intl/icu/source/i18n/decimfmt.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/intl/icu/source/i18n/decimfmt.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,5990 @@
     1.4 +/*
     1.5 +*******************************************************************************
     1.6 +* Copyright (C) 1997-2013, International Business Machines Corporation and    *
     1.7 +* others. All Rights Reserved.                                                *
     1.8 +*******************************************************************************
     1.9 +*
    1.10 +* File DECIMFMT.CPP
    1.11 +*
    1.12 +* Modification History:
    1.13 +*
    1.14 +*   Date        Name        Description
    1.15 +*   02/19/97    aliu        Converted from java.
    1.16 +*   03/20/97    clhuang     Implemented with new APIs.
    1.17 +*   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
    1.18 +*   04/3/97     aliu        Rewrote parsing and formatting completely, and
    1.19 +*                           cleaned up and debugged.  Actually works now.
    1.20 +*                           Implemented NAN and INF handling, for both parsing
    1.21 +*                           and formatting.  Extensive testing & debugging.
    1.22 +*   04/10/97    aliu        Modified to compile on AIX.
    1.23 +*   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
    1.24 +*                           Changed DigitCount to int per code review.
    1.25 +*   07/09/97    helena      Made ParsePosition into a class.
    1.26 +*   08/26/97    aliu        Extensive changes to applyPattern; completely
    1.27 +*                           rewritten from the Java.
    1.28 +*   09/09/97    aliu        Ported over support for exponential formats.
    1.29 +*   07/20/98    stephen     JDK 1.2 sync up.
    1.30 +*                             Various instances of '0' replaced with 'NULL'
    1.31 +*                             Check for grouping size in subFormat()
    1.32 +*                             Brought subParse() in line with Java 1.2
    1.33 +*                             Added method appendAffix()
    1.34 +*   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
    1.35 +*   02/22/99    stephen     Removed character literals for EBCDIC safety
    1.36 +*   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
    1.37 +*   06/28/99    stephen     Fixed bugs in toPattern().
    1.38 +*   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
    1.39 +*                             fPadPosition
    1.40 +********************************************************************************
    1.41 +*/
    1.42 +
    1.43 +#include "unicode/utypes.h"
    1.44 +
    1.45 +#if !UCONFIG_NO_FORMATTING
    1.46 +
    1.47 +#include "fphdlimp.h"
    1.48 +#include "unicode/decimfmt.h"
    1.49 +#include "unicode/choicfmt.h"
    1.50 +#include "unicode/ucurr.h"
    1.51 +#include "unicode/ustring.h"
    1.52 +#include "unicode/dcfmtsym.h"
    1.53 +#include "unicode/ures.h"
    1.54 +#include "unicode/uchar.h"
    1.55 +#include "unicode/uniset.h"
    1.56 +#include "unicode/curramt.h"
    1.57 +#include "unicode/currpinf.h"
    1.58 +#include "unicode/plurrule.h"
    1.59 +#include "unicode/utf16.h"
    1.60 +#include "unicode/numsys.h"
    1.61 +#include "unicode/localpointer.h"
    1.62 +#include "uresimp.h"
    1.63 +#include "ucurrimp.h"
    1.64 +#include "charstr.h"
    1.65 +#include "cmemory.h"
    1.66 +#include "patternprops.h"
    1.67 +#include "digitlst.h"
    1.68 +#include "cstring.h"
    1.69 +#include "umutex.h"
    1.70 +#include "uassert.h"
    1.71 +#include "putilimp.h"
    1.72 +#include <math.h>
    1.73 +#include "hash.h"
    1.74 +#include "decfmtst.h"
    1.75 +#include "dcfmtimp.h"
    1.76 +#include "plurrule_impl.h"
    1.77 +
    1.78 +/*
    1.79 + * On certain platforms, round is a macro defined in math.h
    1.80 + * This undefine is to avoid conflict between the macro and
    1.81 + * the function defined below.
    1.82 + */
    1.83 +#ifdef round
    1.84 +#undef round
    1.85 +#endif
    1.86 +
    1.87 +
    1.88 +U_NAMESPACE_BEGIN
    1.89 +
    1.90 +#ifdef FMT_DEBUG
    1.91 +#include <stdio.h>
    1.92 +static void _debugout(const char *f, int l, const UnicodeString& s) {
    1.93 +    char buf[2000];
    1.94 +    s.extract((int32_t) 0, s.length(), buf, "utf-8");
    1.95 +    printf("%s:%d: %s\n", f,l, buf);
    1.96 +}
    1.97 +#define debugout(x) _debugout(__FILE__,__LINE__,x)
    1.98 +#define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
    1.99 +static const UnicodeString dbg_null("<NULL>","");
   1.100 +#define DEREFSTR(x)   ((x!=NULL)?(*x):(dbg_null))
   1.101 +#else
   1.102 +#define debugout(x)
   1.103 +#define debug(x)
   1.104 +#endif
   1.105 +
   1.106 +
   1.107 +
   1.108 +/* == Fastpath calculation. ==
   1.109 + */
   1.110 +#if UCONFIG_FORMAT_FASTPATHS_49
   1.111 +inline DecimalFormatInternal& internalData(uint8_t *reserved) {
   1.112 +  return *reinterpret_cast<DecimalFormatInternal*>(reserved);
   1.113 +}
   1.114 +inline const DecimalFormatInternal& internalData(const uint8_t *reserved) {
   1.115 +  return *reinterpret_cast<const DecimalFormatInternal*>(reserved);
   1.116 +}
   1.117 +#else
   1.118 +#endif
   1.119 +
   1.120 +/* For currency parsing purose,
   1.121 + * Need to remember all prefix patterns and suffix patterns of
   1.122 + * every currency format pattern,
   1.123 + * including the pattern of default currecny style
   1.124 + * and plural currency style. And the patterns are set through applyPattern.
   1.125 + */
   1.126 +struct AffixPatternsForCurrency : public UMemory {
   1.127 +	// negative prefix pattern
   1.128 +	UnicodeString negPrefixPatternForCurrency;
   1.129 +	// negative suffix pattern
   1.130 +	UnicodeString negSuffixPatternForCurrency;
   1.131 +	// positive prefix pattern
   1.132 +	UnicodeString posPrefixPatternForCurrency;
   1.133 +	// positive suffix pattern
   1.134 +	UnicodeString posSuffixPatternForCurrency;
   1.135 +	int8_t patternType;
   1.136 +
   1.137 +	AffixPatternsForCurrency(const UnicodeString& negPrefix,
   1.138 +							 const UnicodeString& negSuffix,
   1.139 +							 const UnicodeString& posPrefix,
   1.140 +							 const UnicodeString& posSuffix,
   1.141 +							 int8_t type) {
   1.142 +		negPrefixPatternForCurrency = negPrefix;
   1.143 +		negSuffixPatternForCurrency = negSuffix;
   1.144 +		posPrefixPatternForCurrency = posPrefix;
   1.145 +		posSuffixPatternForCurrency = posSuffix;
   1.146 +		patternType = type;
   1.147 +	}
   1.148 +#ifdef FMT_DEBUG
   1.149 +  void dump() const  {
   1.150 +    debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
   1.151 +              negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
   1.152 +              negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" + 
   1.153 +              posPrefixPatternForCurrency + (UnicodeString)"\"/\"" + 
   1.154 +              posSuffixPatternForCurrency + (UnicodeString)"\" )");
   1.155 +  }
   1.156 +#endif
   1.157 +};
   1.158 +
   1.159 +/* affix for currency formatting when the currency sign in the pattern
   1.160 + * equals to 3, such as the pattern contains 3 currency sign or
   1.161 + * the formatter style is currency plural format style.
   1.162 + */
   1.163 +struct AffixesForCurrency : public UMemory {
   1.164 +	// negative prefix
   1.165 +	UnicodeString negPrefixForCurrency;
   1.166 +	// negative suffix
   1.167 +	UnicodeString negSuffixForCurrency;
   1.168 +	// positive prefix
   1.169 +	UnicodeString posPrefixForCurrency;
   1.170 +	// positive suffix
   1.171 +	UnicodeString posSuffixForCurrency;
   1.172 +
   1.173 +	int32_t formatWidth;
   1.174 +
   1.175 +	AffixesForCurrency(const UnicodeString& negPrefix,
   1.176 +					   const UnicodeString& negSuffix,
   1.177 +					   const UnicodeString& posPrefix,
   1.178 +					   const UnicodeString& posSuffix) {
   1.179 +		negPrefixForCurrency = negPrefix;
   1.180 +		negSuffixForCurrency = negSuffix;
   1.181 +		posPrefixForCurrency = posPrefix;
   1.182 +		posSuffixForCurrency = posSuffix;
   1.183 +	}
   1.184 +#ifdef FMT_DEBUG
   1.185 +  void dump() const {
   1.186 +    debugout( UnicodeString("AffixesForCurrency( -=\"") +
   1.187 +              negPrefixForCurrency + (UnicodeString)"\"/\"" +
   1.188 +              negSuffixForCurrency + (UnicodeString)"\" +=\"" + 
   1.189 +              posPrefixForCurrency + (UnicodeString)"\"/\"" + 
   1.190 +              posSuffixForCurrency + (UnicodeString)"\" )");
   1.191 +  }
   1.192 +#endif
   1.193 +};
   1.194 +
   1.195 +U_CDECL_BEGIN
   1.196 +
   1.197 +/**
   1.198 + * @internal ICU 4.2
   1.199 + */
   1.200 +static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
   1.201 +
   1.202 +/**
   1.203 + * @internal ICU 4.2
   1.204 + */
   1.205 +static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
   1.206 +
   1.207 +
   1.208 +static UBool
   1.209 +U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
   1.210 +    const AffixesForCurrency* affix_1 =
   1.211 +        (AffixesForCurrency*)val1.pointer;
   1.212 +    const AffixesForCurrency* affix_2 =
   1.213 +        (AffixesForCurrency*)val2.pointer;
   1.214 +    return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
   1.215 +           affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
   1.216 +           affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
   1.217 +           affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
   1.218 +}
   1.219 +
   1.220 +
   1.221 +static UBool
   1.222 +U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
   1.223 +    const AffixPatternsForCurrency* affix_1 =
   1.224 +        (AffixPatternsForCurrency*)val1.pointer;
   1.225 +    const AffixPatternsForCurrency* affix_2 =
   1.226 +        (AffixPatternsForCurrency*)val2.pointer;
   1.227 +    return affix_1->negPrefixPatternForCurrency ==
   1.228 +           affix_2->negPrefixPatternForCurrency &&
   1.229 +           affix_1->negSuffixPatternForCurrency ==
   1.230 +           affix_2->negSuffixPatternForCurrency &&
   1.231 +           affix_1->posPrefixPatternForCurrency ==
   1.232 +           affix_2->posPrefixPatternForCurrency &&
   1.233 +           affix_1->posSuffixPatternForCurrency ==
   1.234 +           affix_2->posSuffixPatternForCurrency &&
   1.235 +           affix_1->patternType == affix_2->patternType;
   1.236 +}
   1.237 +
   1.238 +U_CDECL_END
   1.239 +
   1.240 +
   1.241 +
   1.242 +
   1.243 +// *****************************************************************************
   1.244 +// class DecimalFormat
   1.245 +// *****************************************************************************
   1.246 +
   1.247 +UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
   1.248 +
   1.249 +// Constants for characters used in programmatic (unlocalized) patterns.
   1.250 +#define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
   1.251 +#define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
   1.252 +#define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
   1.253 +#define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
   1.254 +#define kPatternPerMill              ((UChar)0x2030)
   1.255 +#define kPatternPercent              ((UChar)0x0025) /*'%'*/
   1.256 +#define kPatternDigit                ((UChar)0x0023) /*'#'*/
   1.257 +#define kPatternSeparator            ((UChar)0x003B) /*';'*/
   1.258 +#define kPatternExponent             ((UChar)0x0045) /*'E'*/
   1.259 +#define kPatternPlus                 ((UChar)0x002B) /*'+'*/
   1.260 +#define kPatternMinus                ((UChar)0x002D) /*'-'*/
   1.261 +#define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
   1.262 +#define kQuote                       ((UChar)0x0027) /*'\''*/
   1.263 +/**
   1.264 + * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
   1.265 + * is used in patterns and substitued with either the currency symbol,
   1.266 + * or if it is doubled, with the international currency symbol.  If the
   1.267 + * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
   1.268 + * replaced with the monetary decimal separator.
   1.269 + */
   1.270 +#define kCurrencySign                ((UChar)0x00A4)
   1.271 +#define kDefaultPad                  ((UChar)0x0020) /* */
   1.272 +
   1.273 +const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
   1.274 +const int32_t DecimalFormat::kDoubleFractionDigits = 340;
   1.275 +
   1.276 +const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
   1.277 +
   1.278 +/**
   1.279 + * These are the tags we expect to see in normal resource bundle files associated
   1.280 + * with a locale.
   1.281 + */
   1.282 +const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
   1.283 +static const char fgNumberElements[]="NumberElements";
   1.284 +static const char fgLatn[]="latn";
   1.285 +static const char fgPatterns[]="patterns";
   1.286 +static const char fgDecimalFormat[]="decimalFormat";
   1.287 +static const char fgCurrencyFormat[]="currencyFormat";
   1.288 +
   1.289 +static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
   1.290 +
   1.291 +inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
   1.292 +inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
   1.293 +
   1.294 +//------------------------------------------------------------------------------
   1.295 +// Constructs a DecimalFormat instance in the default locale.
   1.296 +
   1.297 +DecimalFormat::DecimalFormat(UErrorCode& status) {
   1.298 +    init();
   1.299 +    UParseError parseError;
   1.300 +    construct(status, parseError);
   1.301 +}
   1.302 +
   1.303 +//------------------------------------------------------------------------------
   1.304 +// Constructs a DecimalFormat instance with the specified number format
   1.305 +// pattern in the default locale.
   1.306 +
   1.307 +DecimalFormat::DecimalFormat(const UnicodeString& pattern,
   1.308 +                             UErrorCode& status) {
   1.309 +    init();
   1.310 +    UParseError parseError;
   1.311 +    construct(status, parseError, &pattern);
   1.312 +}
   1.313 +
   1.314 +//------------------------------------------------------------------------------
   1.315 +// Constructs a DecimalFormat instance with the specified number format
   1.316 +// pattern and the number format symbols in the default locale.  The
   1.317 +// created instance owns the symbols.
   1.318 +
   1.319 +DecimalFormat::DecimalFormat(const UnicodeString& pattern,
   1.320 +                             DecimalFormatSymbols* symbolsToAdopt,
   1.321 +                             UErrorCode& status) {
   1.322 +    init();
   1.323 +    UParseError parseError;
   1.324 +    if (symbolsToAdopt == NULL)
   1.325 +        status = U_ILLEGAL_ARGUMENT_ERROR;
   1.326 +    construct(status, parseError, &pattern, symbolsToAdopt);
   1.327 +}
   1.328 +
   1.329 +DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
   1.330 +                    DecimalFormatSymbols* symbolsToAdopt,
   1.331 +                    UParseError& parseErr,
   1.332 +                    UErrorCode& status) {
   1.333 +    init();
   1.334 +    if (symbolsToAdopt == NULL)
   1.335 +        status = U_ILLEGAL_ARGUMENT_ERROR;
   1.336 +    construct(status,parseErr, &pattern, symbolsToAdopt);
   1.337 +}
   1.338 +
   1.339 +//------------------------------------------------------------------------------
   1.340 +// Constructs a DecimalFormat instance with the specified number format
   1.341 +// pattern and the number format symbols in the default locale.  The
   1.342 +// created instance owns the clone of the symbols.
   1.343 +
   1.344 +DecimalFormat::DecimalFormat(const UnicodeString& pattern,
   1.345 +                             const DecimalFormatSymbols& symbols,
   1.346 +                             UErrorCode& status) {
   1.347 +    init();
   1.348 +    UParseError parseError;
   1.349 +    construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
   1.350 +}
   1.351 +
   1.352 +//------------------------------------------------------------------------------
   1.353 +// Constructs a DecimalFormat instance with the specified number format
   1.354 +// pattern, the number format symbols, and the number format style.
   1.355 +// The created instance owns the clone of the symbols.
   1.356 +
   1.357 +DecimalFormat::DecimalFormat(const UnicodeString& pattern,
   1.358 +                             DecimalFormatSymbols* symbolsToAdopt,
   1.359 +                             UNumberFormatStyle style,
   1.360 +                             UErrorCode& status) {
   1.361 +    init();
   1.362 +    fStyle = style;
   1.363 +    UParseError parseError;
   1.364 +    construct(status, parseError, &pattern, symbolsToAdopt);
   1.365 +}
   1.366 +
   1.367 +//-----------------------------------------------------------------------------
   1.368 +// Common DecimalFormat initialization.
   1.369 +//    Put all fields of an uninitialized object into a known state.
   1.370 +//    Common code, shared by all constructors.
   1.371 +//    Can not fail. Leave the object in good enough shape that the destructor
   1.372 +//    or assignment operator can run successfully.
   1.373 +void
   1.374 +DecimalFormat::init() {
   1.375 +    fPosPrefixPattern = 0;
   1.376 +    fPosSuffixPattern = 0;
   1.377 +    fNegPrefixPattern = 0;
   1.378 +    fNegSuffixPattern = 0;
   1.379 +    fCurrencyChoice = 0;
   1.380 +    fMultiplier = NULL;
   1.381 +    fScale = 0;
   1.382 +    fGroupingSize = 0;
   1.383 +    fGroupingSize2 = 0;
   1.384 +    fDecimalSeparatorAlwaysShown = FALSE;
   1.385 +    fSymbols = NULL;
   1.386 +    fUseSignificantDigits = FALSE;
   1.387 +    fMinSignificantDigits = 1;
   1.388 +    fMaxSignificantDigits = 6;
   1.389 +    fUseExponentialNotation = FALSE;
   1.390 +    fMinExponentDigits = 0;
   1.391 +    fExponentSignAlwaysShown = FALSE;
   1.392 +    fBoolFlags.clear();
   1.393 +    fRoundingIncrement = 0;
   1.394 +    fRoundingMode = kRoundHalfEven;
   1.395 +    fPad = 0;
   1.396 +    fFormatWidth = 0;
   1.397 +    fPadPosition = kPadBeforePrefix;
   1.398 +    fStyle = UNUM_DECIMAL;
   1.399 +    fCurrencySignCount = fgCurrencySignCountZero;
   1.400 +    fAffixPatternsForCurrency = NULL;
   1.401 +    fAffixesForCurrency = NULL;
   1.402 +    fPluralAffixesForCurrency = NULL;
   1.403 +    fCurrencyPluralInfo = NULL;
   1.404 +#if UCONFIG_HAVE_PARSEALLINPUT
   1.405 +    fParseAllInput = UNUM_MAYBE;
   1.406 +#endif
   1.407 +
   1.408 +#if UCONFIG_FORMAT_FASTPATHS_49
   1.409 +    DecimalFormatInternal &data = internalData(fReserved);
   1.410 +    data.fFastFormatStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
   1.411 +    data.fFastParseStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
   1.412 +#endif
   1.413 +    fStaticSets = NULL;
   1.414 +}
   1.415 +
   1.416 +//------------------------------------------------------------------------------
   1.417 +// Constructs a DecimalFormat instance with the specified number format
   1.418 +// pattern and the number format symbols in the desired locale.  The
   1.419 +// created instance owns the symbols.
   1.420 +
   1.421 +void
   1.422 +DecimalFormat::construct(UErrorCode&            status,
   1.423 +                         UParseError&           parseErr,
   1.424 +                         const UnicodeString*   pattern,
   1.425 +                         DecimalFormatSymbols*  symbolsToAdopt)
   1.426 +{
   1.427 +    fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
   1.428 +    fRoundingIncrement = NULL;
   1.429 +    fRoundingMode = kRoundHalfEven;
   1.430 +    fPad = kPatternPadEscape;
   1.431 +    fPadPosition = kPadBeforePrefix;
   1.432 +    if (U_FAILURE(status))
   1.433 +        return;
   1.434 +
   1.435 +    fPosPrefixPattern = fPosSuffixPattern = NULL;
   1.436 +    fNegPrefixPattern = fNegSuffixPattern = NULL;
   1.437 +    setMultiplier(1);
   1.438 +    fGroupingSize = 3;
   1.439 +    fGroupingSize2 = 0;
   1.440 +    fDecimalSeparatorAlwaysShown = FALSE;
   1.441 +    fUseExponentialNotation = FALSE;
   1.442 +    fMinExponentDigits = 0;
   1.443 +
   1.444 +    if (fSymbols == NULL)
   1.445 +    {
   1.446 +        fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
   1.447 +        if (fSymbols == 0) {
   1.448 +            status = U_MEMORY_ALLOCATION_ERROR;
   1.449 +            return;
   1.450 +        }
   1.451 +    }
   1.452 +    fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
   1.453 +    if (U_FAILURE(status)) {
   1.454 +        return;
   1.455 +    }
   1.456 +    UErrorCode nsStatus = U_ZERO_ERROR;
   1.457 +    NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
   1.458 +    if (U_FAILURE(nsStatus)) {
   1.459 +        status = nsStatus;
   1.460 +        return;
   1.461 +    }
   1.462 +
   1.463 +    UnicodeString str;
   1.464 +    // Uses the default locale's number format pattern if there isn't
   1.465 +    // one specified.
