPt2)) { 1.270 + return false; 1.271 + } 1.272 + } 1.273 + if (fUsed > 2) { 1.274 + fPt[1] = fPt[last]; 1.275 + fT[0][1] = fT[0][last]; 1.276 + fT[1][1] = fT[1][last]; 1.277 + fUsed = 2; 1.278 + } 1.279 + fIsCoincident[0] = fIsCoincident[1] = 0x03; 1.280 + return true; 1.281 +} 1.282 + 1.283 +#define LINE_FRACTION 0.1 1.284 + 1.285 +// intersect the end of the cubic with the other. Try lines from the end to control and opposite 1.286 +// end to determine range of t on opposite cubic. 1.287 +bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) { 1.288 + int t1Index = start ? 0 : 3; 1.289 + double testT = (double) !start; 1.290 + bool swap = swapped(); 1.291 + // quad/quad at this point checks to see if exact matches have already been found 1.292 + // cubic/cubic can't reject so easily since cubics can intersect same point more than once 1.293 + SkDLine tmpLine; 1.294 + tmpLine[0] = tmpLine[1] = cubic2[t1Index]; 1.295 + tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; 1.296 + tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; 1.297 + SkIntersections impTs; 1.298 + impTs.allowNear(false); 1.299 + impTs.intersectRay(cubic1, tmpLine); 1.300 + for (int index = 0; index < impTs.used(); ++index) { 1.301 + SkDPoint realPt = impTs.pt(index); 1.302 + if (!tmpLine[0].approximatelyEqual(realPt)) { 1.303 + continue; 1.304 + } 1.305 + if (swap) { 1.306 + insert(testT, impTs[0][index], tmpLine[0]); 1.307 + } else { 1.308 + insert(impTs[0][index], testT, tmpLine[0]); 1.309 + } 1.310 + return true; 1.311 + } 1.312 + return false; 1.313 +} 1.314 + 1.315 +void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, 1.316 + const SkDRect& bounds2) { 1.317 + SkDLine line; 1.318 + int t1Index = start ? 0 : 3; 1.319 + double testT = (double) !start; 1.320 + // don't bother if the two cubics are connnected 1.321 + static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this 1.322 + static const int kMaxLineCubicIntersections = 3; 1.323 + SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals; 1.324 + line[0] = cubic1[t1Index]; 1.325 + // this variant looks for intersections with the end point and lines parallel to other points 1.326 + for (int index = 0; index < kPointsInCubic; ++index) { 1.327 + if (index == t1Index) { 1.328 + continue; 1.329 + } 1.330 + SkDVector dxy1 = cubic1[index] - line[0]; 1.331 + dxy1 /= SkDCubic::gPrecisionUnit; 1.332 + line[1] = line[0] + dxy1; 1.333 + SkDRect lineBounds; 1.334 + lineBounds.setBounds(line); 1.335 + if (!bounds2.intersects(&lineBounds)) { 1.336 + continue; 1.337 + } 1.338 + SkIntersections local; 1.339 + if (!local.intersect(cubic2, line)) { 1.340 + continue; 1.341 + } 1.342 + for (int idx2 = 0; idx2 < local.used(); ++idx2) { 1.343 + double foundT = local[0][idx2]; 1.344 + if (approximately_less_than_zero(foundT) 1.345 + || approximately_greater_than_one(foundT)) { 1.346 + continue; 1.347 + } 1.348 + if (local.pt(idx2).approximatelyEqual(line[0])) { 1.349 + if (swapped()) { // FIXME: insert should respect swap 1.350 + insert(foundT, testT, line[0]); 1.351 + } else { 1.352 + insert(testT, foundT, line[0]); 1.353 + } 1.354 + } else { 1.355 + tVals.push_back(foundT); 1.356 + } 1.357 + } 1.358 + } 1.359 + if (tVals.count() == 0) { 1.360 + return; 1.361 + } 1.362 + SkTQSort<double>(tVals.begin(), tVals.end() - 1); 1.363 + double tMin1 = start ? 