1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/pathops/SkLineParameters.h Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,171 @@ 1.4 +/* 1.5 + * Copyright 2012 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 +#include "SkPathOpsCubic.h" 1.11 +#include "SkPathOpsLine.h" 1.12 +#include "SkPathOpsQuad.h" 1.13 + 1.14 +// Sources 1.15 +// computer-aided design - volume 22 number 9 november 1990 pp 538 - 549 1.16 +// online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf 1.17 + 1.18 +// This turns a line segment into a parameterized line, of the form 1.19 +// ax + by + c = 0 1.20 +// When a^2 + b^2 == 1, the line is normalized. 1.21 +// The distance to the line for (x, y) is d(x,y) = ax + by + c 1.22 +// 1.23 +// Note that the distances below are not necessarily normalized. To get the true 1.24 +// distance, it's necessary to either call normalize() after xxxEndPoints(), or 1.25 +// divide the result of xxxDistance() by sqrt(normalSquared()) 1.26 + 1.27 +class SkLineParameters { 1.28 +public: 1.29 + 1.30 + void cubicEndPoints(const SkDCubic& pts) { 1.31 + int endIndex = 1; 1.32 + cubicEndPoints(pts, 0, endIndex); 1.33 + if (dy() != 0) { 1.34 + return; 1.35 + } 1.36 + if (dx() == 0) { 1.37 + cubicEndPoints(pts, 0, ++endIndex); 1.38 + SkASSERT(endIndex == 2); 1.39 + if (dy() != 0) { 1.40 + return; 1.41 + } 1.42 + if (dx() == 0) { 1.43 + cubicEndPoints(pts, 0, ++endIndex); // line 1.44 + SkASSERT(endIndex == 3); 1.45 + return; 1.46 + } 1.47 + } 1.48 + if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie 1.49 + return; 1.50 + } 1.51 + // if cubic tangent is on x axis, look at next control point to break tie 1.52 + // control point may be approximate, so it must move significantly to account for error 1.53 + if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) { 1.54 + if (pts[0].fY > pts[endIndex].fY) { 1.55 + a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a) 1.56 + } 1.57 + return; 1.58 + } 1.59 + if (endIndex == 3) { 1.60 + return; 1.61 + } 1.62 + SkASSERT(endIndex == 2); 1.63 + if (pts[0].fY > pts[3].fY) { 1.64 + a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a) 1.65 + } 1.66 + } 1.67 + 1.68 + void cubicEndPoints(const SkDCubic& pts, int s, int e) { 1.69 + a = pts[s].fY - pts[e].fY; 1.70 + b = pts[e].fX - pts[s].fX; 1.71 + c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; 1.72 + } 1.73 + 1.74 + double cubicPart(const SkDCubic& part) { 1.75 + cubicEndPoints(part); 1.76 + if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) { 1.77 + return pointDistance(part[3]); 1.78 + } 1.79 + return pointDistance(part[2]); 1.80 + } 1.81 + 1.82 + void lineEndPoints(const SkDLine& pts) { 1.83 + a = pts[0].fY - pts[1].fY; 1.84 + b = pts[1].fX - pts[0].fX; 1.85 + c = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY; 1.86 + } 1.87 + 1.88 + void quadEndPoints(const SkDQuad& pts) { 1.89 + quadEndPoints(pts, 0, 1); 1.90 + if (dy() != 0) { 1.91 + return; 1.92 + } 1.93 + if (dx() == 0) { 1.94 + quadEndPoints(pts, 0, 2); 1.95 + return; 1.96 + } 1.97 + if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie 1.98 + return; 1.99 + } 1.100 + if (pts[0].fY > pts[2].fY) { 1.101 + a = DBL_EPSILON; 1.102 + } 1.103 + } 1.104 + 1.105 + void quadEndPoints(const SkDQuad& pts, int s, int e) { 1.106 + a = pts[s].fY - pts[e].fY; 1.107 + b = pts[e].fX - pts[s].fX; 1.108 + c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; 1.109 + } 1.110 + 1.111 + double quadPart(const SkDQuad& part) { 1.112 + quadEndPoints(part); 1.113 + return pointDistance(part[2]); 1.114 + } 1.115 + 1.116 + double normalSquared() const { 1.117 + return a * a + b * b; 1.118 + } 1.119 + 1.120 + bool normalize() { 1.121 + double normal = sqrt(normalSquared()); 1.122 + if (approximately_zero(normal)) { 1.123 + a = b = c = 0; 1.124 + return false; 1.125 + } 1.126 + double reciprocal = 1 / normal; 1.127 + a *= reciprocal; 1.128 + b *= reciprocal; 1.129 + c *= reciprocal; 1.130 + return true; 1.131 + } 1.132 + 1.133 + void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const { 1.134 + double oneThird = 1 / 3.0; 1.135 + for (int index = 0; index < 4; ++index) { 1.136 + distance[index].fX = index * oneThird; 1.137 + distance[index].fY = a * pts[index].fX + b * pts[index].fY + c; 1.138 + } 1.139 + } 1.140 + 1.141 + void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const { 1.142 + double oneHalf = 1 / 2.0; 1.143 + for (int index = 0; index < 3; ++index) { 1.144 + distance[index].fX = index * oneHalf; 1.145 + distance[index].fY = a * pts[index].fX + b * pts[index].fY + c; 1.146 + } 1.147 + } 1.148 + 1.149 + double controlPtDistance(const SkDCubic& pts, int index) const { 1.150 + SkASSERT(index == 1 || index == 2); 1.151 + return a * pts[index].fX + b * pts[index].fY + c; 1.152 + } 1.153 + 1.154 + double controlPtDistance(const SkDQuad& pts) const { 1.155 + return a * pts[1].fX + b * pts[1].fY + c; 1.156 + } 1.157 + 1.158 + double pointDistance(const SkDPoint& pt) const { 1.159 + return a * pt.fX + b * pt.fY + c; 1.160 + } 1.161 + 1.162 + double dx() const { 1.163 + return b; 1.164 + } 1.165 + 1.166 + double dy() const { 1.167 + return -a; 1.168 + } 1.169 + 1.170 +private: 1.171 + double a; 1.172 + double b; 1.173 + double c; 1.174 +};