   1.466 +    if (pattern == NULL)
   1.467 +    {
   1.468 +        int32_t len = 0;
   1.469 +        UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
   1.470 +
   1.471 +        UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
   1.472 +        resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
   1.473 +        resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
   1.474 +        const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
   1.475 +        if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
   1.476 +            status = U_ZERO_ERROR;
   1.477 +            resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
   1.478 +            resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
   1.479 +            resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
   1.480 +            resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
   1.481 +        }
   1.482 +        str.setTo(TRUE, resStr, len);
   1.483 +        pattern = &str;
   1.484 +        ures_close(resource);
   1.485 +        ures_close(top);
   1.486 +    }
   1.487 +
   1.488 +    delete ns;
   1.489 +
   1.490 +    if (U_FAILURE(status))
   1.491 +    {
   1.492 +        return;
   1.493 +    }
   1.494 +
   1.495 +    if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
   1.496 +        // If it looks like we are going to use a currency pattern
   1.497 +        // then do the time consuming lookup.
   1.498 +        setCurrencyForSymbols();
   1.499 +    } else {
   1.500 +        setCurrencyInternally(NULL, status);
   1.501 +    }
   1.502 +
   1.503 +    const UnicodeString* patternUsed;
   1.504 +    UnicodeString currencyPluralPatternForOther;
   1.505 +    // apply pattern
   1.506 +    if (fStyle == UNUM_CURRENCY_PLURAL) {
   1.507 +        fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
   1.508 +        if (U_FAILURE(status)) {
   1.509 +            return;
   1.510 +        }
   1.511 +
   1.512 +        // the pattern used in format is not fixed until formatting,
   1.513 +        // in which, the number is known and
   1.514 +        // will be used to pick the right pattern based on plural count.
   1.515 +        // Here, set the pattern as the pattern of plural count == "other".
   1.516 +        // For most locale, the patterns are probably the same for all
   1.517 +        // plural count. If not, the right pattern need to be re-applied
   1.518 +        // during format.
   1.519 +        fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
   1.520 +        patternUsed = &currencyPluralPatternForOther;
   1.521 +        // TODO: not needed?
   1.522 +        setCurrencyForSymbols();
   1.523 +
   1.524 +    } else {
   1.525 +        patternUsed = pattern;
   1.526 +    }
   1.527 +
   1.528 +    if (patternUsed->indexOf(kCurrencySign) != -1) {
   1.529 +        // initialize for currency, not only for plural format,
   1.530 +        // but also for mix parsing
   1.531 +        if (fCurrencyPluralInfo == NULL) {
   1.532 +           fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
   1.533 +           if (U_FAILURE(status)) {
   1.534 +               return;
   1.535 +           }
   1.536 +        }
   1.537 +        // need it for mix parsing
   1.538 +        setupCurrencyAffixPatterns(status);
   1.539 +        // expanded affixes for plural names
   1.540 +        if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
   1.541 +            setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
   1.542 +        }
   1.543 +    }
   1.544 +
   1.545 +    applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
   1.546 +
   1.547 +    // expand affixes
   1.548 +    if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
   1.549 +        expandAffixAdjustWidth(NULL);
   1.550 +    }
   1.551 +
   1.552 +    // If it was a currency format, apply the appropriate rounding by
   1.553 +    // resetting the currency. NOTE: this copies fCurrency on top of itself.
   1.554 +    if (fCurrencySignCount != fgCurrencySignCountZero) {
   1.555 +        setCurrencyInternally(getCurrency(), status);
   1.556 +    }
   1.557 +#if UCONFIG_FORMAT_FASTPATHS_49
   1.558 +    DecimalFormatInternal &data = internalData(fReserved);
   1.559 +    data.fFastFormatStatus = kFastpathNO; // allow it to be calculated
   1.560 +    data.fFastParseStatus = kFastpathNO; // allow it to be calculated
   1.561 +    handleChanged();
   1.562 +#endif
   1.563 +}
   1.564 +
   1.565 +
   1.566 +void
   1.567 +DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
   1.568 +    if (U_FAILURE(status)) {
   1.569 +        return;
   1.570 +    }
   1.571 +    UParseError parseErr;
   1.572 +    fAffixPatternsForCurrency = initHashForAffixPattern(status);
   1.573 +    if (U_FAILURE(status)) {
   1.574 +        return;
   1.575 +    }
   1.576 +
   1.577 +    NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
   1.578 +    if (U_FAILURE(status)) {
   1.579 +        return;
   1.580 +    }
   1.581 +
   1.582 +    // Save the default currency patterns of this locale.
   1.583 +    // Here, chose onlyApplyPatternWithoutExpandAffix without
   1.584 +    // expanding the affix patterns into affixes.
   1.585 +    UnicodeString currencyPattern;
   1.586 +    UErrorCode error = U_ZERO_ERROR;   
   1.587 +    
   1.588 +    UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
   1.589 +    UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
   1.590 +    resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
   1.591 +    resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
   1.592 +    int32_t patLen = 0;
   1.593 +    const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
   1.594 +    if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
   1.595 +        error = U_ZERO_ERROR;
   1.596 +        resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
   1.597 +        resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
   1.598 +        patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
   1.599 +    }
   1.600 +    ures_close(numElements);
   1.601 +    ures_close(resource);
   1.602 +    delete ns;
   1.603 +
   1.604 +    if (U_SUCCESS(error)) {
   1.605 +        applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
   1.606 +                                       parseErr, status);
   1.607 +        AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
   1.608 +                                                    *fNegPrefixPattern,
   1.609 +                                                    *fNegSuffixPattern,
   1.610 +                                                    *fPosPrefixPattern,
   1.611 +                                                    *fPosSuffixPattern,
   1.612 +                                                    UCURR_SYMBOL_NAME);
   1.613 +        fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
   1.614 +    }
   1.615 +
   1.616 +    // save the unique currency plural patterns of this locale.
   1.617 +    Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
   1.618 +    const UHashElement* element = NULL;
   1.619 +    int32_t pos = -1;
   1.620 +    Hashtable pluralPatternSet;
   1.621 +    while ((element = pluralPtn->nextElement(pos)) != NULL) {
   1.622 +        const UHashTok valueTok = element->value;
   1.623 +        const UnicodeString* value = (UnicodeString*)valueTok.pointer;
   1.624 +        const UHashTok keyTok = element->key;
   1.625 +        const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   1.626 +        if (pluralPatternSet.geti(*value) != 1) {
   1.627 +            pluralPatternSet.puti(*value, 1, status);
   1.628 +            applyPatternWithoutExpandAffix(*value, false, parseErr, status);
   1.629 +            AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
   1.630 +                                                    *fNegPrefixPattern,
   1.631 +                                                    *fNegSuffixPattern,
   1.632 +                                                    *fPosPrefixPattern,
   1.633 +                                                    *fPosSuffixPattern,
   1.634 +                                                    UCURR_LONG_NAME);
   1.635 +            fAffixPatternsForCurrency->put(*key, affixPtn, status);
   1.636 +        }
   1.637 +    }
   1.638 +}
   1.639 +
   1.640 +
   1.641 +void
   1.642 +DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
   1.643 +                                    UBool setupForCurrentPattern,
   1.644 +                                    UBool setupForPluralPattern,
   1.645 +                                    UErrorCode& status) {
   1.646 +    if (U_FAILURE(status)) {
   1.647 +        return;
   1.648 +    }
   1.649 +    UParseError parseErr;
   1.650 +    if (setupForCurrentPattern) {
   1.651 +        if (fAffixesForCurrency) {
   1.652 +            deleteHashForAffix(fAffixesForCurrency);
   1.653 +        }
   1.654 +        fAffixesForCurrency = initHashForAffix(status);
   1.655 +        if (U_SUCCESS(status)) {
   1.656 +            applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
   1.657 +            const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
   1.658 +            StringEnumeration* keywords = pluralRules->getKeywords(status);
   1.659 +            if (U_SUCCESS(status)) {
   1.660 +                const UnicodeString* pluralCount;
   1.661 +                while ((pluralCount = keywords->snext(status)) != NULL) {
   1.662 +                    if ( U_SUCCESS(status) ) {
   1.663 +                        expandAffixAdjustWidth(pluralCount);
   1.664 +                        AffixesForCurrency* affix = new AffixesForCurrency(
   1.665 +                            fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
   1.666 +                        fAffixesForCurrency->put(*pluralCount, affix, status);
   1.667 +                    }
   1.668 +                }
   1.669 +            }
   1.670 +            delete keywords;
   1.671 +        }
   1.672 +    }
   1.673 +
   1.674 +    if (U_FAILURE(status)) {
   1.675 +        return;
   1.676 +    }
   1.677 +
   1.678 +    if (setupForPluralPattern) {
   1.679 +        if (fPluralAffixesForCurrency) {
   1.680 +            deleteHashForAffix(fPluralAffixesForCurrency);
   1.681 +        }
   1.682 +        fPluralAffixesForCurrency = initHashForAffix(status);
   1.683 +        if (U_SUCCESS(status)) {
   1.684 +            const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
   1.685 +            StringEnumeration* keywords = pluralRules->getKeywords(status);
   1.686 +            if (U_SUCCESS(status)) {
   1.687 +                const UnicodeString* pluralCount;
   1.688 +                while ((pluralCount = keywords->snext(status)) != NULL) {
   1.689 +                    if ( U_SUCCESS(status) ) {
   1.690 +                        UnicodeString ptn;
   1.691 +                        fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
   1.692 +                        applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
   1.693 +                        AffixesForCurrency* affix = new AffixesForCurrency(
   1.694 +                            fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
   1.695 +                        fPluralAffixesForCurrency->put(*pluralCount, affix, status);
   1.696 +                    }
   1.697 +                }
   1.698 +            }
   1.699 +            delete keywords;
   1.700 +        }
   1.701 +    }
   1.702 +}
   1.703 +
   1.704 +
   1.705 +//------------------------------------------------------------------------------
   1.706 +
   1.707 +DecimalFormat::~DecimalFormat()
   1.708 +{
   1.709 +    delete fPosPrefixPattern;
   1.710 +    delete fPosSuffixPattern;
   1.711 +    delete fNegPrefixPattern;
   1.712 +    delete fNegSuffixPattern;
   1.713 +    delete fCurrencyChoice;
   1.714 +    delete fMultiplier;
   1.715 +    delete fSymbols;
   1.716 +    delete fRoundingIncrement;
   1.717 +    deleteHashForAffixPattern();
   1.718 +    deleteHashForAffix(fAffixesForCurrency);
   1.719 +    deleteHashForAffix(fPluralAffixesForCurrency);
   1.720 +    delete fCurrencyPluralInfo;
   1.721 +}
   1.722 +
   1.723 +//------------------------------------------------------------------------------
   1.724 +// copy constructor
   1.725 +
   1.726 +DecimalFormat::DecimalFormat(const DecimalFormat &source) :
   1.727 +    NumberFormat(source) {
   1.728 +    init();
   1.729 +    *this = source;
   1.730 +}
   1.731 +
   1.732 +//------------------------------------------------------------------------------
   1.733 +// assignment operator
   1.734 +
   1.735 +template <class T>
   1.736 +static void _copy_ptr(T** pdest, const T* source) {
   1.737 +    if (source == NULL) {
   1.738 +        delete *pdest;
   1.739 +        *pdest = NULL;
   1.740 +    } else if (*pdest == NULL) {
   1.741 +        *pdest = new T(*source);
   1.742 +    } else {
   1.743 +        **pdest = *source;
   1.744 +    }
   1.745 +}
   1.746 +
   1.747 +template <class T>
   1.748 +static void _clone_ptr(T** pdest, const T* source) {
   1.749 +    delete *pdest;
   1.750 +    if (source == NULL) {
   1.751 +        *pdest = NULL;
   1.752 +    } else {
   1.753 +        *pdest = static_cast<T*>(source->clone());
   1.754 +    }
   1.755 +}
   1.756 +
   1.757 +DecimalFormat&
   1.758 +DecimalFormat::operator=(const DecimalFormat& rhs)
   1.759 +{
   1.760 +    if(this != &rhs) {
   1.761 +        UErrorCode status = U_ZERO_ERROR;
   1.762 +        NumberFormat::operator=(rhs);
   1.763 +        fStaticSets     = DecimalFormatStaticSets::getStaticSets(status);
   1.764 +        fPositivePrefix = rhs.fPositivePrefix;
   1.765 +        fPositiveSuffix = rhs.fPositiveSuffix;
   1.766 +        fNegativePrefix = rhs.fNegativePrefix;
   1.767 +        fNegativeSuffix = rhs.fNegativeSuffix;
   1.768 +        _copy_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
   1.769 +        _copy_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
   1.770 +        _copy_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
   1.771 +        _copy_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
   1.772 +        _clone_ptr(&fCurrencyChoice, rhs.fCurrencyChoice);
   1.773 +        setRoundingIncrement(rhs.getRoundingIncrement());
   1.774 +        fRoundingMode = rhs.fRoundingMode;
   1.775 +        setMultiplier(rhs.getMultiplier());
   1.776 +        fGroupingSize = rhs.fGroupingSize;
   1.777 +        fGroupingSize2 = rhs.fGroupingSize2;
   1.778 +        fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
   1.779 +        _copy_ptr(&fSymbols, rhs.fSymbols);
   1.780 +        fUseExponentialNotation = rhs.fUseExponentialNotation;
   1.781 +        fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
   1.782 +        fBoolFlags = rhs.fBoolFlags;
   1.783 +        /*Bertrand A. D. Update 98.03.17*/
   1.784 +        fCurrencySignCount = rhs.fCurrencySignCount;
   1.785 +        /*end of Update*/
   1.786 +        fMinExponentDigits = rhs.fMinExponentDigits;
   1.787 +
   1.788 +        /* sfb 990629 */
   1.789 +        fFormatWidth = rhs.fFormatWidth;
   1.790 +        fPad = rhs.fPad;
   1.791 +        fPadPosition = rhs.fPadPosition;
   1.792 +        /* end sfb */
   1.793 +        fMinSignificantDigits = rhs.fMinSignificantDigits;
   1.794 +        fMaxSignificantDigits = rhs.fMaxSignificantDigits;
   1.795 +        fUseSignificantDigits = rhs.fUseSignificantDigits;
   1.796 +        fFormatPattern = rhs.fFormatPattern;
   1.797 +        fStyle = rhs.fStyle;
   1.798 +        fCurrencySignCount = rhs.fCurrencySignCount;
   1.799 +        _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
   1.800 +        deleteHashForAffixPattern();
   1.801 +        if (rhs.fAffixPatternsForCurrency) {
   1.802 +            UErrorCode status = U_ZERO_ERROR;
   1.803 +            fAffixPatternsForCurrency = initHashForAffixPattern(status);
   1.804 +            copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
   1.805 +                                    fAffixPatternsForCurrency, status);
   1.806 +        }
   1.807 +        deleteHashForAffix(fAffixesForCurrency);
   1.808 +        if (rhs.fAffixesForCurrency) {
   1.809 +            UErrorCode status = U_ZERO_ERROR;
   1.810 +            fAffixesForCurrency = initHashForAffixPattern(status);
   1.811 +            copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
   1.812 +        }
   1.813 +        deleteHashForAffix(fPluralAffixesForCurrency);
   1.814 +        if (rhs.fPluralAffixesForCurrency) {
   1.815 +            UErrorCode status = U_ZERO_ERROR;
   1.816 +            fPluralAffixesForCurrency = initHashForAffixPattern(status);
   1.817 +            copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
   1.818 +        }
   1.819 +    }
   1.820 +#if UCONFIG_FORMAT_FASTPATHS_49
   1.821 +    handleChanged();
   1.822 +#endif
   1.823 +    return *this;
   1.824 +}
   1.825 +
   1.826 +//------------------------------------------------------------------------------
   1.827 +
   1.828 +UBool
   1.829 +DecimalFormat::operator==(const Format& that) const
   1.830 +{
   1.831 +    if (this == &that)
   1.832 +        return TRUE;
   1.833 +
   1.834 +    // NumberFormat::operator== guarantees this cast is safe
   1.835 +    const DecimalFormat* other = (DecimalFormat*)&that;
   1.836 +
   1.837 +#ifdef FMT_DEBUG
   1.838 +    // This code makes it easy to determine why two format objects that should
   1.839 +    // be equal aren't.
