1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/gfx/skia/trunk/src/pathops/SkPathOpsLine.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,201 @@ 1.4 +/* 1.5 + * Copyright 2012 Google Inc. 1.6 + * 1.7 + * Use of this source code is governed by a BSD-style license that can be 1.8 + * found in the LICENSE file. 1.9 + */ 1.10 +#include "SkPathOpsLine.h" 1.11 + 1.12 +SkDLine SkDLine::subDivide(double t1, double t2) const { 1.13 + SkDVector delta = tangent(); 1.14 + SkDLine dst = {{{ 1.15 + fPts[0].fX - t1 * delta.fX, fPts[0].fY - t1 * delta.fY}, { 1.16 + fPts[0].fX - t2 * delta.fX, fPts[0].fY - t2 * delta.fY}}}; 1.17 + return dst; 1.18 +} 1.19 + 1.20 +// may have this below somewhere else already: 1.21 +// copying here because I thought it was clever 1.22 + 1.23 +// Copyright 2001, softSurfer (www.softsurfer.com) 1.24 +// This code may be freely used and modified for any purpose 1.25 +// providing that this copyright notice is included with it. 1.26 +// SoftSurfer makes no warranty for this code, and cannot be held 1.27 +// liable for any real or imagined damage resulting from its use. 1.28 +// Users of this code must verify correctness for their application. 1.29 + 1.30 +// Assume that a class is already given for the object: 1.31 +// Point with coordinates {float x, y;} 1.32 +//=================================================================== 1.33 + 1.34 +// isLeft(): tests if a point is Left|On|Right of an infinite line. 1.35 +// Input: three points P0, P1, and P2 1.36 +// Return: >0 for P2 left of the line through P0 and P1 1.37 +// =0 for P2 on the line 1.38 +// <0 for P2 right of the line 1.39 +// See: the January 2001 Algorithm on Area of Triangles 1.40 +// return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y)); 1.41 +double SkDLine::isLeft(const SkDPoint& pt) const { 1.42 + SkDVector p0 = fPts[1] - fPts[0]; 1.43 + SkDVector p2 = pt - fPts[0]; 1.44 + return p0.cross(p2); 1.45 +} 1.46 + 1.47 +SkDPoint SkDLine::ptAtT(double t) const { 1.48 + if (0 == t) { 1.49 + return fPts[0]; 1.50 + } 1.51 + if (1 == t) { 1.52 + return fPts[1]; 1.53 + } 1.54 + double one_t = 1 - t; 1.55 + SkDPoint result = { one_t * fPts[0].fX + t * fPts[1].fX, one_t * fPts[0].fY + t * fPts[1].fY }; 1.56 + return result; 1.57 +} 1.58 + 1.59 +double SkDLine::exactPoint(const SkDPoint& xy) const { 1.60 + if (xy == fPts[0]) { // do cheapest test first 1.61 + return 0; 1.62 + } 1.63 + if (xy == fPts[1]) { 1.64 + return 1; 1.65 + } 1.66 + return -1; 1.67 +} 1.68 + 1.69 +double SkDLine::nearPoint(const SkDPoint& xy) const { 1.70 + if (!AlmostBetweenUlps(fPts[0].fX, xy.fX, fPts[1].fX) 1.71 + || !AlmostBetweenUlps(fPts[0].fY, xy.fY, fPts[1].fY)) { 1.72 + return -1; 1.73 + } 1.74 + // project a perpendicular ray from the point to the line; find the T on the line 1.75 + SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line 1.76 + double denom = len.fX * len.fX + len.fY * len.fY; // see DLine intersectRay 1.77 + SkDVector ab0 = xy - fPts[0]; 1.78 + double numer = len.fX * ab0.fX + ab0.fY * len.fY; 1.79 + if (!between(0, numer, denom)) { 1.80 + return -1; 1.81 + } 1.82 + double t = numer / denom; 1.83 + SkDPoint realPt = ptAtT(t); 1.84 + double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against distSq instead ? 1.85 + // find the ordinal in the original line with the largest unsigned exponent 1.86 + double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); 1.87 + double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); 1.88 + largest = SkTMax(largest, -tiniest); 1.89 + if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? 