0 : 1 - LINE_FRACTION; 1.364 + double tMax1 = start ? LINE_FRACTION : 1; 1.365 + int tIdx = 0; 1.366 + do { 1.367 + int tLast = tIdx; 1.368 + while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { 1.369 + ++tLast; 1.370 + } 1.371 + double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); 1.372 + double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); 1.373 + int lastUsed = used(); 1.374 + ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); 1.375 + if (lastUsed == used()) { 1.376 + tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); 1.377 + tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); 1.378 + ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); 1.379 + } 1.380 + tIdx = tLast + 1; 1.381 + } while (tIdx < tVals.count()); 1.382 + return; 1.383 +} 1.384 + 1.385 +const double CLOSE_ENOUGH = 0.001; 1.386 + 1.387 +static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { 1.388 + if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { 1.389 + return false; 1.390 + } 1.391 + pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); 1.392 + return true; 1.393 +} 1.394 + 1.395 +static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { 1.396 + int last = i.used() - 1; 1.397 + if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { 1.398 + return false; 1.399 + } 1.400 + pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); 1.401 + return true; 1.402 +} 1.403 + 1.404 +static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { 1.405 +// the idea here is to see at minimum do a quick reject by rotating all points 1.406 +// to either side of the line formed by connecting the endpoints 1.407 +// if the opposite curves points are on the line or on the other side, the 1.408 +// curves at most intersect at the endpoints 1.409 + for (int oddMan = 0; oddMan < 4; ++oddMan) { 1.410 + const SkDPoint* endPt[3]; 1.411 + for (int opp = 1; opp < 4; ++opp) { 1.412 + int end = oddMan ^ opp; // choose a value not equal to oddMan 1.413 + endPt[opp - 1] = &c1[end]; 1.414 + } 1.415 + for (int triTest = 0; triTest < 3; ++triTest) { 1.416 + double origX = endPt[triTest]->fX; 1.417 + double origY = endPt[triTest]->fY; 1.418 + int oppTest = triTest + 1; 1.419 + if (3 == oppTest) { 1.420 + oppTest = 0; 1.421 + } 1.422 + double adj = endPt[oppTest]->fX - origX; 1.423 + double opp = endPt[oppTest]->fY - origY; 1.424 + double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp; 1.425 + if (approximately_zero(sign)) { 1.426 + goto tryNextHalfPlane; 1.427 + } 1.428 + for (int n = 0; n < 4; ++n) { 1.429 + double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp; 1.430 + if (test * sign > 0 && !precisely_zero(test)) { 1.431 + goto tryNextHalfPlane; 1.432 + } 1.433 + } 1.434 + } 1.435 + return true; 1.436 +tryNextHalfPlane: 1.437 + ; 1.438 + } 1.439 + return false; 1.440 +} 1.441 + 1.442 +int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { 1.443 + if (fMax == 0) { 1.444 + fMax = 9; 1.445 + } 1.446 + bool selfIntersect = &c1 == &c2; 1.447 + if (selfIntersect) { 1.448 + if (c1[0].approximatelyEqual(c1[3])) { 1.449 + insert(0, 1, c1[0]); 1.450 + return fUsed; 1.451 + } 1.452 + } else { 1.453 + // OPTIMIZATION: set exact end bits here to avoid cubic exact end later 1.454 + for (int i1 = 0; i1 < 4; i1 += 3) { 1.455 + for (int i2 = 0; i2 < 4; i2 += 3) { 1.456 + if (c1[i1].approximatelyEqual(c2[i2])) { 1.457 + insert(i1 >> 1, i2 >> 1, c1[i1]); 1.458 + } 1.459 + } 1.460 + } 1.461 + } 1.462 + SkASSERT(fUsed < 4); 1.463 + if (!selfIntersect) { 1.464 + if (only_end_pts_in_common(c1, c2)) { 1.465 + return fUsed; 1.466 + } 1.467 + if (only_end_pts_in_common(c2, c1)) { 1.468 + return fUsed; 1.469 + } 1.470 + } 1.471 + // quad/quad does linear test here -- cubic does not 1.472 + // cubics which are really lines should have been detected in reduce step earlier 1.473 + int exactEndBits = 0; 1.474 + if (selfIntersect) { 1.475 + if (fUsed) { 1.476 + return fUsed; 1.477 + } 1.478 + } else { 1.479 + exactEndBits |= cubicExactEnd(c1, false, c2) << 0; 1.480 + exactEndBits |= cubicExactEnd(c1, true, c2) << 1; 1.481 + swap(); 1.482 + exactEndBits |= cubicExactEnd(c2, false, c1) << 2; 1.483 + exactEndBits |= cubicExactEnd(c2, true, c1) << 3; 1.484 + swap(); 1.485 + } 1.486 + if (cubicCheckCoincidence(c1, c2)) { 1.487 + SkASSERT(!selfIntersect); 1.488 + return fUsed; 1.489 + } 1.490 + // FIXME: pass in cached bounds from caller 1.491 + SkDRect c2Bounds; 1.492 + c2Bounds.setBounds(c2); 1.493 + if (!(exactEndBits & 4)) { 1.494 + cubicNearEnd(c1, false, c2, c2Bounds); 1.495 + } 1.496 + if (!(exactEndBits & 8)) { 1.497 + cubicNearEnd(c1, true, c2, c2Bounds); 1.498 + } 1.499 + if (!selfIntersect) { 1.500 + SkDRect c1Bounds; 1.501 + c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? 1.502 + swap(); 1.503 + if (!(exactEndBits & 1)) { 1.504 + cubicNearEnd(c2, false, c1, c1Bounds); 1.505 + } 1.506 + if (!(exactEndBits & 2)) { 1.507 + cubicNearEnd(c2, true, c1, c1Bounds); 1.508 + } 1.509 + swap(); 1.510 + } 1.511 + if (cubicCheckCoincidence(c1, c2)) { 1.512 + SkASSERT(!selfIntersect); 1.513 + return fUsed; 1.514 + } 1.515 + SkIntersections i; 1.516 + i.fAllowNear = false; 1.517 + i.fMax = 9; 1.518 + ::intersect(c1, 0, 1, c2, 0, 1, 1, i); 1.519 + int compCount = i.used(); 1.520 + if (compCount) { 1.521 + int exactCount = used(); 1.522 + if (exactCount == 0) { 1.523 + set(i); 1.524 + } else { 1.525 + // at least one is exact or near, and at least one was computed. Eliminate duplicates 1.526 + for (int exIdx = 0; exIdx < exactCount; ++exIdx) { 1.527 + for (int cpIdx = 0; cpIdx < compCount; ) { 1.528 + if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { 1.529 + i.removeOne(cpIdx); 1.530 + --compCount; 1.531 + continue; 1.532 + } 1.533 + double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; 1.534 + SkDPoint pt = c1.ptAtT(tAvg); 1.535 + if (!pt.approximatelyEqual(fPt[exIdx])) { 1.536 + ++cpIdx; 1.537 + continue; 1.538 + } 1.539 + tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; 1.540 + pt = c2.ptAtT(tAvg); 1.541 + if (!pt.approximatelyEqual(fPt[exIdx])) { 1.542 + ++cpIdx; 1.543 + continue; 1.544 + } 1.545 + i.removeOne(cpIdx); 1.546 + --compCount; 1.547 + } 1.548 + } 1.549 + // if mid t evaluates to nearly the same point, skip the t 1.550 + for (int cpIdx = 0; cpIdx < compCount - 1; ) { 1.551 + double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; 1.552 + SkDPoint pt = c1.ptAtT(tAvg); 1.553 + if (!pt.approximatelyEqual(fPt[cpIdx])) { 1.554 + ++cpIdx; 1.555 + continue; 1.556 + } 1.557 + tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; 