   1.840 +    UBool first = TRUE;
   1.841 +    if (!NumberFormat::operator==(that)) {
   1.842 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.843 +        debug("NumberFormat::!=");
   1.844 +    } else {
   1.845 +    if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
   1.846 +              fPositivePrefix == other->fPositivePrefix)
   1.847 +           || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
   1.848 +               *fPosPrefixPattern  == *other->fPosPrefixPattern))) {
   1.849 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.850 +        debug("Pos Prefix !=");
   1.851 +    }
   1.852 +    if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
   1.853 +           fPositiveSuffix == other->fPositiveSuffix)
   1.854 +          || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
   1.855 +              *fPosSuffixPattern  == *other->fPosSuffixPattern))) {
   1.856 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.857 +        debug("Pos Suffix !=");
   1.858 +    }
   1.859 +    if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
   1.860 +           fNegativePrefix == other->fNegativePrefix)
   1.861 +          || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
   1.862 +              *fNegPrefixPattern  == *other->fNegPrefixPattern))) {
   1.863 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.864 +        debug("Neg Prefix ");
   1.865 +        if (fNegPrefixPattern == NULL) {
   1.866 +            debug("NULL(");
   1.867 +            debugout(fNegativePrefix);
   1.868 +            debug(")");
   1.869 +        } else {
   1.870 +            debugout(*fNegPrefixPattern);
   1.871 +        }
   1.872 +        debug(" != ");
   1.873 +        if (other->fNegPrefixPattern == NULL) {
   1.874 +            debug("NULL(");
   1.875 +            debugout(other->fNegativePrefix);
   1.876 +            debug(")");
   1.877 +        } else {
   1.878 +            debugout(*other->fNegPrefixPattern);
   1.879 +        }
   1.880 +    }
   1.881 +    if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
   1.882 +           fNegativeSuffix == other->fNegativeSuffix)
   1.883 +          || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
   1.884 +              *fNegSuffixPattern  == *other->fNegSuffixPattern))) {
   1.885 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.886 +        debug("Neg Suffix ");
   1.887 +        if (fNegSuffixPattern == NULL) {
   1.888 +            debug("NULL(");
   1.889 +            debugout(fNegativeSuffix);
   1.890 +            debug(")");
   1.891 +        } else {
   1.892 +            debugout(*fNegSuffixPattern);
   1.893 +        }
   1.894 +        debug(" != ");
   1.895 +        if (other->fNegSuffixPattern == NULL) {
   1.896 +            debug("NULL(");
   1.897 +            debugout(other->fNegativeSuffix);
   1.898 +            debug(")");
   1.899 +        } else {
   1.900 +            debugout(*other->fNegSuffixPattern);
   1.901 +        }
   1.902 +    }
   1.903 +    if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
   1.904 +          || (fRoundingIncrement != NULL &&
   1.905 +              other->fRoundingIncrement != NULL &&
   1.906 +              *fRoundingIncrement == *other->fRoundingIncrement))) {
   1.907 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.908 +        debug("Rounding Increment !=");
   1.909 +              }
   1.910 +    if (getMultiplier() != other->getMultiplier()) {
   1.911 +        if (first) { printf("[ "); first = FALSE; }
   1.912 +        printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
   1.913 +    }
   1.914 +    if (fGroupingSize != other->fGroupingSize) {
   1.915 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.916 +        printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
   1.917 +    }
   1.918 +    if (fGroupingSize2 != other->fGroupingSize2) {
   1.919 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.920 +        printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
   1.921 +    }
   1.922 +    if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
   1.923 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.924 +        printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
   1.925 +    }
   1.926 +    if (fUseExponentialNotation != other->fUseExponentialNotation) {
   1.927 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.928 +        debug("Use Exp !=");
   1.929 +    }
   1.930 +    if (!(!fUseExponentialNotation ||
   1.931 +          fMinExponentDigits != other->fMinExponentDigits)) {
   1.932 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.933 +        debug("Exp Digits !=");
   1.934 +    }
   1.935 +    if (*fSymbols != *(other->fSymbols)) {
   1.936 +        if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   1.937 +        debug("Symbols !=");
   1.938 +    }
   1.939 +    // TODO Add debug stuff for significant digits here
   1.940 +    if (fUseSignificantDigits != other->fUseSignificantDigits) {
   1.941 +        debug("fUseSignificantDigits !=");
   1.942 +    }
   1.943 +    if (fUseSignificantDigits &&
   1.944 +        fMinSignificantDigits != other->fMinSignificantDigits) {
   1.945 +        debug("fMinSignificantDigits !=");
   1.946 +    }
   1.947 +    if (fUseSignificantDigits &&
   1.948 +        fMaxSignificantDigits != other->fMaxSignificantDigits) {
   1.949 +        debug("fMaxSignificantDigits !=");
   1.950 +    }
   1.951 +
   1.952 +    if (!first) { printf(" ]"); }
   1.953 +    if (fCurrencySignCount != other->fCurrencySignCount) {
   1.954 +        debug("fCurrencySignCount !=");
   1.955 +    }
   1.956 +    if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
   1.957 +        debug("fCurrencyPluralInfo == ");
   1.958 +        if (fCurrencyPluralInfo == NULL) {
   1.959 +            debug("fCurrencyPluralInfo == NULL");
   1.960 +        }
   1.961 +    }
   1.962 +    if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
   1.963 +         *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
   1.964 +        debug("fCurrencyPluralInfo !=");
   1.965 +    }
   1.966 +    if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
   1.967 +        fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
   1.968 +        debug("fCurrencyPluralInfo one NULL, the other not");
   1.969 +    }
   1.970 +    if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
   1.971 +        debug("fCurrencyPluralInfo == ");
   1.972 +    }
   1.973 +    }
   1.974 +#endif
   1.975 +
   1.976 +    return (NumberFormat::operator==(that) &&
   1.977 +            ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
   1.978 +            (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
   1.979 +            (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
   1.980 +              fPositivePrefix == other->fPositivePrefix)
   1.981 +             || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
   1.982 +                 *fPosPrefixPattern  == *other->fPosPrefixPattern)) &&
   1.983 +            ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
   1.984 +              fPositiveSuffix == other->fPositiveSuffix)
   1.985 +             || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
   1.986 +                 *fPosSuffixPattern  == *other->fPosSuffixPattern)) &&
   1.987 +            ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
   1.988 +              fNegativePrefix == other->fNegativePrefix)
   1.989 +             || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
   1.990 +                 *fNegPrefixPattern  == *other->fNegPrefixPattern)) &&
   1.991 +            ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
   1.992 +              fNegativeSuffix == other->fNegativeSuffix)
   1.993 +             || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
   1.994 +                 *fNegSuffixPattern  == *other->fNegSuffixPattern)))) &&
   1.995 +            ((fRoundingIncrement == other->fRoundingIncrement) // both null
   1.996 +             || (fRoundingIncrement != NULL &&
   1.997 +                 other->fRoundingIncrement != NULL &&
   1.998 +                 *fRoundingIncrement == *other->fRoundingIncrement)) &&
   1.999 +        getMultiplier() == other->getMultiplier() &&
  1.1000 +        fGroupingSize == other->fGroupingSize &&
  1.1001 +        fGroupingSize2 == other->fGroupingSize2 &&
  1.1002 +        fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
  1.1003 +        fUseExponentialNotation == other->fUseExponentialNotation &&
  1.1004 +        (!fUseExponentialNotation ||
  1.1005 +         fMinExponentDigits == other->fMinExponentDigits) &&
  1.1006 +        *fSymbols == *(other->fSymbols) &&
  1.1007 +        fUseSignificantDigits == other->fUseSignificantDigits &&
  1.1008 +        (!fUseSignificantDigits ||
  1.1009 +         (fMinSignificantDigits == other->fMinSignificantDigits &&
  1.1010 +          fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
  1.1011 +        fCurrencySignCount == other->fCurrencySignCount &&
  1.1012 +        ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
  1.1013 +          fCurrencyPluralInfo == NULL) ||
  1.1014 +         (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
  1.1015 +         *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
  1.1016 +}
  1.1017 +
  1.1018 +//------------------------------------------------------------------------------
  1.1019 +
  1.1020 +Format*
  1.1021 +DecimalFormat::clone() const
  1.1022 +{
  1.1023 +    return new DecimalFormat(*this);
  1.1024 +}
  1.1025 +
  1.1026 +
  1.1027 +FixedDecimal
  1.1028 +DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
  1.1029 +    FixedDecimal result;
  1.1030 +
  1.1031 +    if (U_FAILURE(status)) {
  1.1032 +        return result;
  1.1033 +    }
  1.1034 +
  1.1035 +    if (uprv_isNaN(number) || uprv_isPositiveInfinity(fabs(number))) {
  1.1036 +        // For NaN and Infinity the state of the formatter is ignored.
  1.1037 +        result.init(number);
  1.1038 +        return result;
  1.1039 +    }
  1.1040 +
  1.1041 +    if (fMultiplier == NULL && fScale == 0 && fRoundingIncrement == 0 && areSignificantDigitsUsed() == FALSE &&
  1.1042 +            result.quickInit(number) && result.visibleDecimalDigitCount <= getMaximumFractionDigits()) {
  1.1043 +        // Fast Path. Construction of an exact FixedDecimal directly from the double, without passing
  1.1044 +        //   through a DigitList, was successful, and the formatter is doing nothing tricky with rounding.
  1.1045 +        // printf("getFixedDecimal(%g): taking fast path.\n", number);
  1.1046 +        result.adjustForMinFractionDigits(getMinimumFractionDigits());
  1.1047 +    } else {
  1.1048 +        // Slow path. Create a DigitList, and have this formatter round it according to the
  1.1049 +        //     requirements of the format, and fill the fixedDecimal from that.
  1.1050 +        DigitList digits;
  1.1051 +        digits.set(number);
  1.1052 +        result = getFixedDecimal(digits, status);
  1.1053 +    }
  1.1054 +    return result;
  1.1055 +}
  1.1056 +
  1.1057 +// MSVC optimizer bug? 
  1.1058 +// turn off optimization as it causes different behavior in the int64->double->int64 conversion
  1.1059 +#if defined (_MSC_VER)
  1.1060 +#pragma optimize ( "", off )
  1.1061 +#endif
  1.1062 +FixedDecimal
  1.1063 +DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
  1.1064 +    if (U_FAILURE(status)) {
  1.1065 +        return FixedDecimal();
  1.1066 +    }
  1.1067 +    if (!number.isNumeric()) {
  1.1068 +        status = U_ILLEGAL_ARGUMENT_ERROR;
  1.1069 +        return FixedDecimal();
  1.1070 +    }
  1.1071 +
  1.1072 +    DigitList *dl = number.getDigitList();
  1.1073 +    if (dl != NULL) {
  1.1074 +        DigitList clonedDL(*dl);
  1.1075 +        return getFixedDecimal(clonedDL, status);
  1.1076 +    }
  1.1077 +
  1.1078 +    Formattable::Type type = number.getType();
  1.1079 +    if (type == Formattable::kDouble || type == Formattable::kLong) { 
  1.1080 +        return getFixedDecimal(number.getDouble(status), status);
  1.1081 +    }
  1.1082 +
  1.1083 +    if (type == Formattable::kInt64) {
  1.1084 +        // "volatile" here is a workaround to avoid optimization issues.
  1.1085 +        volatile double fdv = number.getDouble(status);
  1.1086 +        // Note: conversion of int64_t -> double rounds with some compilers to
  1.1087 +        //       values beyond what can be represented as a 64 bit int. Subsequent
  1.1088 +        //       testing or conversion with int64_t produces bad results.
  1.1089 +        //       So filter the problematic values, route them to DigitList.
  1.1090 +        if (fdv != (double)U_INT64_MAX && fdv != (double)U_INT64_MIN &&
  1.1091 +                number.getInt64() == (int64_t)fdv) {
  1.1092 +            return getFixedDecimal(number.getDouble(status), status);
  1.1093 +        }
  1.1094 +    }
  1.1095 +
  1.1096 +    // The only case left is type==int64_t, with a value with more digits than a double can represent.
  1.1097 +    // Any formattable originating as a big decimal will have had a pre-existing digit list.
  1.1098 +    // Any originating as a double or int32 will have been handled as a double.
  1.1099 +
  1.1100 +    U_ASSERT(type == Formattable::kInt64);
  1.1101 +    DigitList digits;
  1.1102 +    digits.set(number.getInt64());
  1.1103 +    return getFixedDecimal(digits, status);
  1.1104 +}
  1.1105 +// end workaround MSVC optimizer bug
  1.1106 +#if defined (_MSC_VER)
  1.1107 +#pragma optimize ( "", on )
  1.1108 +#endif
  1.1109 +
  1.1110 +
  1.1111 +// Create a fixed decimal from a DigitList.
  1.1112 +//    The digit list may be modified.
  1.1113 +//    Internal function only.
  1.1114 +FixedDecimal
  1.1115 +DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
  1.1116 +    // Round the number according to the requirements of this Format.
  1.1117 +    FixedDecimal result;
  1.1118 +    _round(number, number, result.isNegative, status);
  1.1119 +
  1.1120 +    // The int64_t fields in FixedDecimal can easily overflow.
  1.1121 +    // In deciding what to discard in this event, consider that fixedDecimal
  1.1122 +    //   is being used only with PluralRules, and those rules mostly look at least significant
  1.1123 +    //   few digits of the integer part, and whether the fraction part is zero or not.
  1.1124 +    // 
  1.1125 +    // So, in case of overflow when filling in the fields of the FixedDecimal object,
  1.1126 +    //    for the integer part, discard the most significant digits.
  1.1127 +    //    for the fraction part, discard the least significant digits,
  1.1128 +    //                           don't truncate the fraction value to zero.
  1.1129 +    // For simplicity, the int64_t fields are limited to 18 decimal digits, even
  1.1130 +    // though they could hold most (but not all) 19 digit values.
  1.1131 +
  1.1132 +    // Integer Digits.
  1.1133 +    int32_t di = number.getDecimalAt()-18;  // Take at most 18 digits.
  1.1134 +    if (di < 0) {
  1.1135 +        di = 0;
  1.1136 +    }
  1.1137 +    result.intValue = 0;
  1.1138 +    for (; di<number.getDecimalAt(); di++) {
  1.1139 +        result.intValue = result.intValue * 10 + (number.getDigit(di) & 0x0f);
  1.1140 +    }
  1.1141 +    if (result.intValue == 0 && number.getDecimalAt()-18 > 0) {
  1.1142 +        // The number is something like 100000000000000000000000.
  1.1143 +        // More than 18 digits integer digits, but the least significant 18 are all zero.
  1.1144 +        // We don't want to return zero as the int part, but want to keep zeros
  1.1145 +        //   for several of the least significant digits.
  1.1146 +        result.intValue = 100000000000000000LL;
  1.1147 +    }
  1.1148 +    
  1.1149 +    // Fraction digits.
  1.1150 +    result.decimalDigits = result.decimalDigitsWithoutTrailingZeros = result.visibleDecimalDigitCount = 0;
  1.1151 +    for (di = number.getDecimalAt(); di < number.getCount(); di++) {
  1.1152 +        result.visibleDecimalDigitCount++;
  1.1153 +        if (result.decimalDigits <  100000000000000000LL) {
  1.1154 +                   //              9223372036854775807    Largest 64 bit signed integer
  1.1155 +            int32_t digitVal = number.getDigit(di) & 0x0f;  // getDigit() returns a char, '0'-'9'.
  1.1156 +            result.decimalDigits = result.decimalDigits * 10 + digitVal;
  1.1157 +            if (digitVal > 0) {
  1.1158 +                result.decimalDigitsWithoutTrailingZeros = result.decimalDigits;
  1.1159 +            }
  1.1160 +        }
  1.1161 +    }
  1.1162 +
  1.1163 +    result.hasIntegerValue = (result.decimalDigits == 0);
  1.1164 +
  1.1165 +    // Trailing fraction zeros. The format specification may require more trailing
  1.1166 +    //    zeros than the numeric value. Add any such on now.
  1.1167 +
  1.1168 +    int32_t minFractionDigits;
  1.1169 +    if (areSignificantDigitsUsed()) {
  1.1170 +        minFractionDigits = getMinimumSignificantDigits() - number.getDecimalAt();
  1.1171 +        if (minFractionDigits < 0) {
  1.1172 +            minFractionDigits = 0;
  1.1173 +        }
  1.1174 +    } else {
  1.1175 +        minFractionDigits = getMinimumFractionDigits();
  1.1176 +    }
  1.1177 +    result.adjustForMinFractionDigits(minFractionDigits);
  1.1178 +
  1.1179 +    return result;
  1.1180 +}
  1.1181 +
  1.1182 +
  1.1183 +//------------------------------------------------------------------------------
  1.1184 +
  1.1185 +UnicodeString&
  1.1186 +DecimalFormat::format(int32_t number,
  1.1187 +                      UnicodeString& appendTo,
  1.1188 +                      FieldPosition& fieldPosition) const
  1.1189 +{
  1.1190 +    return format((int64_t)number, appendTo, fieldPosition);
  1.1191 +}
  1.1192 +
  1.1193 +UnicodeString&
  1.1194 +DecimalFormat::format(int32_t number,
  1.1195 +                      UnicodeString& appendTo,
  1.1196 +                      FieldPosition& fieldPosition,
  1.1197 +                      UErrorCode& status) const
  1.1198 +{
  1.1199 +    return format((int64_t)number, appendTo, fieldPosition, status);
  1.1200 +}
  1.1201 +
  1.1202 +UnicodeString&
  1.1203 +DecimalFormat::format(int32_t number,
  1.1204 +                      UnicodeString& appendTo,
  1.1205 +                      FieldPositionIterator* posIter,
  1.1206 +                      UErrorCode& status) const
  1.1207 +{
  1.1208 +    return format((int64_t)number, appendTo, posIter, status);
  1.1209 +}
  1.1210 +
  1.1211 +
  1.1212 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.1213 +void DecimalFormat::handleChanged() {
  1.1214 +  DecimalFormatInternal &data = internalData(fReserved);
  1.1215 +
  1.1216 +  if(data.fFastFormatStatus == kFastpathUNKNOWN || data.fFastParseStatus == kFastpathUNKNOWN) {
  1.1217 +    return; // still constructing. Wait.