1.90 + return -1; 1.91 + } 1.92 + t = SkPinT(t); 1.93 + SkASSERT(between(0, t, 1)); 1.94 + return t; 1.95 +} 1.96 + 1.97 +bool SkDLine::nearRay(const SkDPoint& xy) const { 1.98 + // project a perpendicular ray from the point to the line; find the T on the line 1.99 + SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line 1.100 + double denom = len.fX * len.fX + len.fY * len.fY; // see DLine intersectRay 1.101 + SkDVector ab0 = xy - fPts[0]; 1.102 + double numer = len.fX * ab0.fX + ab0.fY * len.fY; 1.103 + double t = numer / denom; 1.104 + SkDPoint realPt = ptAtT(t); 1.105 + double dist = realPt.distance(xy); // OPTIMIZATION: can we compare against distSq instead ? 1.106 + // find the ordinal in the original line with the largest unsigned exponent 1.107 + double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); 1.108 + double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY); 1.109 + largest = SkTMax(largest, -tiniest); 1.110 + return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS tolerance? 1.111 +} 1.112 + 1.113 +// Returns true if a ray from (0,0) to (x1,y1) is coincident with a ray (0,0) to (x2,y2) 1.114 +// OPTIMIZE: a specialty routine could speed this up -- may not be called very often though 1.115 +bool SkDLine::NearRay(double x1, double y1, double x2, double y2) { 1.116 + double denom1 = x1 * x1 + y1 * y1; 1.117 + double denom2 = x2 * x2 + y2 * y2; 1.118 + SkDLine line = {{{0, 0}, {x1, y1}}}; 1.119 + SkDPoint pt = {x2, y2}; 1.120 + if (denom2 > denom1) { 1.121 + SkTSwap(line[1], pt); 1.122 + } 1.123 + return line.nearRay(pt); 1.124 +} 1.125 + 1.126 +double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, double y) { 1.127 + if (xy.fY == y) { 1.128 + if (xy.fX == left) { 1.129 + return 0; 1.130 + } 1.131 + if (xy.fX == right) { 1.132 + return 1; 1.133 + } 1.134 + } 1.135 + return -1; 1.136 +} 1.137 + 1.138 +double SkDLine::NearPointH(const SkDPoint& xy, double left, double right, double y) { 1.139 + if (!AlmostBequalUlps(xy.fY, y)) { 1.140 + return -1; 1.141 + } 1.142 + if (!AlmostBetweenUlps(left, xy.fX, right)) { 1.143 + return -1; 1.144 + } 1.145 + double t = (xy.fX - left) / (right - left); 1.146 + t = SkPinT(t); 1.147 + SkASSERT(between(0, t, 1)); 1.148 + double realPtX = (1 - t) * left + t * right; 1.149 + SkDVector distU = {xy.fY - y, xy.fX - realPtX}; 1.150 + double distSq = distU.fX * distU.fX + distU.fY * distU.fY; 1.151 + double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ? 1.152 + double tiniest = SkTMin(SkTMin(y, left), right); 1.153 + double largest = SkTMax(SkTMax(y, left), right); 1.154 + largest = SkTMax(largest, -tiniest); 1.155 + if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? 1.156 + return -1; 1.157 + } 1.158 + return t; 1.159 +} 1.160 + 1.161 +double SkDLine::ExactPointV(const SkDPoint& xy, double top, double bottom, double x) { 1.162 + if (xy.fX == x) { 1.163 + if (xy.fY == top) { 1.164 + return 0; 1.165 + } 1.166 + if (xy.fY == bottom) { 1.167 + return 1; 1.168 + } 1.169 + } 1.170 + return -1; 1.171 +} 1.172 + 1.173 +double SkDLine::NearPointV(const SkDPoint& xy, double top, double bottom, double x) { 1.174 + if (!AlmostBequalUlps(xy.fX, x)) { 1.175 + return -1; 1.176 + } 1.177 + if (!AlmostBetweenUlps(top, xy.fY, bottom)) { 1.178 + return -1; 1.179 + } 1.180 + double t = (xy.fY - top) / (bottom - top); 1.181 + t = SkPinT(t); 1.182 + SkASSERT(between(0, t, 1)); 1.183 + double realPtY = (1 - t) * top + t * bottom; 1.184 + SkDVector distU = {xy.fX - x, xy.fY - realPtY}; 1.185 + double distSq = distU.fX * distU.fX + distU.fY * distU.fY; 1.186 + double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ? 1.187 + double tiniest = SkTMin(SkTMin(x, top), bottom); 1.188 + double largest = SkTMax(SkTMax(x, top), bottom); 1.189 + largest = SkTMax(largest, -tiniest); 1.190 + if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance? 1.191 + return -1; 1.192 + } 1.193 + return t; 1.194 +} 1.195 + 1.196 +#ifdef SK_DEBUG 1.197 +void SkDLine::dump() { 1.198 + SkDebugf("{{"); 1.199 + fPts[0].dump(); 1.200 + SkDebugf(", "); 1.201 + fPts[1].dump(); 1.202 + SkDebugf("}}\n"); 1.203 +} 1.204 +#endif