gfx/skia/trunk/src/pathops/SkLineParameters.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

michael@0 1 /*
michael@0 2 * Copyright 2012 Google Inc.
michael@0 3 *
michael@0 4 * Use of this source code is governed by a BSD-style license that can be
michael@0 5 * found in the LICENSE file.
michael@0 6 */
michael@0 7 #include "SkPathOpsCubic.h"
michael@0 8 #include "SkPathOpsLine.h"
michael@0 9 #include "SkPathOpsQuad.h"
michael@0 10
michael@0 11 // Sources
michael@0 12 // computer-aided design - volume 22 number 9 november 1990 pp 538 - 549
michael@0 13 // online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
michael@0 14
michael@0 15 // This turns a line segment into a parameterized line, of the form
michael@0 16 // ax + by + c = 0
michael@0 17 // When a^2 + b^2 == 1, the line is normalized.
michael@0 18 // The distance to the line for (x, y) is d(x,y) = ax + by + c
michael@0 19 //
michael@0 20 // Note that the distances below are not necessarily normalized. To get the true
michael@0 21 // distance, it's necessary to either call normalize() after xxxEndPoints(), or
michael@0 22 // divide the result of xxxDistance() by sqrt(normalSquared())
michael@0 23
michael@0 24 class SkLineParameters {
michael@0 25 public:
michael@0 26
michael@0 27 void cubicEndPoints(const SkDCubic& pts) {
michael@0 28 int endIndex = 1;
michael@0 29 cubicEndPoints(pts, 0, endIndex);
michael@0 30 if (dy() != 0) {
michael@0 31 return;
michael@0 32 }
michael@0 33 if (dx() == 0) {
michael@0 34 cubicEndPoints(pts, 0, ++endIndex);
michael@0 35 SkASSERT(endIndex == 2);
michael@0 36 if (dy() != 0) {
michael@0 37 return;
michael@0 38 }
michael@0 39 if (dx() == 0) {
michael@0 40 cubicEndPoints(pts, 0, ++endIndex); // line
michael@0 41 SkASSERT(endIndex == 3);
michael@0 42 return;
michael@0 43 }
michael@0 44 }
michael@0 45 if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
michael@0 46 return;
michael@0 47 }
michael@0 48 // if cubic tangent is on x axis, look at next control point to break tie
michael@0 49 // control point may be approximate, so it must move significantly to account for error
michael@0 50 if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) {
michael@0 51 if (pts[0].fY > pts[endIndex].fY) {
michael@0 52 a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
michael@0 53 }
michael@0 54 return;
michael@0 55 }
michael@0 56 if (endIndex == 3) {
michael@0 57 return;
michael@0 58 }
michael@0 59 SkASSERT(endIndex == 2);
michael@0 60 if (pts[0].fY > pts[3].fY) {
michael@0 61 a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
michael@0 62 }
michael@0 63 }
michael@0 64
michael@0 65 void cubicEndPoints(const SkDCubic& pts, int s, int e) {
michael@0 66 a = pts[s].fY - pts[e].fY;
michael@0 67 b = pts[e].fX - pts[s].fX;
michael@0 68 c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
michael@0 69 }
michael@0 70
michael@0 71 double cubicPart(const SkDCubic& part) {
michael@0 72 cubicEndPoints(part);
michael@0 73 if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) {
michael@0 74 return pointDistance(part[3]);
michael@0 75 }
michael@0 76 return pointDistance(part[2]);
michael@0 77 }
michael@0 78
michael@0 79 void lineEndPoints(const SkDLine& pts) {
michael@0 80 a = pts[0].fY - pts[1].fY;
michael@0 81 b = pts[1].fX - pts[0].fX;
michael@0 82 c = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY;
michael@0 83 }
michael@0 84
michael@0 85 void quadEndPoints(const SkDQuad& pts) {
michael@0 86 quadEndPoints(pts, 0, 1);
michael@0 87 if (dy() != 0) {
michael@0 88 return;
michael@0 89 }
michael@0 90 if (dx() == 0) {
michael@0 91 quadEndPoints(pts, 0, 2);
michael@0 92 return;
michael@0 93 }
michael@0 94 if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
michael@0 95 return;
michael@0 96 }
michael@0 97 if (pts[0].fY > pts[2].fY) {
michael@0 98 a = DBL_EPSILON;
michael@0 99 }
michael@0 100 }
michael@0 101
michael@0 102 void quadEndPoints(const SkDQuad& pts, int s, int e) {
michael@0 103 a = pts[s].fY - pts[e].fY;
michael@0 104 b = pts[e].fX - pts[s].fX;
michael@0 105 c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
michael@0 106 }
michael@0 107
michael@0 108 double quadPart(const SkDQuad& part) {
michael@0 109 quadEndPoints(part);
michael@0 110 return pointDistance(part[2]);
michael@0 111 }
michael@0 112
michael@0 113 double normalSquared() const {
michael@0 114 return a * a + b * b;
michael@0 115 }
michael@0 116
michael@0 117 bool normalize() {
michael@0 118 double normal = sqrt(normalSquared());
michael@0 119 if (approximately_zero(normal)) {
michael@0 120 a = b = c = 0;
michael@0 121 return false;
michael@0 122 }
michael@0 123 double reciprocal = 1 / normal;
michael@0 124 a *= reciprocal;
michael@0 125 b *= reciprocal;
michael@0 126 c *= reciprocal;
michael@0 127 return true;
michael@0 128 }
michael@0 129
michael@0 130 void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const {
michael@0 131 double oneThird = 1 / 3.0;
michael@0 132 for (int index = 0; index < 4; ++index) {
michael@0 133 distance[index].fX = index * oneThird;
michael@0 134 distance[index].fY = a * pts[index].fX + b * pts[index].fY + c;
michael@0 135 }
michael@0 136 }
michael@0 137
michael@0 138 void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const {
michael@0 139 double oneHalf = 1 / 2.0;
michael@0 140 for (int index = 0; index < 3; ++index) {
michael@0 141 distance[index].fX = index * oneHalf;
michael@0 142 distance[index].fY = a * pts[index].fX + b * pts[index].fY + c;
michael@0 143 }
michael@0 144 }
michael@0 145
michael@0 146 double controlPtDistance(const SkDCubic& pts, int index) const {
michael@0 147 SkASSERT(index == 1 || index == 2);
michael@0 148 return a * pts[index].fX + b * pts[index].fY + c;
michael@0 149 }
michael@0 150
michael@0 151 double controlPtDistance(const SkDQuad& pts) const {
michael@0 152 return a * pts[1].fX + b * pts[1].fY + c;
michael@0 153 }
michael@0 154
michael@0 155 double pointDistance(const SkDPoint& pt) const {
michael@0 156 return a * pt.fX + b * pt.fY + c;
michael@0 157 }
michael@0 158
michael@0 159 double dx() const {
michael@0 160 return b;
michael@0 161 }
michael@0 162
michael@0 163 double dy() const {
michael@0 164 return -a;
michael@0 165 }
michael@0 166
michael@0 167 private:
michael@0 168 double a;
michael@0 169 double b;
michael@0 170 double c;
michael@0 171 };

mercurial