  1.1218 +  }
  1.1219 +
  1.1220 +  data.fFastParseStatus = data.fFastFormatStatus = kFastpathNO;
  1.1221 +
  1.1222 +#if UCONFIG_HAVE_PARSEALLINPUT
  1.1223 +  if(fParseAllInput == UNUM_NO) {
  1.1224 +    debug("No Parse fastpath: fParseAllInput==UNUM_NO");
  1.1225 +  } else 
  1.1226 +#endif
  1.1227 +  if (fFormatWidth!=0) {
  1.1228 +      debug("No Parse fastpath: fFormatWidth");
  1.1229 +  } else if(fPositivePrefix.length()>0) {
  1.1230 +    debug("No Parse fastpath: positive prefix");
  1.1231 +  } else if(fPositiveSuffix.length()>0) {
  1.1232 +    debug("No Parse fastpath: positive suffix");
  1.1233 +  } else if(fNegativePrefix.length()>1 
  1.1234 +            || ((fNegativePrefix.length()==1) && (fNegativePrefix.charAt(0)!=0x002D))) {
  1.1235 +    debug("No Parse fastpath: negative prefix that isn't '-'");
  1.1236 +  } else if(fNegativeSuffix.length()>0) {
  1.1237 +    debug("No Parse fastpath: negative suffix");
  1.1238 +  } else {
  1.1239 +    data.fFastParseStatus = kFastpathYES;
  1.1240 +    debug("parse fastpath: YES");
  1.1241 +  }
  1.1242 +  
  1.1243 +  if (fGroupingSize!=0 && isGroupingUsed()) {
  1.1244 +    debug("No format fastpath: fGroupingSize!=0 and grouping is used");
  1.1245 +#ifdef FMT_DEBUG
  1.1246 +    printf("groupingsize=%d\n", fGroupingSize);
  1.1247 +#endif
  1.1248 +  } else if(fGroupingSize2!=0 && isGroupingUsed()) {
  1.1249 +    debug("No format fastpath: fGroupingSize2!=0");
  1.1250 +  } else if(fUseExponentialNotation) {
  1.1251 +    debug("No format fastpath: fUseExponentialNotation");
  1.1252 +  } else if(fFormatWidth!=0) {
  1.1253 +    debug("No format fastpath: fFormatWidth!=0");
  1.1254 +  } else if(fMinSignificantDigits!=1) {
  1.1255 +    debug("No format fastpath: fMinSignificantDigits!=1");
  1.1256 +  } else if(fMultiplier!=NULL) {
  1.1257 +    debug("No format fastpath: fMultiplier!=NULL");
  1.1258 +  } else if(fScale!=0) {
  1.1259 +    debug("No format fastpath: fScale!=0");
  1.1260 +  } else if(0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)) {
  1.1261 +    debug("No format fastpath: 0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)");
  1.1262 +  } else if(fDecimalSeparatorAlwaysShown) {
  1.1263 +    debug("No format fastpath: fDecimalSeparatorAlwaysShown");
  1.1264 +  } else if(getMinimumFractionDigits()>0) {
  1.1265 +    debug("No format fastpath: fMinFractionDigits>0");
  1.1266 +  } else if(fCurrencySignCount != fgCurrencySignCountZero) {
  1.1267 +    debug("No format fastpath: fCurrencySignCount != fgCurrencySignCountZero");
  1.1268 +  } else if(fRoundingIncrement!=0) {
  1.1269 +    debug("No format fastpath: fRoundingIncrement!=0");
  1.1270 +  } else {
  1.1271 +    data.fFastFormatStatus = kFastpathYES;
  1.1272 +    debug("format:kFastpathYES!");
  1.1273 +  }
  1.1274 +
  1.1275 +
  1.1276 +}
  1.1277 +#endif
  1.1278 +//------------------------------------------------------------------------------
  1.1279 +
  1.1280 +UnicodeString&
  1.1281 +DecimalFormat::format(int64_t number,
  1.1282 +                      UnicodeString& appendTo,
  1.1283 +                      FieldPosition& fieldPosition) const
  1.1284 +{
  1.1285 +    UErrorCode status = U_ZERO_ERROR; /* ignored */
  1.1286 +    FieldPositionOnlyHandler handler(fieldPosition);
  1.1287 +    return _format(number, appendTo, handler, status);
  1.1288 +}
  1.1289 +
  1.1290 +UnicodeString&
  1.1291 +DecimalFormat::format(int64_t number,
  1.1292 +                      UnicodeString& appendTo,
  1.1293 +                      FieldPosition& fieldPosition,
  1.1294 +                      UErrorCode& status) const
  1.1295 +{
  1.1296 +    FieldPositionOnlyHandler handler(fieldPosition);
  1.1297 +    return _format(number, appendTo, handler, status);
  1.1298 +}
  1.1299 +
  1.1300 +UnicodeString&
  1.1301 +DecimalFormat::format(int64_t number,
  1.1302 +                      UnicodeString& appendTo,
  1.1303 +                      FieldPositionIterator* posIter,
  1.1304 +                      UErrorCode& status) const
  1.1305 +{
  1.1306 +    FieldPositionIteratorHandler handler(posIter, status);
  1.1307 +    return _format(number, appendTo, handler, status);
  1.1308 +}
  1.1309 +
  1.1310 +UnicodeString&
  1.1311 +DecimalFormat::_format(int64_t number,
  1.1312 +                       UnicodeString& appendTo,
  1.1313 +                       FieldPositionHandler& handler,
  1.1314 +                       UErrorCode &status) const
  1.1315 +{
  1.1316 +    // Bottleneck function for formatting int64_t
  1.1317 +    if (U_FAILURE(status)) {
  1.1318 +        return appendTo;
  1.1319 +    }
  1.1320 +
  1.1321 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.1322 +  // const UnicodeString *posPrefix = fPosPrefixPattern;
  1.1323 +  // const UnicodeString *posSuffix = fPosSuffixPattern;
  1.1324 +  // const UnicodeString *negSuffix = fNegSuffixPattern;
  1.1325 +
  1.1326 +  const DecimalFormatInternal &data = internalData(fReserved);
  1.1327 +
  1.1328 +#ifdef FMT_DEBUG
  1.1329 +  data.dump();
  1.1330 +  printf("fastpath? [%d]\n", number);
  1.1331 +#endif
  1.1332 +    
  1.1333 +  if( data.fFastFormatStatus==kFastpathYES) {
  1.1334 +
  1.1335 +#define kZero 0x0030
  1.1336 +    const int32_t MAX_IDX = MAX_DIGITS+2;
  1.1337 +    UChar outputStr[MAX_IDX];
  1.1338 +    int32_t destIdx = MAX_IDX;
  1.1339 +    outputStr[--destIdx] = 0;  // term
  1.1340 +
  1.1341 +    int64_t  n = number;
  1.1342 +    if (number < 1) {
  1.1343 +      // Negative numbers are slightly larger than positive
  1.1344 +      // output the first digit (or the leading zero)
  1.1345 +      outputStr[--destIdx] = (-(n % 10) + kZero);
  1.1346 +      n /= -10;
  1.1347 +    }
  1.1348 +    // get any remaining digits
  1.1349 +    while (n > 0) {
  1.1350 +      outputStr[--destIdx] = (n % 10) + kZero;
  1.1351 +      n /= 10;
  1.1352 +    }
  1.1353 +    
  1.1354 +
  1.1355 +        // Slide the number to the start of the output str
  1.1356 +    U_ASSERT(destIdx >= 0);
  1.1357 +    int32_t length = MAX_IDX - destIdx -1;
  1.1358 +    /*int32_t prefixLen = */ appendAffix(appendTo, number, handler, number<0, TRUE);
  1.1359 +    int32_t maxIntDig = getMaximumIntegerDigits();
  1.1360 +    int32_t destlength = length<=maxIntDig?length:maxIntDig; // dest length pinned to max int digits
  1.1361 +
  1.1362 +    if(length>maxIntDig && fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
  1.1363 +      status = U_ILLEGAL_ARGUMENT_ERROR;
  1.1364 +    }
  1.1365 +
  1.1366 +    int32_t prependZero = getMinimumIntegerDigits() - destlength;
  1.1367 +
  1.1368 +#ifdef FMT_DEBUG
  1.1369 +    printf("prependZero=%d, length=%d, minintdig=%d maxintdig=%d destlength=%d skip=%d\n", prependZero, length, getMinimumIntegerDigits(), maxIntDig, destlength, length-destlength);
  1.1370 +#endif    
  1.1371 +    int32_t intBegin = appendTo.length();
  1.1372 +
  1.1373 +    while((prependZero--)>0) {
  1.1374 +      appendTo.append((UChar)0x0030); // '0'
  1.1375 +    }
  1.1376 +
  1.1377 +    appendTo.append(outputStr+destIdx+
  1.1378 +                    (length-destlength), // skip any leading digits
  1.1379 +                    destlength);
  1.1380 +    handler.addAttribute(kIntegerField, intBegin, appendTo.length());
  1.1381 +
  1.1382 +    /*int32_t suffixLen =*/ appendAffix(appendTo, number, handler, number<0, FALSE);
  1.1383 +
  1.1384 +    //outputStr[length]=0;
  1.1385 +    
  1.1386 +#ifdef FMT_DEBUG
  1.1387 +        printf("Writing [%s] length [%d] max %d for [%d]\n", outputStr+destIdx, length, MAX_IDX, number);
  1.1388 +#endif
  1.1389 +
  1.1390 +#undef kZero
  1.1391 +
  1.1392 +    return appendTo;
  1.1393 +  } // end fastpath
  1.1394 +#endif
  1.1395 +
  1.1396 +  // Else the slow way - via DigitList
  1.1397 +    DigitList digits;
  1.1398 +    digits.set(number);
  1.1399 +    return _format(digits, appendTo, handler, status);
  1.1400 +}
  1.1401 +
  1.1402 +//------------------------------------------------------------------------------
  1.1403 +
  1.1404 +UnicodeString&
  1.1405 +DecimalFormat::format(  double number,
  1.1406 +                        UnicodeString& appendTo,
  1.1407 +                        FieldPosition& fieldPosition) const
  1.1408 +{
  1.1409 +    UErrorCode status = U_ZERO_ERROR; /* ignored */
  1.1410 +    FieldPositionOnlyHandler handler(fieldPosition);
  1.1411 +    return _format(number, appendTo, handler, status);
  1.1412 +}
  1.1413 +
  1.1414 +UnicodeString&
  1.1415 +DecimalFormat::format(  double number,
  1.1416 +                        UnicodeString& appendTo,
  1.1417 +                        FieldPosition& fieldPosition,
  1.1418 +                        UErrorCode& status) const
  1.1419 +{
  1.1420 +    FieldPositionOnlyHandler handler(fieldPosition);
  1.1421 +    return _format(number, appendTo, handler, status);
  1.1422 +}
  1.1423 +
  1.1424 +UnicodeString&
  1.1425 +DecimalFormat::format(  double number,
  1.1426 +                        UnicodeString& appendTo,
  1.1427 +                        FieldPositionIterator* posIter,
  1.1428 +                        UErrorCode& status) const
  1.1429 +{
  1.1430 +  FieldPositionIteratorHandler handler(posIter, status);
  1.1431 +  return _format(number, appendTo, handler, status);
  1.1432 +}
  1.1433 +
  1.1434 +UnicodeString&
  1.1435 +DecimalFormat::_format( double number,
  1.1436 +                        UnicodeString& appendTo,
  1.1437 +                        FieldPositionHandler& handler,
  1.1438 +                        UErrorCode &status) const
  1.1439 +{
  1.1440 +    if (U_FAILURE(status)) {
  1.1441 +        return appendTo;
  1.1442 +    }
  1.1443 +    // Special case for NaN, sets the begin and end index to be the
  1.1444 +    // the string length of localized name of NaN.
  1.1445 +    // TODO:  let NaNs go through DigitList.
  1.1446 +    if (uprv_isNaN(number))
  1.1447 +    {
  1.1448 +        int begin = appendTo.length();
  1.1449 +        appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
  1.1450 +
  1.1451 +        handler.addAttribute(kIntegerField, begin, appendTo.length());
  1.1452 +
  1.1453 +        addPadding(appendTo, handler, 0, 0);
  1.1454 +        return appendTo;
  1.1455 +    }
  1.1456 +
  1.1457 +    DigitList digits;
  1.1458 +    digits.set(number);
  1.1459 +    _format(digits, appendTo, handler, status);
  1.1460 +    // No way to return status from here.
  1.1461 +    return appendTo;
  1.1462 +}
  1.1463 +
  1.1464 +//------------------------------------------------------------------------------
  1.1465 +
  1.1466 +
  1.1467 +UnicodeString&
  1.1468 +DecimalFormat::format(const StringPiece &number,
  1.1469 +                      UnicodeString &toAppendTo,
  1.1470 +                      FieldPositionIterator *posIter,
  1.1471 +                      UErrorCode &status) const
  1.1472 +{
  1.1473 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.1474 +  // don't bother if the int64 path is not optimized
  1.1475 +  int32_t len    = number.length();
  1.1476 +
  1.1477 +  if(len>0&&len<10) { /* 10 or more digits may not be an int64 */
  1.1478 +    const char *data = number.data();
  1.1479 +    int64_t num = 0;
  1.1480 +    UBool neg = FALSE;
  1.1481 +    UBool ok = TRUE;
  1.1482 +    
  1.1483 +    int32_t start  = 0;
  1.1484 +
  1.1485 +    if(data[start]=='+') {
  1.1486 +      start++;
  1.1487 +    } else if(data[start]=='-') {
  1.1488 +      neg=TRUE;
  1.1489 +      start++;
  1.1490 +    }
  1.1491 +
  1.1492 +    int32_t place = 1; /* 1, 10, ... */
  1.1493 +    for(int32_t i=len-1;i>=start;i--) {
  1.1494 +      if(data[i]>='0'&&data[i]<='9') {
  1.1495 +        num+=place*(int64_t)(data[i]-'0');
  1.1496 +      } else {
  1.1497 +        ok=FALSE;
  1.1498 +        break;
  1.1499 +      }
  1.1500 +      place *= 10;
  1.1501 +    }
  1.1502 +
  1.1503 +    if(ok) {
  1.1504 +      if(neg) {
  1.1505 +        num = -num;// add minus bit
  1.1506 +      }
  1.1507 +      // format as int64_t
  1.1508 +      return format(num, toAppendTo, posIter, status);
  1.1509 +    }
  1.1510 +    // else fall through
  1.1511 +  }
  1.1512 +#endif
  1.1513 +
  1.1514 +    DigitList   dnum;
  1.1515 +    dnum.set(number, status);
  1.1516 +    if (U_FAILURE(status)) {
  1.1517 +        return toAppendTo;
  1.1518 +    }
  1.1519 +    FieldPositionIteratorHandler handler(posIter, status);
  1.1520 +    _format(dnum, toAppendTo, handler, status);
  1.1521 +    return toAppendTo;
  1.1522 +}
  1.1523 +
  1.1524 +
  1.1525 +UnicodeString&
  1.1526 +DecimalFormat::format(const DigitList &number,
  1.1527 +                      UnicodeString &appendTo,
  1.1528 +                      FieldPositionIterator *posIter,
  1.1529 +                      UErrorCode &status) const {
  1.1530 +    FieldPositionIteratorHandler handler(posIter, status);
  1.1531 +    _format(number, appendTo, handler, status);
  1.1532 +    return appendTo;
  1.1533 +}
  1.1534 +
  1.1535 +
  1.1536 +
  1.1537 +UnicodeString&
  1.1538 +DecimalFormat::format(const DigitList &number,
  1.1539 +                     UnicodeString& appendTo,
  1.1540 +                     FieldPosition& pos,
  1.1541 +                     UErrorCode &status) const {
  1.1542 +    FieldPositionOnlyHandler handler(pos);
  1.1543 +    _format(number, appendTo, handler, status);
  1.1544 +    return appendTo;
  1.1545 +}
  1.1546 +
  1.1547 +DigitList&
  1.1548 +DecimalFormat::_round(const DigitList &number, DigitList &adjustedNum, UBool& isNegative, UErrorCode &status) const {
  1.1549 +    if (U_FAILURE(status)) {
  1.1550 +        return adjustedNum;
  1.1551 +    }
  1.1552 +
  1.1553 +    // note: number and adjustedNum may refer to the same DigitList, in cases where a copy
  1.1554 +    //       is not needed by the caller.
  1.1555 +
  1.1556 +    adjustedNum = number;
  1.1557 +    isNegative = false;
  1.1558 +    if (number.isNaN()) {
  1.1559 +        return adjustedNum;
  1.1560 +    }
  1.1561 +
  1.1562 +    // Do this BEFORE checking to see if value is infinite or negative! Sets the
  1.1563 +    // begin and end index to be length of the string composed of
  1.1564 +    // localized name of Infinite and the positive/negative localized
  1.1565 +    // signs.
  1.1566 +
  1.1567 +    adjustedNum.setRoundingMode(fRoundingMode);
  1.1568 +    if (fMultiplier != NULL) {
  1.1569 +        adjustedNum.mult(*fMultiplier, status);
  1.1570 +        if (U_FAILURE(status)) {
  1.1571 +            return adjustedNum;
  1.1572 +        }
  1.1573 +    }
  1.1574 +
  1.1575 +    if (fScale != 0) {
  1.1576 +        DigitList ten;
  1.1577 +        ten.set((int32_t)10);
  1.1578 +        if (fScale > 0) {
  1.1579 +            for (int32_t i = fScale ; i > 0 ; i--) {
  1.1580 +                adjustedNum.mult(ten, status);
  1.1581 +                if (U_FAILURE(status)) {
  1.1582 +                    return adjustedNum;
  1.1583 +                }
  1.1584 +            }
  1.1585 +        } else {
  1.1586 +            for (int32_t i = fScale ; i < 0 ; i++) {
  1.1587 +                adjustedNum.div(ten, status);
  1.1588 +                if (U_FAILURE(status)) {
  1.1589 +                    return adjustedNum;
  1.1590 +                }
  1.1591 +            }
  1.1592 +        }
  1.1593 +    }
  1.1594 +
  1.1595 +    /*
  1.1596 +     * Note: sign is important for zero as well as non-zero numbers.
  1.1597 +     * Proper detection of -0.0 is needed to deal with the
  1.1598 +     * issues raised by bugs 4106658, 4106667, and 4147706.  Liu 7/6/98.
  1.1599 +     */
  1.1600 +    isNegative = !adjustedNum.isPositive();
  1.1601 +
  1.1602 +    // Apply rounding after multiplier
  1.1603 +
  1.1604 +    adjustedNum.fContext.status &= ~DEC_Inexact;
  1.1605 +    if (fRoundingIncrement != NULL) {
  1.1606 +        adjustedNum.div(*fRoundingIncrement, status);
  1.1607 +        adjustedNum.toIntegralValue();
  1.1608 +        adjustedNum.mult(*fRoundingIncrement, status);
  1.1609 +        adjustedNum.trim();
  1.1610 +        if (U_FAILURE(status)) {
  1.1611 +            return adjustedNum;
  1.1612 +        }
  1.1613 +    }
  1.1614 +    if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
  1.1615 +        status = U_FORMAT_INEXACT_ERROR;
  1.1616 +        return adjustedNum;
  1.1617 +    }
  1.1618 +
  1.1619 +    if (adjustedNum.isInfinite()) {
  1.1620 +        return adjustedNum;
  1.1621 +    }
  1.1622 +
  1.1623 +    if (fUseExponentialNotation || areSignificantDigitsUsed()) {
  1.1624 +        int32_t sigDigits = precision();
  1.1625 +        if (sigDigits > 0) {
  1.1626 +            adjustedNum.round(sigDigits);
  1.1627 +        }
  1.1628 +    } else {
  1.1629 +        // Fixed point format.  Round to a set number of fraction digits.
  1.1630 +        int32_t numFractionDigits = precision();
  1.1631 +        adjustedNum.roundFixedPoint(numFractionDigits);
  1.1632 +    }
  1.1633 +    if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
  1.1634 +        status = U_FORMAT_INEXACT_ERROR;
  1.1635 +        return adjustedNum;
  1.1636 +    }
  1.1637 +    return adjustedNum;
  1.1638 +}
  1.1639 +
  1.1640 +UnicodeString&
  1.1641 +DecimalFormat::_format(const DigitList &number,
  1.1642 +                        UnicodeString& appendTo,
  1.1643 +                        FieldPositionHandler& handler,
  1.1644 +                        UErrorCode &status) const
  1.1645 +{
  1.1646 +    if (U_FAILURE(status)) {
  1.1647 +        return appendTo;
  1.1648 +    }
  1.1649 +
  1.1650 +    // Special case for NaN, sets the begin and end index to be the
  1.1651 +    // the string length of localized name of NaN.
  1.1652 +    if (number.isNaN())
  1.1653 +    {
  1.1654 +        int begin = appendTo.length();
  1.1655 +        appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
  1.1656 +
  1.1657 +        handler.addAttribute(kIntegerField, begin, appendTo.length());
  1.1658 +
  1.1659 +        addPadding(appendTo, handler, 0, 0);
  1.1660 +        return appendTo;
  1.1661 +    }
  1.1662 +
  1.1663 +    DigitList adjustedNum;
  1.1664 +    UBool isNegative;
  1.1665 +    _round(number, adjustedNum, isNegative, status);
  1.1666 +    if (U_FAILURE(status)) {
  1.1667 +        return appendTo;
  1.1668 +    }
  1.1669 +
  1.1670 +    // Special case for INFINITE,
  1.1671 +    if (adjustedNum.isInfinite()) {
  1.1672 +        int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
  1.1673 +
  1.1674 +        int begin = appendTo.length();
  1.1675 +        appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
  1.1676 +
  1.1677 +        handler.addAttribute(kIntegerField, begin, appendTo.length());
  1.1678 +
  1.1679 +        int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
  1.1680 +
  1.1681 +        addPadding(appendTo, handler, prefixLen, suffixLen);
  1.1682 +        return appendTo;
  1.1683 +    }
  1.1684 +    return subformat(appendTo, handler, adjustedNum, FALSE, status);
  1.1685 +}
  1.1686 +
  1.1687 +/**
  1.1688 + * Return true if a grouping separator belongs at the given
  1.1689 + * position, based on whether grouping is in use and the values of
  1.1690 + * the primary and secondary grouping interval.
  1.1691 + * @param pos the number of integer digits to the right of
  1.1692 + * the current position.  Zero indicates the position after the
  1.1693 + * rightmost integer digit.
  1.1694 + * @return true if a grouping character belongs at the current
  1.1695 + * position.
  1.1696 + */
  1.1697 +UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
  1.1698 +    UBool result = FALSE;
  1.1699 +    if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
  1.1700 +        if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
  1.1701 +            result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
  1.1702 +        } else {
  1.1703 +            result = pos % fGroupingSize == 0;
  1.1704 +        }
  1.1705 +    }
  1.1706 +    return result;
  1.1707 +}
  1.1708 +
  1.1709 +//------------------------------------------------------------------------------
  1.1710 +
  1.1711 +/**
  1.1712 + * Complete the formatting of a finite number.  On entry, the DigitList must
  1.1713 + * be filled in with the correct digits.
  1.1714 + */
  1.1715 +UnicodeString&
  1.1716 +DecimalFormat::subformat(UnicodeString& appendTo,
  1.1717 +                         FieldPositionHandler& handler,
  1.1718 +                         DigitList&     digits,
  1.1719 +                         UBool          isInteger,
  1.1720 +                         UErrorCode& status) const
  1.1721 +{
  1.1722 +    // char zero = '0'; 
  1.1723 +    // DigitList returns digits as '0' thru '9', so we will need to 
  1.1724 +    // always need to subtract the character 0 to get the numeric value to use for indexing.
  1.1725 +
  1.1726 +    UChar32 localizedDigits[10];
  1.1727 +    localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
  1.1728 +    localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
  1.1729 +    localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
  1.1730 +    localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
  1.1731 +    localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
  1.1732 +    localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
  1.1733 +    localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
  1.1734 +    localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
  1.1735 +    localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
  1.1736 +    localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
  1.1737 +
  1.1738 +    const UnicodeString *grouping ;
  1.1739 +    if(fCurrencySignCount == fgCurrencySignCountZero) {
  1.1740 +        grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
  1.1741 +    }else{
  1.1742 +        grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
  1.1743 +    }
  1.1744 +    const UnicodeString *decimal;
  1.1745 +    if(fCurrencySignCount == fgCurrencySignCountZero) {
  1.1746 +        decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
  1.1747 +    } else {
  1.1748 +        decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
  1.1749 +    }
  1.1750 +    UBool useSigDig = areSignificantDigitsUsed();
  1.1751 +    int32_t maxIntDig = getMaximumIntegerDigits();
  1.1752 +    int32_t minIntDig = getMinimumIntegerDigits();
  1.1753 +
  1.1754 +    // Appends the prefix.
  1.1755 +    double doubleValue = digits.getDouble();
  1.1756 +    int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
  1.1757 +
  1.1758 +    if (fUseExponentialNotation)
  1.1759 +    {
  1.1760 +        int currentLength = appendTo.length();
  1.1761 +        int intBegin = currentLength;
  1.1762 +        int intEnd = -1;
  1.1763 +        int fracBegin = -1;
  1.1764 +
  1.1765 +        int32_t minFracDig = 0;
  1.1766 +        if (useSigDig) {
  1.1767 +            maxIntDig = minIntDig = 1;
  1.1768 +            minFracDig = getMinimumSignificantDigits() - 1;
  1.1769 +        } else {
  1.1770 +            minFracDig = getMinimumFractionDigits();
  1.1771 +            if (maxIntDig > kMaxScientificIntegerDigits) {
  1.1772 +                maxIntDig = 1;
  1.1773 +                if (maxIntDig < minIntDig) {
  1.1774 +                    maxIntDig = minIntDig;
  1.1775 +                }
  1.1776 +            }
  1.1777 +            if (maxIntDig > minIntDig) {
  1.1778 +                minIntDig = 1;
  1.1779 +            }
  1.1780 +        }
  1.1781 +
  1.1782 +        // Minimum integer digits are handled in exponential format by
  1.1783 +        // adjusting the exponent.  For example, 0.01234 with 3 minimum
  1.1784 +        // integer digits is "123.4E-4".