1.558 + pt = c2.ptAtT(tAvg); 1.559 + if (!pt.approximatelyEqual(fPt[cpIdx])) { 1.560 + ++cpIdx; 1.561 + continue; 1.562 + } 1.563 + i.removeOne(cpIdx); 1.564 + --compCount; 1.565 + } 1.566 + // in addition to adding below missing function, think about how to say 1.567 + append(i); 1.568 + } 1.569 + } 1.570 + // If an end point and a second point very close to the end is returned, the second 1.571 + // point may have been detected because the approximate quads 1.572 + // intersected at the end and close to it. Verify that the second point is valid. 1.573 + if (fUsed <= 1) { 1.574 + return fUsed; 1.575 + } 1.576 + SkDPoint pt[2]; 1.577 + if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) 1.578 + && pt[0].approximatelyEqual(pt[1])) { 1.579 + removeOne(1); 1.580 + } 1.581 + if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) 1.582 + && pt[0].approximatelyEqual(pt[1])) { 1.583 + removeOne(used() - 2); 1.584 + } 1.585 + // vet the pairs of t values to see if the mid value is also on the curve. If so, mark 1.586 + // the span as coincident 1.587 + if (fUsed >= 2 && !coincidentUsed()) { 1.588 + int last = fUsed - 1; 1.589 + int match = 0; 1.590 + for (int index = 0; index < last; ++index) { 1.591 + double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; 1.592 + double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; 1.593 + pt[0] = c1.ptAtT(mid1); 1.594 + pt[1] = c2.ptAtT(mid2); 1.595 + if (pt[0].approximatelyEqual(pt[1])) { 1.596 + match |= 1 << index; 1.597 + } 1.598 + } 1.599 + if (match) { 1.600 +#if DEBUG_CONCIDENT 1.601 + if (((match + 1) & match) != 0) { 1.602 + SkDebugf("%s coincident hole\n", __FUNCTION__); 1.603 + } 1.604 +#endif 1.605 + // for now, assume that everything from start to finish is coincident 1.606 + if (fUsed > 2) { 1.607 + fPt[1] = fPt[last]; 1.608 + fT[0][1] = fT[0][last]; 1.609 + fT[1][1] = fT[1][last]; 1.610 + fIsCoincident[0] = 0x03; 1.611 + fIsCoincident[1] = 0x03; 1.612 + fUsed = 2; 1.613 + } 1.614 + } 1.615 + } 1.616 + return fUsed; 1.617 +} 1.618 + 1.619 +// Up promote the quad to a cubic. 1.620 +// OPTIMIZATION If this is a common use case, optimize by duplicating 1.621 +// the intersect 3 loop to avoid the promotion / demotion code 1.622 +int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { 1.623 + fMax = 6; 1.624 + SkDCubic up = quad.toCubic(); 1.625 + (void) intersect(cubic, up); 1.626 + return used(); 1.627 +} 1.628 + 1.629 +/* http://www.ag.jku.at/compass/compasssample.pdf 1.630 +( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen 1.631 +Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no 1.632 +SINTEF Applied Mathematics http://www.sintef.no ) 1.633 +describes a method to find the self intersection of a cubic by taking the gradient of the implicit 1.634 +form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ 1.635 + 1.636 +int SkIntersections::intersect(const SkDCubic& c) { 1.637 + fMax = 1; 1.638 + // check to see if x or y end points are the extrema. Are other quick rejects possible? 1.639 + if (c.endsAreExtremaInXOrY()) { 1.640 + return false; 1.641 + } 1.642 + (void) intersect(c, c); 1.643 + if (used() > 0) { 1.644 + SkASSERT(used() == 1); 1.645 + if (fT[0][0] > fT[1][0]) { 1.646 + swapPts(); 1.647 + } 1.648 + } 1.649 + return used(); 1.650 +}