  1.1785 +
  1.1786 +        // Maximum integer digits are interpreted as indicating the
  1.1787 +        // repeating range.  This is useful for engineering notation, in
  1.1788 +        // which the exponent is restricted to a multiple of 3.  For
  1.1789 +        // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
  1.1790 +        // If maximum integer digits are defined and are larger than
  1.1791 +        // minimum integer digits, then minimum integer digits are
  1.1792 +        // ignored.
  1.1793 +        digits.reduce();   // Removes trailing zero digits.
  1.1794 +        int32_t exponent = digits.getDecimalAt();
  1.1795 +        if (maxIntDig > 1 && maxIntDig != minIntDig) {
  1.1796 +            // A exponent increment is defined; adjust to it.
  1.1797 +            exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
  1.1798 +                                      : (exponent / maxIntDig) - 1;
  1.1799 +            exponent *= maxIntDig;
  1.1800 +        } else {
  1.1801 +            // No exponent increment is defined; use minimum integer digits.
  1.1802 +            // If none is specified, as in "#E0", generate 1 integer digit.
  1.1803 +            exponent -= (minIntDig > 0 || minFracDig > 0)
  1.1804 +                        ? minIntDig : 1;
  1.1805 +        }
  1.1806 +
  1.1807 +        // We now output a minimum number of digits, and more if there
  1.1808 +        // are more digits, up to the maximum number of digits.  We
  1.1809 +        // place the decimal point after the "integer" digits, which
  1.1810 +        // are the first (decimalAt - exponent) digits.
  1.1811 +        int32_t minimumDigits =  minIntDig + minFracDig;
  1.1812 +        // The number of integer digits is handled specially if the number
  1.1813 +        // is zero, since then there may be no digits.
  1.1814 +        int32_t integerDigits = digits.isZero() ? minIntDig :
  1.1815 +            digits.getDecimalAt() - exponent;
  1.1816 +        int32_t totalDigits = digits.getCount();
  1.1817 +        if (minimumDigits > totalDigits)
  1.1818 +            totalDigits = minimumDigits;
  1.1819 +        if (integerDigits > totalDigits)
  1.1820 +            totalDigits = integerDigits;
  1.1821 +
  1.1822 +        // totalDigits records total number of digits needs to be processed
  1.1823 +        int32_t i;
  1.1824 +        for (i=0; i<totalDigits; ++i)
  1.1825 +        {
  1.1826 +            if (i == integerDigits)
  1.1827 +            {
  1.1828 +                intEnd = appendTo.length();
  1.1829 +                handler.addAttribute(kIntegerField, intBegin, intEnd);
  1.1830 +
  1.1831 +                appendTo += *decimal;
  1.1832 +
  1.1833 +                fracBegin = appendTo.length();
  1.1834 +                handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
  1.1835 +            }
  1.1836 +            // Restores the digit character or pads the buffer with zeros.
  1.1837 +            UChar32 c = (UChar32)((i < digits.getCount()) ?
  1.1838 +                          localizedDigits[digits.getDigitValue(i)] :
  1.1839 +                          localizedDigits[0]);
  1.1840 +            appendTo += c;
  1.1841 +        }
  1.1842 +
  1.1843 +        currentLength = appendTo.length();
  1.1844 +
  1.1845 +        if (intEnd < 0) {
  1.1846 +            handler.addAttribute(kIntegerField, intBegin, currentLength);
  1.1847 +        }
  1.1848 +        if (fracBegin > 0) {
  1.1849 +            handler.addAttribute(kFractionField, fracBegin, currentLength);
  1.1850 +        }
  1.1851 +
  1.1852 +        // The exponent is output using the pattern-specified minimum
  1.1853 +        // exponent digits.  There is no maximum limit to the exponent
  1.1854 +        // digits, since truncating the exponent would appendTo in an
  1.1855 +        // unacceptable inaccuracy.
  1.1856 +        appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
  1.1857 +
  1.1858 +        handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
  1.1859 +        currentLength = appendTo.length();
  1.1860 +
  1.1861 +        // For zero values, we force the exponent to zero.  We
  1.1862 +        // must do this here, and not earlier, because the value
  1.1863 +        // is used to determine integer digit count above.
  1.1864 +        if (digits.isZero())
  1.1865 +            exponent = 0;
  1.1866 +
  1.1867 +        if (exponent < 0) {
  1.1868 +            appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  1.1869 +            handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
  1.1870 +        } else if (fExponentSignAlwaysShown) {
  1.1871 +            appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  1.1872 +            handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
  1.1873 +        }
  1.1874 +
  1.1875 +        currentLength = appendTo.length();
  1.1876 +
  1.1877 +        DigitList expDigits;
  1.1878 +        expDigits.set(exponent);
  1.1879 +        {
  1.1880 +            int expDig = fMinExponentDigits;
  1.1881 +            if (fUseExponentialNotation && expDig < 1) {
  1.1882 +                expDig = 1;
  1.1883 +            }
  1.1884 +            for (i=expDigits.getDecimalAt(); i<expDig; ++i)
  1.1885 +                appendTo += (localizedDigits[0]);
  1.1886 +        }
  1.1887 +        for (i=0; i<expDigits.getDecimalAt(); ++i)
  1.1888 +        {
  1.1889 +            UChar32 c = (UChar32)((i < expDigits.getCount()) ?
  1.1890 +                          localizedDigits[expDigits.getDigitValue(i)] : 
  1.1891 +                          localizedDigits[0]);
  1.1892 +            appendTo += c;
  1.1893 +        }
  1.1894 +
  1.1895 +        handler.addAttribute(kExponentField, currentLength, appendTo.length());
  1.1896 +    }
  1.1897 +    else  // Not using exponential notation
  1.1898 +    {
  1.1899 +        int currentLength = appendTo.length();
  1.1900 +        int intBegin = currentLength;
  1.1901 +
  1.1902 +        int32_t sigCount = 0;
  1.1903 +        int32_t minSigDig = getMinimumSignificantDigits();
  1.1904 +        int32_t maxSigDig = getMaximumSignificantDigits();
  1.1905 +        if (!useSigDig) {
  1.1906 +            minSigDig = 0;
  1.1907 +            maxSigDig = INT32_MAX;
  1.1908 +        }
  1.1909 +
  1.1910 +        // Output the integer portion.  Here 'count' is the total
  1.1911 +        // number of integer digits we will display, including both
  1.1912 +        // leading zeros required to satisfy getMinimumIntegerDigits,
  1.1913 +        // and actual digits present in the number.
  1.1914 +        int32_t count = useSigDig ?
  1.1915 +            _max(1, digits.getDecimalAt()) : minIntDig;
  1.1916 +        if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
  1.1917 +            count = digits.getDecimalAt();
  1.1918 +        }
  1.1919 +
  1.1920 +        // Handle the case where getMaximumIntegerDigits() is smaller
  1.1921 +        // than the real number of integer digits.  If this is so, we
  1.1922 +        // output the least significant max integer digits.  For example,
  1.1923 +        // the value 1997 printed with 2 max integer digits is just "97".
  1.1924 +
  1.1925 +        int32_t digitIndex = 0; // Index into digitList.fDigits[]
  1.1926 +        if (count > maxIntDig && maxIntDig >= 0) {
  1.1927 +            count = maxIntDig;
  1.1928 +            digitIndex = digits.getDecimalAt() - count;
  1.1929 +            if(fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
  1.1930 +                status = U_ILLEGAL_ARGUMENT_ERROR;
  1.1931 +            }
  1.1932 +        }
  1.1933 +
  1.1934 +        int32_t sizeBeforeIntegerPart = appendTo.length();
  1.1935 +
  1.1936 +        int32_t i;
  1.1937 +        for (i=count-1; i>=0; --i)
  1.1938 +        {
  1.1939 +            if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
  1.1940 +                sigCount < maxSigDig) {
  1.1941 +                // Output a real digit
  1.1942 +                appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
  1.1943 +                ++sigCount;
  1.1944 +            }
  1.1945 +            else
  1.1946 +            {
  1.1947 +                // Output a zero (leading or trailing)
  1.1948 +                appendTo += localizedDigits[0];
  1.1949 +                if (sigCount > 0) {
  1.1950 +                    ++sigCount;
  1.1951 +                }
  1.1952 +            }
  1.1953 +
  1.1954 +            // Output grouping separator if necessary.
  1.1955 +            if (isGroupingPosition(i)) {
  1.1956 +                currentLength = appendTo.length();
  1.1957 +                appendTo.append(*grouping);
  1.1958 +                handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
  1.1959 +            }
  1.1960 +        }
  1.1961 +
  1.1962 +        // This handles the special case of formatting 0. For zero only, we count the
  1.1963 +        // zero to the left of the decimal point as one signficant digit. Ordinarily we
  1.1964 +        // do not count any leading 0's as significant. If the number we are formatting
  1.1965 +        // is not zero, then either sigCount or digits.getCount() will be non-zero.
  1.1966 +        if (sigCount == 0 && digits.getCount() == 0) {
  1.1967 +          sigCount = 1;
  1.1968 +        }
  1.1969 +
  1.1970 +        // TODO(dlf): this looks like it was a bug, we marked the int field as ending
  1.1971 +        // before the zero was generated.
  1.1972 +        // Record field information for caller.
  1.1973 +        // if (fieldPosition.getField() == NumberFormat::kIntegerField)
  1.1974 +        //     fieldPosition.setEndIndex(appendTo.length());
  1.1975 +
  1.1976 +        // Determine whether or not there are any printable fractional
  1.1977 +        // digits.  If we've used up the digits we know there aren't.
  1.1978 +        UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
  1.1979 +            (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
  1.1980 +
  1.1981 +        // If there is no fraction present, and we haven't printed any
  1.1982 +        // integer digits, then print a zero.  Otherwise we won't print
  1.1983 +        // _any_ digits, and we won't be able to parse this string.
  1.1984 +        if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
  1.1985 +            appendTo += localizedDigits[0];
  1.1986 +
  1.1987 +        currentLength = appendTo.length();
  1.1988 +        handler.addAttribute(kIntegerField, intBegin, currentLength);
  1.1989 +
  1.1990 +        // Output the decimal separator if we always do so.
  1.1991 +        if (fDecimalSeparatorAlwaysShown || fractionPresent) {
  1.1992 +            appendTo += *decimal;
  1.1993 +            handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
  1.1994 +            currentLength = appendTo.length();
  1.1995 +        }
  1.1996 +
  1.1997 +        int fracBegin = currentLength;
  1.1998 +
  1.1999 +        count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
  1.2000 +        if (useSigDig && (sigCount == maxSigDig ||
  1.2001 +                          (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
  1.2002 +            count = 0;
  1.2003 +        }
  1.2004 +
  1.2005 +        for (i=0; i < count; ++i) {
  1.2006 +            // Here is where we escape from the loop.  We escape
  1.2007 +            // if we've output the maximum fraction digits
  1.2008 +            // (specified in the for expression above).  We also
  1.2009 +            // stop when we've output the minimum digits and
  1.2010 +            // either: we have an integer, so there is no
  1.2011 +            // fractional stuff to display, or we're out of
  1.2012 +            // significant digits.
  1.2013 +            if (!useSigDig && i >= getMinimumFractionDigits() &&
  1.2014 +                (isInteger || digitIndex >= digits.getCount())) {
  1.2015 +                break;
  1.2016 +            }
  1.2017 +
  1.2018 +            // Output leading fractional zeros.  These are zeros
  1.2019 +            // that come after the decimal but before any
  1.2020 +            // significant digits.  These are only output if
  1.2021 +            // abs(number being formatted) < 1.0.
  1.2022 +            if (-1-i > (digits.getDecimalAt()-1)) {
  1.2023 +                appendTo += localizedDigits[0];
  1.2024 +                continue;
  1.2025 +            }
  1.2026 +
  1.2027 +            // Output a digit, if we have any precision left, or a
  1.2028 +            // zero if we don't.  We don't want to output noise digits.
  1.2029 +            if (!isInteger && digitIndex < digits.getCount()) {
  1.2030 +                appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
  1.2031 +            } else {
  1.2032 +                appendTo += localizedDigits[0];
  1.2033 +            }
  1.2034 +
  1.2035 +            // If we reach the maximum number of significant
  1.2036 +            // digits, or if we output all the real digits and
  1.2037 +            // reach the minimum, then we are done.
  1.2038 +            ++sigCount;
  1.2039 +            if (useSigDig &&
  1.2040 +                (sigCount == maxSigDig ||
  1.2041 +                 (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
  1.2042 +                break;
  1.2043 +            }
  1.2044 +        }
  1.2045 +
  1.2046 +        handler.addAttribute(kFractionField, fracBegin, appendTo.length());
  1.2047 +    }
  1.2048 +
  1.2049 +    int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
  1.2050 +
  1.2051 +    addPadding(appendTo, handler, prefixLen, suffixLen);
  1.2052 +    return appendTo;
  1.2053 +}
  1.2054 +
  1.2055 +/**
  1.2056 + * Inserts the character fPad as needed to expand result to fFormatWidth.
  1.2057 + * @param result the string to be padded
  1.2058 + */
  1.2059 +void DecimalFormat::addPadding(UnicodeString& appendTo,
  1.2060 +                               FieldPositionHandler& handler,
  1.2061 +                               int32_t prefixLen,
  1.2062 +                               int32_t suffixLen) const
  1.2063 +{
  1.2064 +    if (fFormatWidth > 0) {
  1.2065 +        int32_t len = fFormatWidth - appendTo.length();
  1.2066 +        if (len > 0) {
  1.2067 +            UnicodeString padding;
  1.2068 +            for (int32_t i=0; i<len; ++i) {
  1.2069 +                padding += fPad;
  1.2070 +            }
  1.2071 +            switch (fPadPosition) {
  1.2072 +            case kPadAfterPrefix:
  1.2073 +                appendTo.insert(prefixLen, padding);
  1.2074 +                break;
  1.2075 +            case kPadBeforePrefix:
  1.2076 +                appendTo.insert(0, padding);
  1.2077 +                break;
  1.2078 +            case kPadBeforeSuffix:
  1.2079 +                appendTo.insert(appendTo.length() - suffixLen, padding);
  1.2080 +                break;
  1.2081 +            case kPadAfterSuffix:
  1.2082 +                appendTo += padding;
  1.2083 +                break;
  1.2084 +            }
  1.2085 +            if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
  1.2086 +                handler.shiftLast(len);
  1.2087 +            }
  1.2088 +        }
  1.2089 +    }
  1.2090 +}
  1.2091 +
  1.2092 +//------------------------------------------------------------------------------
  1.2093 +
  1.2094 +void
  1.2095 +DecimalFormat::parse(const UnicodeString& text,
  1.2096 +                     Formattable& result,
  1.2097 +                     ParsePosition& parsePosition) const {
  1.2098 +    parse(text, result, parsePosition, NULL);
  1.2099 +}
  1.2100 +
  1.2101 +CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
  1.2102 +                                             ParsePosition& pos) const {
  1.2103 +    Formattable parseResult;
  1.2104 +    int32_t start = pos.getIndex();
  1.2105 +    UChar curbuf[4] = {};
  1.2106 +    parse(text, parseResult, pos, curbuf);
  1.2107 +    if (pos.getIndex() != start) {
  1.2108 +        UErrorCode ec = U_ZERO_ERROR;
  1.2109 +        LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec));
  1.2110 +        if (U_FAILURE(ec)) {
  1.2111 +            pos.setIndex(start); // indicate failure
  1.2112 +        } else {
  1.2113 +            return currAmt.orphan();
  1.2114 +        }
  1.2115 +    }
  1.2116 +    return NULL;
  1.2117 +}
  1.2118 +
  1.2119 +/**
  1.2120 + * Parses the given text as a number, optionally providing a currency amount.
  1.2121 + * @param text the string to parse
  1.2122 + * @param result output parameter for the numeric result.
  1.2123 + * @param parsePosition input-output position; on input, the
  1.2124 + * position within text to match; must have 0 <= pos.getIndex() <
  1.2125 + * text.length(); on output, the position after the last matched
  1.2126 + * character. If the parse fails, the position in unchanged upon
  1.2127 + * output.
  1.2128 + * @param currency if non-NULL, it should point to a 4-UChar buffer.
  1.2129 + * In this case the text is parsed as a currency format, and the
  1.2130 + * ISO 4217 code for the parsed currency is put into the buffer.
  1.2131 + * Otherwise the text is parsed as a non-currency format.
  1.2132 + */
  1.2133 +void DecimalFormat::parse(const UnicodeString& text,
  1.2134 +                          Formattable& result,
  1.2135 +                          ParsePosition& parsePosition,
  1.2136 +                          UChar* currency) const {
  1.2137 +    int32_t startIdx, backup;
  1.2138 +    int32_t i = startIdx = backup = parsePosition.getIndex();
  1.2139 +
  1.2140 +    // clear any old contents in the result.  In particular, clears any DigitList
  1.2141 +    //   that it may be holding.
  1.2142 +    result.setLong(0);
  1.2143 +    if (currency != NULL) {
  1.2144 +        for (int32_t ci=0; ci<4; ci++) {
  1.2145 +            currency[ci] = 0;
  1.2146 +        }
  1.2147 +    }
  1.2148 +
  1.2149 +    // Handle NaN as a special case:
  1.2150 +
  1.2151 +    // Skip padding characters, if around prefix
  1.2152 +    if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
  1.2153 +                             fPadPosition == kPadAfterPrefix)) {
  1.2154 +        i = skipPadding(text, i);
  1.2155 +    }
  1.2156 +
  1.2157 +    if (isLenient()) {
  1.2158 +        // skip any leading whitespace
  1.2159 +        i = backup = skipUWhiteSpace(text, i);
  1.2160 +    }
  1.2161 +
  1.2162 +    // If the text is composed of the representation of NaN, returns NaN.length
  1.2163 +    const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
  1.2164 +    int32_t nanLen = (text.compare(i, nan->length(), *nan)
  1.2165 +                      ? 0 : nan->length());
  1.2166 +    if (nanLen) {
  1.2167 +        i += nanLen;
  1.2168 +        if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
  1.2169 +                                 fPadPosition == kPadAfterSuffix)) {
  1.2170 +            i = skipPadding(text, i);
  1.2171 +        }
  1.2172 +        parsePosition.setIndex(i);
  1.2173 +        result.setDouble(uprv_getNaN());
  1.2174 +        return;
  1.2175 +    }
  1.2176 +
  1.2177 +    // NaN parse failed; start over
  1.2178 +    i = backup;
  1.2179 +    parsePosition.setIndex(i);
  1.2180 +
  1.2181 +    // status is used to record whether a number is infinite.
  1.2182 +    UBool status[fgStatusLength];
  1.2183 +
  1.2184 +    DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
  1.2185 +    if (digits == NULL) {
  1.2186 +        return;    // no way to report error from here.
  1.2187 +    }
  1.2188 +
  1.2189 +    if (fCurrencySignCount != fgCurrencySignCountZero) {
  1.2190 +        if (!parseForCurrency(text, parsePosition, *digits,
  1.2191 +                              status, currency)) {
  1.2192 +          return;
  1.2193 +        }
  1.2194 +    } else {
  1.2195 +        if (!subparse(text,
  1.2196 +                      fNegPrefixPattern, fNegSuffixPattern,
  1.2197 +                      fPosPrefixPattern, fPosSuffixPattern,
  1.2198 +                      FALSE, UCURR_SYMBOL_NAME,
  1.2199 +                      parsePosition, *digits, status, currency)) {
  1.2200 +            debug("!subparse(...) - rewind");
  1.2201 +            parsePosition.setIndex(startIdx);
  1.2202 +            return;
  1.2203 +        }
  1.2204 +    }
  1.2205 +
  1.2206 +    // Handle infinity
  1.2207 +    if (status[fgStatusInfinite]) {
  1.2208 +        double inf = uprv_getInfinity();
  1.2209 +        result.setDouble(digits->isPositive() ? inf : -inf);
  1.2210 +        // TODO:  set the dl to infinity, and let it fall into the code below.
  1.2211 +    }
  1.2212 +
  1.2213 +    else {
  1.2214 +
  1.2215 +        if (fMultiplier != NULL) {
  1.2216 +            UErrorCode ec = U_ZERO_ERROR;
  1.2217 +            digits->div(*fMultiplier, ec);
  1.2218 +        }
  1.2219 +
  1.2220 +        if (fScale != 0) {
  1.2221 +            DigitList ten;
  1.2222 +            ten.set((int32_t)10);
  1.2223 +            if (fScale > 0) {
  1.2224 +                for (int32_t i = fScale; i > 0; i--) {
  1.2225 +                    UErrorCode ec = U_ZERO_ERROR;
  1.2226 +                    digits->div(ten,ec);
  1.2227 +                }
  1.2228 +            } else {
  1.2229 +                for (int32_t i = fScale; i < 0; i++) {
  1.2230 +                    UErrorCode ec = U_ZERO_ERROR;
  1.2231 +                    digits->mult(ten,ec);
  1.2232 +                }
  1.2233 +            }
  1.2234 +        }
  1.2235 +
  1.2236 +        // Negative zero special case:
  1.2237 +        //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
  1.2238 +        //    if not parsing integerOnly, leave as -0, which a double can represent.
  1.2239 +        if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
  1.2240 +            digits->setPositive(TRUE);
  1.2241 +        }
  1.2242 +        result.adoptDigitList(digits);
  1.2243 +    }
  1.2244 +}
  1.2245 +
  1.2246 +
  1.2247 +
  1.2248 +UBool
  1.2249 +DecimalFormat::parseForCurrency(const UnicodeString& text,
  1.2250 +                                ParsePosition& parsePosition,
  1.2251 +                                DigitList& digits,
  1.2252 +                                UBool* status,
  1.2253 +                                UChar* currency) const {
  1.2254 +    int origPos = parsePosition.getIndex();
  1.2255 +    int maxPosIndex = origPos;
  1.2256 +    int maxErrorPos = -1;
  1.2257 +    // First, parse against current pattern.
  1.2258 +    // Since current pattern could be set by applyPattern(),
  1.2259 +    // it could be an arbitrary pattern, and it may not be the one
  1.2260 +    // defined in current locale.
  1.2261 +    UBool tmpStatus[fgStatusLength];
  1.2262 +    ParsePosition tmpPos(origPos);
  1.2263 +    DigitList tmpDigitList;
  1.2264 +    UBool found;
  1.2265 +    if (fStyle == UNUM_CURRENCY_PLURAL) {
  1.2266 +        found = subparse(text,
  1.2267 +                         fNegPrefixPattern, fNegSuffixPattern,
  1.2268 +                         fPosPrefixPattern, fPosSuffixPattern,
  1.2269 +                         TRUE, UCURR_LONG_NAME,
  1.2270 +                         tmpPos, tmpDigitList, tmpStatus, currency);
  1.2271 +    } else {
  1.2272 +        found = subparse(text,
  1.2273 +                         fNegPrefixPattern, fNegSuffixPattern,
  1.2274 +                         fPosPrefixPattern, fPosSuffixPattern,
  1.2275 +                         TRUE, UCURR_SYMBOL_NAME,
  1.2276 +                         tmpPos, tmpDigitList, tmpStatus, currency);
  1.2277 +    }
  1.2278 +    if (found) {
  1.2279 +        if (tmpPos.getIndex() > maxPosIndex) {
  1.2280 +            maxPosIndex = tmpPos.getIndex();
  1.2281 +            for (int32_t i = 0; i < fgStatusLength; ++i) {
  1.2282 +                status[i] = tmpStatus[i];
  1.2283 +            }
  1.2284 +            digits = tmpDigitList;
  1.2285 +        }
  1.2286 +    } else {
  1.2287 +        maxErrorPos = tmpPos.getErrorIndex();
  1.2288 +    }
  1.2289 +    // Then, parse against affix patterns.
  1.2290 +    // Those are currency patterns and currency plural patterns.
  1.2291 +    int32_t pos = -1;
  1.2292 +    const UHashElement* element = NULL;
  1.2293 +    while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
  1.2294 +        const UHashTok valueTok = element->value;
  1.2295 +        const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
  1.2296 +        UBool tmpStatus[fgStatusLength];
  1.2297 +        ParsePosition tmpPos(origPos);
  1.2298 +        DigitList tmpDigitList;
  1.2299 +
  1.2300 +#ifdef FMT_DEBUG
  1.2301 +        debug("trying affix for currency..");
  1.2302 +        affixPtn->dump();
  1.2303 +#endif
  1.2304 +
  1.2305 +        UBool result = subparse(text,
  1.2306 +                                &affixPtn->negPrefixPatternForCurrency,
  1.2307 +                                &affixPtn->negSuffixPatternForCurrency,
  1.2308 +                                &affixPtn->posPrefixPatternForCurrency,
  1.2309 +                                &affixPtn->posSuffixPatternForCurrency,
  1.2310 +                                TRUE, affixPtn->patternType,
  1.2311 +                                tmpPos, tmpDigitList, tmpStatus, currency);
  1.2312 +        if (result) {
  1.2313 +            found = true;
  1.2314 +            if (tmpPos.getIndex() > maxPosIndex) {
  1.2315 +                maxPosIndex = tmpPos.getIndex();
  1.2316 +                for (int32_t i = 0; i < fgStatusLength; ++i) {
  1.2317 +                    status[i] = tmpStatus[i];
  1.2318 +                }
  1.2319 +                digits = tmpDigitList;
  1.2320 +            }
  1.2321 +        } else {
  1.2322 +            maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
  1.2323 +                          tmpPos.getErrorIndex() : maxErrorPos;
  1.2324 +        }
  1.2325 +    }
  1.2326 +    // Finally, parse against simple affix to find the match.
  1.2327 +    // For example, in TestMonster suite,
  1.2328 +    // if the to-be-parsed text is "-\u00A40,00".
  1.2329 +    // complexAffixCompare will not find match,
  1.2330 +    // since there is no ISO code matches "\u00A4",
  1.2331 +    // and the parse stops at "\u00A4".
  1.2332 +    // We will just use simple affix comparison (look for exact match)
  1.2333 +    // to pass it.
  1.2334 +    //
  1.2335 +    // TODO: We should parse against simple affix first when
  1.2336 +    // output currency is not requested. After the complex currency
  1.2337 +    // parsing implementation was introduced, the default currency
  1.2338 +    // instance parsing slowed down because of the new code flow.
  1.2339 +    // I filed #10312 - Yoshito
  1.2340 +    UBool tmpStatus_2[fgStatusLength];
  1.2341 +    ParsePosition tmpPos_2(origPos);
  1.2342 +    DigitList tmpDigitList_2;
  1.2343 +
  1.2344 +    // Disable complex currency parsing and try it again.
  1.2345 +    UBool result = subparse(text,
  1.2346 +                            &fNegativePrefix, &fNegativeSuffix,
  1.2347 +                            &fPositivePrefix, &fPositiveSuffix,
  1.2348 +                            FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
  1.2349 +                            tmpPos_2, tmpDigitList_2, tmpStatus_2,
  1.2350 +                            currency);
  1.2351 +    if (result) {
  1.2352 +        if (tmpPos_2.getIndex() > maxPosIndex) {
  1.2353 +            maxPosIndex = tmpPos_2.getIndex();
  1.2354 +            for (int32_t i = 0; i < fgStatusLength; ++i) {
  1.2355 +                status[i] = tmpStatus_2[i];
  1.2356 +            }
  1.2357 +            digits = tmpDigitList_2;
  1.2358 +        }
  1.2359 +        found = true;
  1.2360 +    } else {
  1.2361 +            maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
  1.2362 +                          tmpPos_2.getErrorIndex() : maxErrorPos;
  1.2363 +    }
  1.2364 +
  1.2365 +    if (!found) {
  1.2366 +        //parsePosition.setIndex(origPos);
  1.2367 +        parsePosition.setErrorIndex(maxErrorPos);
  1.2368 +    } else {
  1.2369 +        parsePosition.setIndex(maxPosIndex);
  1.2370 +        parsePosition.setErrorIndex(-1);
  1.2371 +    }
  1.2372 +    return found;
  1.2373 +}
  1.2374 +
  1.2375 +
  1.2376 +/**
  1.2377 + * Parse the given text into a number.  The text is parsed beginning at
  1.2378 + * parsePosition, until an unparseable character is seen.
  1.2379 + * @param text the string to parse.
  1.2380 + * @param negPrefix negative prefix.
  1.2381 + * @param negSuffix negative suffix.
  1.2382 + * @param posPrefix positive prefix.
  1.2383 + * @param posSuffix positive suffix.
  1.2384 + * @param complexCurrencyParsing whether it is complex currency parsing or not.
  1.2385 + * @param type the currency type to parse against, LONG_NAME only or not.
  1.2386 + * @param parsePosition The position at which to being parsing.  Upon
  1.2387 + * return, the first unparsed character.
  1.2388 + * @param digits the DigitList to set to the parsed value.
  1.2389 + * @param status output param containing boolean status flags indicating
  1.2390 + * whether the value was infinite and whether it was positive.
  1.2391 + * @param currency return value for parsed currency, for generic
  1.2392 + * currency parsing mode, or NULL for normal parsing. In generic
  1.2393 + * currency parsing mode, any currency is parsed, not just the
  1.2394 + * currency that this formatter is set to.
  1.2395 + */
  1.2396 +UBool DecimalFormat::subparse(const UnicodeString& text,
  1.2397 +                              const UnicodeString* negPrefix,
  1.2398 +                              const UnicodeString* negSuffix,
  1.2399 +                              const UnicodeString* posPrefix,
  1.2400 +                              const UnicodeString* posSuffix,
  1.2401 +                              UBool complexCurrencyParsing,
  1.2402 +                              int8_t type,
  1.2403 +                              ParsePosition& parsePosition,
  1.2404 +                              DigitList& digits, UBool* status,
  1.2405 +                              UChar* currency) const
  1.2406 +{
  1.2407 +    //  The parsing process builds up the number as char string, in the neutral format that
  1.2408 +    //  will be acceptable to the decNumber library, then at the end passes that string
  1.2409 +    //  off for conversion to a decNumber.
  1.2410 +    UErrorCode err = U_ZERO_ERROR;
  1.2411 +    CharString parsedNum;
  1.2412 +    digits.setToZero();
  1.2413 +
  1.2414 +    int32_t position = parsePosition.getIndex();
  1.2415 +    int32_t oldStart = position;
  1.2416 +    int32_t textLength = text.length(); // One less pointer to follow
  1.2417 +    UBool strictParse = !isLenient();
  1.2418 +    UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
  1.2419 +    const UnicodeString *groupingString = &getConstSymbol(fCurrencySignCount == fgCurrencySignCountZero ?
  1.2420 +        DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
  1.2421 +    UChar32 groupingChar = groupingString->char32At(0);
  1.2422 +    int32_t groupingStringLength = groupingString->length();
  1.2423 +    int32_t groupingCharLength   = U16_LENGTH(groupingChar);
  1.2424 +    UBool   groupingUsed = isGroupingUsed();
  1.2425 +#ifdef FMT_DEBUG
  1.2426 +    UChar dbgbuf[300];
  1.2427 +    UnicodeString s(dbgbuf,0,300);;
  1.2428 +    s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
  1.2429 +#define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "="));  if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
  1.2430 +    DBGAPPD(negPrefix);
  1.2431 +    DBGAPPD(negSuffix);
  1.2432 +    DBGAPPD(posPrefix);
  1.2433 +    DBGAPPD(posSuffix);
  1.2434 +    debugout(s);
  1.2435 +    printf("currencyParsing=%d, fFormatWidth=%d, isParseIntegerOnly=%c text.length=%d negPrefLen=%d\n", currencyParsing, fFormatWidth, (isParseIntegerOnly())?'Y':'N', text.length(),  negPrefix!=NULL?negPrefix->length():-1);
  1.2436 +#endif
  1.2437 +
  1.2438 +    UBool fastParseOk = false; /* TRUE iff fast parse is OK */
  1.2439 +    // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
  1.2440 +    const DecimalFormatInternal &data = internalData(fReserved);
  1.2441 +    if((data.fFastParseStatus==kFastpathYES) &&
  1.2442 +       fCurrencySignCount == fgCurrencySignCountZero &&
  1.2443 +       //       (negPrefix!=NULL&&negPrefix->isEmpty()) ||
  1.2444 +       text.length()>0 &&
  1.2445 +       text.length()<32 &&
  1.2446 +       (posPrefix==NULL||posPrefix->isEmpty()) &&
  1.2447 +       (posSuffix==NULL||posSuffix->isEmpty()) &&
  1.2448 +       //            (negPrefix==NULL||negPrefix->isEmpty()) &&
  1.2449 +       //            (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
  1.2450 +       TRUE) {  // optimized path
  1.2451 +      int j=position;
  1.2452 +      int l=text.length();
  1.2453 +      int digitCount=0;
  1.2454 +      UChar32 ch = text.char32At(j);
  1.2455 +      const UnicodeString *decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
  1.2456 +      UChar32 decimalChar = 0;
  1.2457 +      UBool intOnly = FALSE;
  1.2458 +      UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
  1.2459 +
  1.2460 +      int32_t decimalCount = decimalString->countChar32(0,3);
  1.2461 +      if(isParseIntegerOnly()) {
  1.2462 +        decimalChar = 0; // not allowed
  1.2463 +        intOnly = TRUE; // Don't look for decimals.
  1.2464 +      } else if(decimalCount==1) {
  1.2465 +        decimalChar = decimalString->char32At(0); // Look for this decimal
  1.2466 +      } else if(decimalCount==0) {
  1.2467 +        decimalChar=0; // NO decimal set
  1.2468 +      } else {
  1.2469 +        j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
  1.2470 +      }
  1.2471 +
  1.2472 +#ifdef FMT_DEBUG
  1.2473 +      printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
  1.2474 +        decimalChar, groupingChar, ch,
  1.2475 +        (intOnly)?'y':'n',
  1.2476 +        (strictParse)?'y':'n');
  1.2477 +#endif
  1.2478 +      if(ch==0x002D) { // '-'
  1.2479 +        j=l+1;//=break - negative number.
  1.2480 +        
  1.2481 +        /*
  1.2482 +          parsedNum.append('-',err); 
  1.2483 +          j+=U16_LENGTH(ch);
  1.2484 +          if(j<l) ch = text.char32At(j);
  1.2485 +        */
  1.2486 +      } else {
  1.2487 +        parsedNum.append('+',err);
  1.2488 +      }
  1.2489 +      while(j<l) {
  1.2490 +        int32_t digit = ch - zero;
  1.2491 +        if(digit >=0 && digit <= 9) {
  1.2492 +          parsedNum.append((char)(digit + '0'), err);
  1.2493 +          if((digitCount>0) || digit!=0 || j==(l-1)) {
  1.2494 +            digitCount++;
  1.2495 +          }
  1.2496 +        } else if(ch == 0) { // break out
  1.2497 +          digitCount=-1;
  1.2498 +          break;
  1.2499 +        } else if(ch == decimalChar) {
  1.2500 +          parsedNum.append((char)('.'), err);
  1.2501 +          decimalChar=0; // no more decimals.
  1.2502 +          // fastParseHadDecimal=TRUE;
  1.2503 +        } else if(ch == lookForGroup) {
  1.2504 +          // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
  1.2505 +        } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
  1.2506 +          // parsing integer only and can fall through
  1.2507 +        } else {
  1.2508 +          digitCount=-1; // fail - fall through to slow parse
  1.2509 +          break;
  1.2510 +        }
  1.2511 +        j+=U16_LENGTH(ch);
  1.2512 +        ch = text.char32At(j); // for next  
  1.2513 +      }
  1.2514 +      if(
  1.2515 +         ((j==l)||intOnly) // end OR only parsing integer
  1.2516 +         && (digitCount>0)) { // and have at least one digit
  1.2517 +#ifdef FMT_DEBUG
  1.2518 +        printf("PP -> %d, good = [%s]  digitcount=%d, fGroupingSize=%d fGroupingSize2=%d!\n", j, parsedNum.data(), digitCount, fGroupingSize, fGroupingSize2);
  1.2519 +#endif
  1.2520 +        fastParseOk=true; // Fast parse OK!
  1.2521 +
  1.2522 +#ifdef SKIP_OPT
  1.2523 +        debug("SKIP_OPT");
  1.2524 +        /* for testing, try it the slow way. also */
  1.2525 +        fastParseOk=false;
  1.2526 +        parsedNum.clear();
  1.2527 +#else
  1.2528 +        parsePosition.setIndex(position=j);
  1.2529 +        status[fgStatusInfinite]=false;
  1.2530 +#endif
  1.2531 +      } else {
  1.2532 +        // was not OK. reset, retry
  1.2533 +#ifdef FMT_DEBUG
  1.2534 +        printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
  1.2535 +#endif
  1.2536 +        parsedNum.clear();
  1.2537 +      }
  1.2538 +    } else {
  1.2539 +#ifdef FMT_DEBUG
  1.2540 +      printf("Could not fastpath parse. ");
  1.2541 +      printf("fFormatWidth=%d ", fFormatWidth);
  1.2542 +      printf("text.length()=%d ", text.length());
  1.2543 +      printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
  1.2544 +
  1.2545 +      printf("\n");
  1.2546 +#endif
  1.2547 +    }
  1.2548 +
  1.2549 +  if(!fastParseOk 
  1.2550 +#if UCONFIG_HAVE_PARSEALLINPUT
  1.2551 +     && fParseAllInput!=UNUM_YES
  1.2552 +#endif
  1.2553 +     ) 
  1.2554 +  {
  1.2555 +    // Match padding before prefix
  1.2556 +    if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
  1.2557 +        position = skipPadding(text, position);
  1.2558 +    }
  1.2559 +
  1.2560 +    // Match positive and negative prefixes; prefer longest match.
  1.2561 +    int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
  1.2562 +    int32_t negMatch = compareAffix(text, position, TRUE,  TRUE, negPrefix, complexCurrencyParsing, type, currency);
  1.2563 +    if (posMatch >= 0 && negMatch >= 0) {
  1.2564 +        if (posMatch > negMatch) {
  1.2565 +            negMatch = -1;
  1.2566 +        } else if (negMatch > posMatch) {
  1.2567 +            posMatch = -1;
  1.2568 +        }
  1.2569 +    }
  1.2570 +    if (posMatch >= 0) {
  1.2571 +        position += posMatch;
  1.2572 +        parsedNum.append('+', err);
  1.2573 +    } else if (negMatch >= 0) {
  1.2574 +        position += negMatch;
  1.2575 +        parsedNum.append('-', err);
  1.2576 +    } else if (strictParse){
  1.2577 +        parsePosition.setErrorIndex(position);
  1.2578 +        return FALSE;
  1.2579 +    } else {
  1.2580 +        // Temporary set positive. This might be changed after checking suffix
  1.2581 +        parsedNum.append('+', err);
  1.2582 +    }
  1.2583 +
  1.2584 +    // Match padding before prefix
  1.2585 +    if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
  1.2586 +        position = skipPadding(text, position);
  1.2587 +    }
  1.2588 +
  1.2589 +    if (! strictParse) {
  1.2590 +        position = skipUWhiteSpace(text, position);
  1.2591 +    }
  1.2592 +
  1.2593 +    // process digits or Inf, find decimal position
  1.2594 +    const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
  1.2595 +    int32_t infLen = (text.compare(position, inf->length(), *inf)
  1.2596 +        ? 0 : inf->length());
  1.2597 +    position += infLen; // infLen is non-zero when it does equal to infinity
  1.2598 +    status[fgStatusInfinite] = infLen != 0;
  1.2599 +
  1.2600 +    if (infLen != 0) {
  1.2601 +        parsedNum.append("Infinity", err);
  1.2602 +    } else {
  1.2603 +        // We now have a string of digits, possibly with grouping symbols,
  1.2604 +        // and decimal points.  We want to process these into a DigitList.
  1.2605 +        // We don't want to put a bunch of leading zeros into the DigitList
  1.2606 +        // though, so we keep track of the location of the decimal point,
  1.2607 +        // put only significant digits into the DigitList, and adjust the
  1.2608 +        // exponent as needed.
  1.2609 +
  1.2610 +
  1.2611 +        UBool strictFail = FALSE; // did we exit with a strict parse failure?
  1.2612 +        int32_t lastGroup = -1; // where did we last see a grouping separator?
  1.2613 +        int32_t digitStart = position;
  1.2614 +        int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
  1.2615 +
  1.2616 +        const UnicodeString *decimalString;
  1.2617 +        if (fCurrencySignCount != fgCurrencySignCountZero) {
  1.2618 +            decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
  1.2619 +        } else {
  1.2620 +            decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
  1.2621 +        }
  1.2622 +        UChar32 decimalChar = decimalString->char32At(0);
  1.2623 +        int32_t decimalStringLength = decimalString->length();
  1.2624 +        int32_t decimalCharLength   = U16_LENGTH(decimalChar);
  1.2625 +
  1.2626 +        UBool sawDecimal = FALSE;
  1.2627 +        UChar32 sawDecimalChar = 0xFFFF;
  1.2628 +        UBool sawGrouping = FALSE;
  1.2629 +        UChar32 sawGroupingChar = 0xFFFF;
  1.2630 +        UBool sawDigit = FALSE;
  1.2631 +        int32_t backup = -1;
  1.2632 +        int32_t digit;
  1.2633 +
  1.2634 +        // equivalent grouping and decimal support
  1.2635 +        const UnicodeSet *decimalSet = NULL;
  1.2636 +        const UnicodeSet *groupingSet = NULL;
  1.2637 +
  1.2638 +        if (decimalCharLength == decimalStringLength) {
  1.2639 +            decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
  1.2640 +        }
  1.2641 +
  1.2642 +        if (groupingCharLength == groupingStringLength) {
  1.2643 +            if (strictParse) {
  1.2644 +                groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
  1.2645 +            } else {
  1.2646 +                groupingSet = fStaticSets->fDefaultGroupingSeparators;
  1.2647 +            }
  1.2648 +        }
  1.2649 +
  1.2650 +        // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
  1.2651 +        // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
  1.2652 +        // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
  1.2653 +
  1.2654 +        // We have to track digitCount ourselves, because digits.fCount will
  1.2655 +        // pin when the maximum allowable digits is reached.
  1.2656 +        int32_t digitCount = 0;
  1.2657 +        int32_t integerDigitCount = 0;
  1.2658 +
  1.2659 +        for (; position < textLength; )
  1.2660 +        {
  1.2661 +            UChar32 ch = text.char32At(position);
  1.2662 +
  1.2663 +            /* We recognize all digit ranges, not only the Latin digit range
  1.2664 +             * '0'..'9'.  We do so by using the Character.digit() method,
  1.2665 +             * which converts a valid Unicode digit to the range 0..9.
  1.2666 +             *
  1.2667 +             * The character 'ch' may be a digit.  If so, place its value
  1.2668 +             * from 0 to 9 in 'digit'.  First try using the locale digit,
  1.2669 +             * which may or MAY NOT be a standard Unicode digit range.  If
  1.2670 +             * this fails, try using the standard Unicode digit ranges by
  1.2671 +             * calling Character.digit().  If this also fails, digit will 
  1.2672 +             * have a value outside the range 0..9.
  1.2673 +             */
  1.2674 +            digit = ch - zero;
  1.2675 +            if (digit < 0 || digit > 9)
  1.2676 +            {
  1.2677 +                digit = u_charDigitValue(ch);
  1.2678 +            }
  1.2679 +            
  1.2680 +            // As a last resort, look through the localized digits if the zero digit
  1.2681 +            // is not a "standard" Unicode digit.
  1.2682 +            if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
  1.2683 +                digit = 0;
  1.2684 +                if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
  1.2685 +                    break;
  1.2686 +                }
  1.2687 +                for (digit = 1 ; digit < 10 ; digit++ ) {
  1.2688 +                    if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
  1.2689 +                        break;
  1.2690 +                    }
  1.2691 +                }
  1.2692 +            }
  1.2693 +
  1.2694 +            if (digit >= 0 && digit <= 9)
  1.2695 +            {
  1.2696 +                if (strictParse && backup != -1) {
  1.2697 +                    // comma followed by digit, so group before comma is a
  1.2698 +                    // secondary group.  If there was a group separator
  1.2699 +                    // before that, the group must == the secondary group
  1.2700 +                    // length, else it can be <= the the secondary group
  1.2701 +                    // length.
  1.2702 +                    if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
  1.2703 +                        (lastGroup == -1 && position - digitStart - 1 > gs2)) {
  1.2704 +                        strictFail = TRUE;
  1.2705 +                        break;
  1.2706 +                    }
  1.2707 +                    
  1.2708 +                    lastGroup = backup;
  1.2709 +                }
  1.2710 +                
  1.2711 +                // Cancel out backup setting (see grouping handler below)
  1.2712 +                backup = -1;
  1.2713 +                sawDigit = TRUE;
  1.2714 +                
  1.2715 +                // Note: this will append leading zeros
  1.2716 +                parsedNum.append((char)(digit + '0'), err);
  1.2717 +
  1.2718 +                // count any digit that's not a leading zero
  1.2719 +                if (digit > 0 || digitCount > 0 || sawDecimal) {
  1.2720 +                    digitCount += 1;
  1.2721 +                    
  1.2722 +                    // count any integer digit that's not a leading zero
  1.2723 +                    if (! sawDecimal) {
  1.2724 +                        integerDigitCount += 1;
  1.2725 +                    }
  1.2726 +                }
  1.2727 +                    
  1.2728 +                position += U16_LENGTH(ch);
  1.2729 +            }
  1.2730 +            else if (groupingStringLength > 0 && 
  1.2731 +                matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet, 
  1.2732 +                            decimalChar, decimalSet,
  1.2733 +                            ch) && groupingUsed)
  1.2734 +            {
  1.2735 +                if (sawDecimal) {
  1.2736 +                    break;
  1.2737 +                }
  1.2738 +
  1.2739 +                if (strictParse) {
  1.2740 +                    if ((!sawDigit || backup != -1)) {
  1.2741 +                        // leading group, or two group separators in a row
  1.2742 +                        strictFail = TRUE;
  1.2743 +                        break;
  1.2744 +                    }
  1.2745 +                }
  1.2746 +
  1.2747 +                // Ignore grouping characters, if we are using them, but require
  1.2748 +                // that they be followed by a digit.  Otherwise we backup and
  1.2749 +                // reprocess them.
  1.2750 +                backup = position;
  1.2751 +                position += groupingStringLength;
  1.2752 +                sawGrouping=TRUE;
  1.2753 +                // Once we see a grouping character, we only accept that grouping character from then on.
  1.2754 +                sawGroupingChar=ch;
  1.2755 +            }
  1.2756 +            else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
  1.2757 +            {
  1.2758 +                if (strictParse) {
  1.2759 +                    if (backup != -1 ||
  1.2760 +                        (lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
  1.2761 +                        strictFail = TRUE;
  1.2762 +                        break;
  1.2763 +                    }
  1.2764 +                }
  1.2765 +
  1.2766 +                // If we're only parsing integers, or if we ALREADY saw the
  1.2767 +                // decimal, then don't parse this one.
  1.2768 +                if (isParseIntegerOnly() || sawDecimal) {
  1.2769 +                    break;
  1.2770 +                }
  1.2771 +
  1.2772 +                parsedNum.append('.', err);
  1.2773 +                position += decimalStringLength;
  1.2774 +                sawDecimal = TRUE;
  1.2775 +                // Once we see a decimal character, we only accept that decimal character from then on.
  1.2776 +                sawDecimalChar=ch;
  1.2777 +                // decimalSet is considered to consist of (ch,ch)
  1.2778 +            }
  1.2779 +            else {
  1.2780 +
  1.2781 +                if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
  1.2782 +                   isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
  1.2783 +                    const UnicodeString *tmp;
  1.2784 +                    tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
  1.2785 +                    // TODO: CASE
  1.2786 +                    if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT))    // error code is set below if !sawDigit 
  1.2787 +                    {
  1.2788 +                        // Parse sign, if present
  1.2789 +                        int32_t pos = position + tmp->length();
  1.2790 +                        char exponentSign = '+';
  1.2791 +
  1.2792 +                        if (pos < textLength)
  1.2793 +                        {
  1.2794 +                            tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  1.2795 +                            if (!text.compare(pos, tmp->length(), *tmp))
  1.2796 +                            {
  1.2797 +                                pos += tmp->length();
  1.2798 +                            }
  1.2799 +                            else {
  1.2800 +                                tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  1.2801 +                                if (!text.compare(pos, tmp->length(), *tmp))
  1.2802 +                                {
  1.2803 +                                    exponentSign = '-';
  1.2804 +                                    pos += tmp->length();
  1.2805 +                                }
  1.2806 +                            }
  1.2807 +                        }
  1.2808 +
  1.2809 +                        UBool sawExponentDigit = FALSE;
  1.2810 +                        while (pos < textLength) {
  1.2811 +                            ch = text[(int32_t)pos];
  1.2812 +                            digit = ch - zero;
  1.2813 +
  1.2814 +                            if (digit < 0 || digit > 9) {
  1.2815 +                                digit = u_charDigitValue(ch);
  1.2816 +                            }
  1.2817 +                            if (0 <= digit && digit <= 9) {
  1.2818 +                                if (!sawExponentDigit) {
  1.2819 +                                    parsedNum.append('E', err);
  1.2820 +                                    parsedNum.append(exponentSign, err);
  1.2821 +                                    sawExponentDigit = TRUE;
  1.2822 +                                }
  1.2823 +                                ++pos;
  1.2824 +                                parsedNum.append((char)(digit + '0'), err);
  1.2825 +                            } else {
  1.2826 +                                break;
  1.2827 +                            }
  1.2828 +                        }
  1.2829 +
  1.2830 +                        if (sawExponentDigit) {
  1.2831 +                            position = pos; // Advance past the exponent
  1.2832 +                        }
  1.2833 +
  1.2834 +                        break; // Whether we fail or succeed, we exit this loop
  1.2835 +                    } else {
  1.2836 +                        break;
  1.2837 +                    }
  1.2838 +                } else { // not parsing exponent
  1.2839 +                    break;
  1.2840 +              }
  1.2841 +            }
  1.2842 +        }
  1.2843 +
  1.2844 +        if (backup != -1)
  1.2845 +        {
  1.2846 +            position = backup;
  1.2847 +        }
  1.2848 +
  1.2849 +        if (strictParse && !sawDecimal) {
  1.2850 +            if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
  1.2851 +                strictFail = TRUE;
  1.2852 +            }
  1.2853 +        }
  1.2854 +
  1.2855 +        if (strictFail) {
  1.2856 +            // only set with strictParse and a grouping separator error
  1.2857 +
  1.2858 +            parsePosition.setIndex(oldStart);
  1.2859 +            parsePosition.setErrorIndex(position);
  1.2860 +            debug("strictFail!");
  1.2861 +            return FALSE;
  1.2862 +        }
  1.2863 +
  1.2864 +        // If there was no decimal point we have an integer
  1.2865 +
  1.2866 +        // If none of the text string was recognized.  For example, parse
  1.2867 +        // "x" with pattern "#0.00" (return index and error index both 0)
  1.2868 +        // parse "$" with pattern "$#0.00". (return index 0 and error index
  1.2869 +        // 1).
  1.2870 +        if (!sawDigit && digitCount == 0) {
  1.2871 +#ifdef FMT_DEBUG
  1.2872 +            debug("none of text rec");
  1.2873 +            printf("position=%d\n",position);
  1.2874 +#endif
  1.2875 +            parsePosition.setIndex(oldStart);
  1.2876 +            parsePosition.setErrorIndex(oldStart);
  1.2877 +            return FALSE;
  1.2878 +        }
  1.2879 +    }
  1.2880 +
  1.2881 +    // Match padding before suffix
  1.2882 +    if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
  1.2883 +        position = skipPadding(text, position);
  1.2884 +    }
  1.2885 +
  1.2886 +    int32_t posSuffixMatch = -1, negSuffixMatch = -1;
  1.2887 +
  1.2888 +    // Match positive and negative suffixes; prefer longest match.
  1.2889 +    if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
  1.2890 +        posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
  1.2891 +    }
  1.2892 +    if (negMatch >= 0) {
  1.2893 +        negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
  1.2894 +    }
  1.2895 +    if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
  1.2896 +        if (posSuffixMatch > negSuffixMatch) {
  1.2897 +            negSuffixMatch = -1;
  1.2898 +        } else if (negSuffixMatch > posSuffixMatch) {
  1.2899 +            posSuffixMatch = -1;
  1.2900 +        }
  1.2901 +    }
  1.2902 +
  1.2903 +    // Fail if neither or both
  1.2904 +    if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
  1.2905 +        parsePosition.setErrorIndex(position);
  1.2906 +        debug("neither or both");
  1.2907 +        return FALSE;
  1.2908 +    }
  1.2909 +
  1.2910 +    position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
  1.2911 +
  1.2912 +    // Match padding before suffix
  1.2913 +    if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
  1.2914 +        position = skipPadding(text, position);
  1.2915 +    }
  1.2916 +
  1.2917 +    parsePosition.setIndex(position);
  1.2918 +
  1.2919 +    parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
  1.2920 +#ifdef FMT_DEBUG
  1.2921 +printf("PP -> %d, SLOW = [%s]!    pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
  1.2922 +#endif
  1.2923 +  } /* end SLOW parse */
  1.2924 +  if(parsePosition.getIndex() == oldStart)
  1.2925 +    {
  1.2926 +#ifdef FMT_DEBUG
  1.2927 +      printf(" PP didnt move, err\n");
  1.2928 +#endif
  1.2929 +        parsePosition.setErrorIndex(position);
  1.2930 +        return FALSE;
  1.2931 +    }
  1.2932 +#if UCONFIG_HAVE_PARSEALLINPUT
  1.2933 +  else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
  1.2934 +    {
  1.2935 +#ifdef FMT_DEBUG
  1.2936 +      printf(" PP didnt consume all (UNUM_YES), err\n");
  1.2937 +#endif
  1.2938 +        parsePosition.setErrorIndex(position);
  1.2939 +        return FALSE;
  1.2940 +    }
  1.2941 +#endif
  1.2942 +    // uint32_t bits = (fastParseOk?kFastpathOk:0) |
  1.2943 +    //   (fastParseHadDecimal?0:kNoDecimal);
  1.2944 +    //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
  1.2945 +    digits.set(parsedNum.toStringPiece(),
  1.2946 +               err,
  1.2947 +               0//bits
  1.2948 +               );
  1.2949 +
  1.2950 +    if (U_FAILURE(err)) {
  1.2951 +#ifdef FMT_DEBUG
  1.2952 +      printf(" err setting %s\n", u_errorName(err));
  1.2953 +#endif
  1.2954 +        parsePosition.setErrorIndex(position);
  1.2955 +        return FALSE;
  1.2956 +    }
  1.2957 +    return TRUE;
  1.2958 +}
  1.2959 +
  1.2960 +/**
  1.2961 + * Starting at position, advance past a run of pad characters, if any.
  1.2962 + * Return the index of the first character after position that is not a pad
  1.2963 + * character.  Result is >= position.
  1.2964 + */
  1.2965 +int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
  1.2966 +    int32_t padLen = U16_LENGTH(fPad);
  1.2967 +    while (position < text.length() &&
  1.2968 +           text.char32At(position) == fPad) {
  1.2969 +        position += padLen;
  1.2970 +    }
  1.2971 +    return position;
  1.2972 +}
  1.2973 +
  1.2974 +/**
  1.2975 + * Return the length matched by the given affix, or -1 if none.
  1.2976 + * Runs of white space in the affix, match runs of white space in
  1.2977 + * the input.  Pattern white space and input white space are
  1.2978 + * determined differently; see code.
  1.2979 + * @param text input text
  1.2980 + * @param pos offset into input at which to begin matching
  1.2981 + * @param isNegative
  1.2982 + * @param isPrefix
  1.2983 + * @param affixPat affix pattern used for currency affix comparison.
  1.2984 + * @param complexCurrencyParsing whether it is currency parsing or not
  1.2985 + * @param type the currency type to parse against, LONG_NAME only or not.
  1.2986 + * @param currency return value for parsed currency, for generic
  1.2987 + * currency parsing mode, or null for normal parsing. In generic
  1.2988 + * currency parsing mode, any currency is parsed, not just the
  1.2989 + * currency that this formatter is set to.
  1.2990 + * @return length of input that matches, or -1 if match failure
  1.2991 + */
  1.2992 +int32_t DecimalFormat::compareAffix(const UnicodeString& text,
  1.2993 +                                    int32_t pos,
  1.2994 +                                    UBool isNegative,
  1.2995 +                                    UBool isPrefix,
  1.2996 +                                    const UnicodeString* affixPat,
  1.2997 +                                    UBool complexCurrencyParsing,
  1.2998 +                                    int8_t type,
  1.2999 +                                    UChar* currency) const
  1.3000 +{
  1.3001 +    const UnicodeString *patternToCompare;
  1.3002 +    if (fCurrencyChoice != NULL || currency != NULL ||
  1.3003 +        (fCurrencySignCount != fgCurrencySignCountZero && complexCurrencyParsing)) {
  1.3004 +
  1.3005 +        if (affixPat != NULL) {
  1.3006 +            return compareComplexAffix(*affixPat, text, pos, type, currency);
  1.3007 +        }
  1.3008 +    }
  1.3009 +
  1.3010 +    if (isNegative) {
  1.3011 +        if (isPrefix) {
  1.3012 +            patternToCompare = &fNegativePrefix;
  1.3013 +        }
  1.3014 +        else {
  1.3015 +            patternToCompare = &fNegativeSuffix;
  1.3016 +        }
  1.3017 +    }
  1.3018 +    else {
  1.3019 +        if (isPrefix) {
  1.3020 +            patternToCompare = &fPositivePrefix;
  1.3021 +        }
  1.3022 +        else {
  1.3023 +            patternToCompare = &fPositiveSuffix;
  1.3024 +        }
  1.3025 +    }
  1.3026 +    return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
  1.3027 +}
  1.3028 +
  1.3029 +UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
  1.3030 +    if (lhs == rhs) {
  1.3031 +        return TRUE;
  1.3032 +    }
  1.3033 +    U_ASSERT(fStaticSets != NULL); // should already be loaded
  1.3034 +    const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
  1.3035 +    const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
  1.3036 +    return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
  1.3037 +        (plusSigns->contains(lhs) && plusSigns->contains(rhs));
  1.3038 +}
  1.3039 +
  1.3040 +// check for LRM 0x200E, RLM 0x200F, ALM 0x061C
  1.3041 +#define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
  1.3042 +
  1.3043 +#define TRIM_BUFLEN 32
  1.3044 +UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
  1.3045 +    UChar trimBuf[TRIM_BUFLEN];
  1.3046 +    int32_t affixLen = affix.length();
  1.3047 +    int32_t affixPos, trimLen = 0;
  1.3048 +
  1.3049 +    for (affixPos = 0; affixPos < affixLen; affixPos++) {
  1.3050 +        UChar c = affix.charAt(affixPos);
  1.3051 +        if (!IS_BIDI_MARK(c)) {
  1.3052 +        	if (trimLen < TRIM_BUFLEN) {
  1.3053 +        		trimBuf[trimLen++] = c;
  1.3054 +        	} else {
  1.3055 +        		trimLen = 0;
  1.3056 +        		break;
  1.3057 +        	}
  1.3058 +        }
  1.3059 +    }
  1.3060 +    return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
  1.3061 +}
  1.3062 +
  1.3063 +/**
  1.3064 + * Return the length matched by the given affix, or -1 if none.
  1.3065 + * Runs of white space in the affix, match runs of white space in
  1.3066 + * the input.  Pattern white space and input white space are
  1.3067 + * determined differently; see code.
  1.3068 + * @param affix pattern string, taken as a literal
  1.3069 + * @param input input text
  1.3070 + * @param pos offset into input at which to begin matching
  1.3071 + * @return length of input that matches, or -1 if match failure
  1.3072 + */
  1.3073 +int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
  1.3074 +                                          const UnicodeString& input,
  1.3075 +                                          int32_t pos,
  1.3076 +                                          UBool lenient) const {
  1.3077 +    int32_t start = pos;
  1.3078 +    UnicodeString trimmedAffix;
  1.3079 +    // For more efficiency we should keep lazily-created trimmed affixes around in
  1.3080 +    // instance variables instead of trimming each time they are used (the next step)
  1.3081 +    trimMarksFromAffix(affix, trimmedAffix);
  1.3082 +    UChar32 affixChar = trimmedAffix.char32At(0);
  1.3083 +    int32_t affixLength = trimmedAffix.length();
  1.3084 +    int32_t inputLength = input.length();
  1.3085 +    int32_t affixCharLength = U16_LENGTH(affixChar);
  1.3086 +    UnicodeSet *affixSet;
  1.3087 +    UErrorCode status = U_ZERO_ERROR;
  1.3088 +
  1.3089 +    U_ASSERT(fStaticSets != NULL); // should already be loaded
  1.3090 +
  1.3091 +    if (U_FAILURE(status)) {
  1.3092 +        return -1;
  1.3093 +    }
  1.3094 +    if (!lenient) {
  1.3095 +        affixSet = fStaticSets->fStrictDashEquivalents;
  1.3096 +
  1.3097 +        // If the trimmedAffix is exactly one character long and that character
  1.3098 +        // is in the dash set and the very next input character is also
  1.3099 +        // in the dash set, return a match.
  1.3100 +        if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
  1.3101 +            UChar32 ic = input.char32At(pos);
  1.3102 +            if (affixSet->contains(ic)) {
  1.3103 +                pos += U16_LENGTH(ic);
  1.3104 +                pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
  1.3105 +                return pos - start;
  1.3106 +            }
  1.3107 +        }
  1.3108 +
  1.3109 +        for (int32_t i = 0; i < affixLength; ) {
  1.3110 +            UChar32 c = trimmedAffix.char32At(i);
  1.3111 +            int32_t len = U16_LENGTH(c);
  1.3112 +            if (PatternProps::isWhiteSpace(c)) {
  1.3113 +                // We may have a pattern like: \u200F \u0020
  1.3114 +                //        and input text like: \u200F \u0020
  1.3115 +                // Note that U+200F and U+0020 are Pattern_White_Space but only
  1.3116 +                // U+0020 is UWhiteSpace.  So we have to first do a direct
  1.3117 +                // match of the run of Pattern_White_Space in the pattern,
  1.3118 +                // then match any extra characters.
  1.3119 +                UBool literalMatch = FALSE;
  1.3120 +                while (pos < inputLength) {
  1.3121 +                    UChar32 ic = input.char32At(pos);
  1.3122 +                    if (ic == c) {
  1.3123 +                        literalMatch = TRUE;
  1.3124 +                        i += len;
  1.3125 +                        pos += len;
  1.3126 +                        if (i == affixLength) {
  1.3127 +                            break;
  1.3128 +                        }
  1.3129 +                        c = trimmedAffix.char32At(i);
  1.3130 +                        len = U16_LENGTH(c);
  1.3131 +                        if (!PatternProps::isWhiteSpace(c)) {
  1.3132 +                            break;
  1.3133 +                        }
  1.3134 +                    } else if (IS_BIDI_MARK(ic)) {
  1.3135 +                        pos ++; // just skip over this input text
  1.3136 +                    } else {
  1.3137 +                        break;
  1.3138 +                    }
  1.3139 +                }
  1.3140 +
  1.3141 +                // Advance over run in pattern
  1.3142 +                i = skipPatternWhiteSpace(trimmedAffix, i);
  1.3143 +
  1.3144 +                // Advance over run in input text
  1.3145 +                // Must see at least one white space char in input,
  1.3146 +                // unless we've already matched some characters literally.
  1.3147 +                int32_t s = pos;
  1.3148 +                pos = skipUWhiteSpace(input, pos);
  1.3149 +                if (pos == s && !literalMatch) {
  1.3150 +                    return -1;
  1.3151 +                }
  1.3152 +
  1.3153 +                // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
  1.3154 +                // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
  1.3155 +                // is also in the trimmedAffix.
  1.3156 +                i = skipUWhiteSpace(trimmedAffix, i);
  1.3157 +            } else {
  1.3158 +                UBool match = FALSE;
  1.3159 +                while (pos < inputLength) {
  1.3160 +                    UChar32 ic = input.char32At(pos);
  1.3161 +                    if (!match && ic == c) {
  1.3162 +                        i += len;
  1.3163 +                        pos += len;
  1.3164 +                        match = TRUE;
  1.3165 +                    } else if (IS_BIDI_MARK(ic)) {
  1.3166 +                        pos++; // just skip over this input text
  1.3167 +                    } else {
  1.3168 +                        break;
  1.3169 +                    }
  1.3170 +                }
  1.3171 +                if (!match) {
  1.3172 +                    return -1;
  1.3173 +                }
  1.3174 +            }
  1.3175 +        }
  1.3176 +    } else {
  1.3177 +        UBool match = FALSE;
  1.3178 +
  1.3179 +        affixSet = fStaticSets->fDashEquivalents;
  1.3180 +
  1.3181 +        if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
  1.3182 +            pos = skipUWhiteSpaceAndMarks(input, pos);
  1.3183 +            UChar32 ic = input.char32At(pos);
  1.3184 +
  1.3185 +            if (affixSet->contains(ic)) {
  1.3186 +                pos += U16_LENGTH(ic);
  1.3187 +                pos = skipBidiMarks(input, pos);
  1.3188 +                return pos - start;
  1.3189 +            }
  1.3190 +        }
  1.3191 +
  1.3192 +        for (int32_t i = 0; i < affixLength; )
  1.3193 +        {
  1.3194 +            //i = skipRuleWhiteSpace(trimmedAffix, i);
  1.3195 +            i = skipUWhiteSpace(trimmedAffix, i);
  1.3196 +            pos = skipUWhiteSpaceAndMarks(input, pos);
  1.3197 +
  1.3198 +            if (i >= affixLength || pos >= inputLength) {
  1.3199 +                break;
  1.3200 +            }
  1.3201 +
  1.3202 +            UChar32 c = trimmedAffix.char32At(i);
  1.3203 +            UChar32 ic = input.char32At(pos);
  1.3204 +
  1.3205 +            if (!equalWithSignCompatibility(ic, c)) {
  1.3206 +                return -1;
  1.3207 +            }
  1.3208 +
  1.3209 +            match = TRUE;
  1.3210 +            i += U16_LENGTH(c);
  1.3211 +            pos += U16_LENGTH(ic);
  1.3212 +            pos = skipBidiMarks(input, pos);
  1.3213 +        }
  1.3214 +
  1.3215 +        if (affixLength > 0 && ! match) {
  1.3216 +            return -1;
  1.3217 +        }
  1.3218 +    }
  1.3219 +    return pos - start;
  1.3220 +}
  1.3221 +
  1.3222 +/**
  1.3223 + * Skip over a run of zero or more Pattern_White_Space characters at
  1.3224 + * pos in text.
  1.3225 + */
  1.3226 +int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
  1.3227 +    const UChar* s = text.getBuffer();
  1.3228 +    return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
  1.3229 +}
  1.3230 +
  1.3231 +/**
  1.3232 + * Skip over a run of zero or more isUWhiteSpace() characters at pos
  1.3233 + * in text.
  1.3234 + */
  1.3235 +int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
  1.3236 +    while (pos < text.length()) {
  1.3237 +        UChar32 c = text.char32At(pos);
  1.3238 +        if (!u_isUWhiteSpace(c)) {
  1.3239 +            break;
  1.3240 +        }
  1.3241 +        pos += U16_LENGTH(c);
  1.3242 +    }
  1.3243 +    return pos;
  1.3244 +}
  1.3245 +
  1.3246 +/**
  1.3247 + * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
  1.3248 + * in text.
  1.3249 + */
  1.3250 +int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
  1.3251 +    while (pos < text.length()) {
  1.3252 +        UChar32 c = text.char32At(pos);
  1.3253 +        if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
  1.3254 +            break;
  1.3255 +        }
  1.3256 +        pos += U16_LENGTH(c);
  1.3257 +    }
  1.3258 +    return pos;
  1.3259 +}
  1.3260 +
  1.3261 +/**
  1.3262 + * Skip over a run of zero or more bidi marks at pos in text.
  1.3263 + */
  1.3264 +int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
  1.3265 +    while (pos < text.length()) {
  1.3266 +        UChar c = text.charAt(pos);
  1.3267 +        if (!IS_BIDI_MARK(c)) {
  1.3268 +            break;
  1.3269 +        }
  1.3270 +        pos++;
  1.3271 +    }
  1.3272 +    return pos;
  1.3273 +}
  1.3274 +
  1.3275 +/**
  1.3276 + * Return the length matched by the given affix, or -1 if none.
  1.3277 + * @param affixPat pattern string
  1.3278 + * @param input input text
  1.3279 + * @param pos offset into input at which to begin matching
  1.3280 + * @param type the currency type to parse against, LONG_NAME only or not.
  1.3281 + * @param currency return value for parsed currency, for generic
  1.3282 + * currency parsing mode, or null for normal parsing. In generic
  1.3283 + * currency parsing mode, any currency is parsed, not just the
  1.3284 + * currency that this formatter is set to.
  1.3285 + * @return length of input that matches, or -1 if match failure
  1.3286 + */
  1.3287 +int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
  1.3288 +                                           const UnicodeString& text,
  1.3289 +                                           int32_t pos,
  1.3290 +                                           int8_t type,
  1.3291 +                                           UChar* currency) const
  1.3292 +{
  1.3293 +    int32_t start = pos;
  1.3294 +    U_ASSERT(currency != NULL ||
  1.3295 +             (fCurrencyChoice != NULL && *getCurrency() != 0) ||
  1.3296 +             fCurrencySignCount != fgCurrencySignCountZero);
  1.3297 +
  1.3298 +    for (int32_t i=0;
  1.3299 +         i<affixPat.length() && pos >= 0; ) {
  1.3300 +        UChar32 c = affixPat.char32At(i);
  1.3301 +        i += U16_LENGTH(c);
  1.3302 +
  1.3303 +        if (c == kQuote) {
  1.3304 +            U_ASSERT(i <= affixPat.length());
  1.3305 +            c = affixPat.char32At(i);
  1.3306 +            i += U16_LENGTH(c);
  1.3307 +
  1.3308 +            const UnicodeString* affix = NULL;
  1.3309 +
  1.3310 +            switch (c) {
  1.3311 +            case kCurrencySign: {
  1.3312 +                // since the currency names in choice format is saved
  1.3313 +                // the same way as other currency names,
  1.3314 +                // do not need to do currency choice parsing here.
  1.3315 +                // the general currency parsing parse against all names,
  1.3316 +                // including names in choice format.
  1.3317 +                UBool intl = i<affixPat.length() &&
  1.3318 +                    affixPat.char32At(i) == kCurrencySign;
  1.3319 +                if (intl) {
  1.3320 +                    ++i;
  1.3321 +                }
  1.3322 +                UBool plural = i<affixPat.length() &&
  1.3323 +                    affixPat.char32At(i) == kCurrencySign;
  1.3324 +                if (plural) {
  1.3325 +                    ++i;
  1.3326 +                    intl = FALSE;
  1.3327 +                }
  1.3328 +                // Parse generic currency -- anything for which we
  1.3329 +                // have a display name, or any 3-letter ISO code.
  1.3330 +                // Try to parse display name for our locale; first
  1.3331 +                // determine our locale.
  1.3332 +                const char* loc = fCurrencyPluralInfo->getLocale().getName();
  1.3333 +                ParsePosition ppos(pos);
  1.3334 +                UChar curr[4];
  1.3335 +                UErrorCode ec = U_ZERO_ERROR;
  1.3336 +                // Delegate parse of display name => ISO code to Currency
  1.3337 +                uprv_parseCurrency(loc, text, ppos, type, curr, ec);
  1.3338 +
  1.3339 +                // If parse succeeds, populate currency[0]
  1.3340 +                if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
  1.3341 +                    if (currency) {
  1.3342 +                        u_strcpy(currency, curr);
  1.3343 +                    } else {
  1.3344 +                        // The formatter is currency-style but the client has not requested
  1.3345 +                        // the value of the parsed currency. In this case, if that value does
  1.3346 +                        // not match the formatter's current value, then the parse fails.
  1.3347 +                        UChar effectiveCurr[4];
  1.3348 +                        getEffectiveCurrency(effectiveCurr, ec);
  1.3349 +                        if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
  1.3350 +                        	pos = -1;
  1.3351 +                        	continue;
  1.3352 +                        }
  1.3353 +                    }
  1.3354 +                    pos = ppos.getIndex();
  1.3355 +                } else if (!isLenient()){
  1.3356 +                    pos = -1;
  1.3357 +                }
  1.3358 +                continue;
  1.3359 +            }
  1.3360 +            case kPatternPercent:
  1.3361 +                affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
  1.3362 +                break;
  1.3363 +            case kPatternPerMill:
  1.3364 +                affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
  1.3365 +                break;
  1.3366 +            case kPatternPlus:
  1.3367 +                affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  1.3368 +                break;
  1.3369 +            case kPatternMinus:
  1.3370 +                affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  1.3371 +                break;
  1.3372 +            default:
  1.3373 +                // fall through to affix!=0 test, which will fail
  1.3374 +                break;
  1.3375 +            }
  1.3376 +
  1.3377 +            if (affix != NULL) {
  1.3378 +                pos = match(text, pos, *affix);
  1.3379 +                continue;
  1.3380 +            }
  1.3381 +        }
  1.3382 +
  1.3383 +        pos = match(text, pos, c);
  1.3384 +        if (PatternProps::isWhiteSpace(c)) {
  1.3385 +            i = skipPatternWhiteSpace(affixPat, i);
  1.3386 +        }
  1.3387 +    }
  1.3388 +    return pos - start;
  1.3389 +}
  1.3390 +
  1.3391 +/**
  1.3392 + * Match a single character at text[pos] and return the index of the
  1.3393 + * next character upon success.  Return -1 on failure.  If
  1.3394 + * ch is a Pattern_White_Space then match a run of white space in text.
  1.3395 + */
  1.3396 +int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
  1.3397 +    if (PatternProps::isWhiteSpace(ch)) {
  1.3398 +        // Advance over run of white space in input text
  1.3399 +        // Must see at least one white space char in input
  1.3400 +        int32_t s = pos;
  1.3401 +        pos = skipPatternWhiteSpace(text, pos);
  1.3402 +        if (pos == s) {
  1.3403 +            return -1;
  1.3404 +        }
  1.3405 +        return pos;
  1.3406 +    }
  1.3407 +    return (pos >= 0 && text.char32At(pos) == ch) ?
  1.3408 +        (pos + U16_LENGTH(ch)) : -1;
  1.3409 +}
  1.3410 +
  1.3411 +/**
  1.3412 + * Match a string at text[pos] and return the index of the next
  1.3413 + * character upon success.  Return -1 on failure.  Match a run of
  1.3414 + * white space in str with a run of white space in text.
  1.3415 + */
  1.3416 +int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
  1.3417 +    for (int32_t i=0; i<str.length() && pos >= 0; ) {
  1.3418 +        UChar32 ch = str.char32At(i);
  1.3419 +        i += U16_LENGTH(ch);
  1.3420 +        if (PatternProps::isWhiteSpace(ch)) {
  1.3421 +            i = skipPatternWhiteSpace(str, i);
  1.3422 +        }
  1.3423 +        pos = match(text, pos, ch);
  1.3424 +    }
  1.3425 +    return pos;
  1.3426 +}
  1.3427 +
  1.3428 +UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
  1.3429 +                         UnicodeSet *sset, UChar32 schar)
  1.3430 +{
  1.3431 +    if (sset != NULL) {
  1.3432 +        return sset->contains(schar);
  1.3433 +    }
  1.3434 +
  1.3435 +    return text.compare(position, length, symbol) == 0;
  1.3436 +}
  1.3437 +
  1.3438 +UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
  1.3439 +                            UBool sawDecimal,  UChar32 sawDecimalChar,
  1.3440 +                             const UnicodeSet *sset, UChar32 schar) {
  1.3441 +   if(sawDecimal) {
  1.3442 +       return schar==sawDecimalChar;
  1.3443 +   } else if(schar==symbolChar) {
  1.3444 +       return TRUE;
  1.3445 +   } else if(sset!=NULL) {
  1.3446 +        return sset->contains(schar);
  1.3447 +   } else {
  1.3448 +       return FALSE;
  1.3449 +   }
  1.3450 +}
  1.3451 +
  1.3452 +UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
  1.3453 +                            UBool sawGrouping, UChar32 sawGroupingChar,
  1.3454 +                             const UnicodeSet *sset,
  1.3455 +                             UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
  1.3456 +                             UChar32 schar) {
  1.3457 +    if(sawGrouping) {
  1.3458 +        return schar==sawGroupingChar;  // previously found
  1.3459 +    } else if(schar==groupingChar) {
  1.3460 +        return TRUE; // char from symbols
  1.3461 +    } else if(sset!=NULL) {
  1.3462 +        return sset->contains(schar) &&  // in groupingSet but...
  1.3463 +           ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
  1.3464 +    } else {
  1.3465 +        return FALSE;
  1.3466 +    }
  1.3467 +}
  1.3468 +
  1.3469 +
  1.3470 +
  1.3471 +//------------------------------------------------------------------------------
  1.3472 +// Gets the pointer to the localized decimal format symbols
  1.3473 +
  1.3474 +const DecimalFormatSymbols*
  1.3475 +DecimalFormat::getDecimalFormatSymbols() const
  1.3476 +{
  1.3477 +    return fSymbols;
  1.3478 +}
  1.3479 +
  1.3480 +//------------------------------------------------------------------------------
  1.3481 +// De-owning the current localized symbols and adopt the new symbols.
  1.3482 +
  1.3483 +void
  1.3484 +DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
  1.3485 +{
  1.3486 +    if (symbolsToAdopt == NULL) {
  1.3487 +        return; // do not allow caller to set fSymbols to NULL
  1.3488 +    }
  1.3489 +
  1.3490 +    UBool sameSymbols = FALSE;
  1.3491 +    if (fSymbols != NULL) {
  1.3492 +        sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
  1.3493 +            symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
  1.3494 +            getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
  1.3495 +            symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
  1.3496 +        delete fSymbols;
  1.3497 +    }
  1.3498 +
  1.3499 +    fSymbols = symbolsToAdopt;
  1.3500 +    if (!sameSymbols) {
  1.3501 +        // If the currency symbols are the same, there is no need to recalculate.
  1.3502 +        setCurrencyForSymbols();
  1.3503 +    }
  1.3504 +    expandAffixes(NULL);
  1.3505 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3506 +    handleChanged();
  1.3507 +#endif
  1.3508 +}
  1.3509 +//------------------------------------------------------------------------------
  1.3510 +// Setting the symbols is equlivalent to adopting a newly created localized
  1.3511 +// symbols.
  1.3512 +
  1.3513 +void
  1.3514 +DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
  1.3515 +{
  1.3516 +    adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
  1.3517 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3518 +    handleChanged();
  1.3519 +#endif
  1.3520 +}
  1.3521 +
  1.3522 +
  1.3523 +const CurrencyPluralInfo*
  1.3524 +DecimalFormat::getCurrencyPluralInfo(void) const
  1.3525 +{
  1.3526 +    return fCurrencyPluralInfo;
  1.3527 +}
  1.3528 +
  1.3529 +
  1.3530 +void
  1.3531 +DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
  1.3532 +{
  1.3533 +    if (toAdopt != NULL) {
  1.3534 +        delete fCurrencyPluralInfo;
  1.3535 +        fCurrencyPluralInfo = toAdopt;
  1.3536 +        // re-set currency affix patterns and currency affixes.
  1.3537 +        if (fCurrencySignCount != fgCurrencySignCountZero) {
  1.3538 +            UErrorCode status = U_ZERO_ERROR;
  1.3539 +            if (fAffixPatternsForCurrency) {
  1.3540 +                deleteHashForAffixPattern();
  1.3541 +            }
  1.3542 +            setupCurrencyAffixPatterns(status);
  1.3543 +            if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
  1.3544 +                // only setup the affixes of the plural pattern.
  1.3545 +                setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
  1.3546 +            }
  1.3547 +        }
  1.3548 +    }
  1.3549 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3550 +    handleChanged();
  1.3551 +#endif
  1.3552 +}
  1.3553 +
  1.3554 +void
  1.3555 +DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
  1.3556 +{
  1.3557 +    adoptCurrencyPluralInfo(info.clone());
  1.3558 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3559 +    handleChanged();
  1.3560 +#endif
  1.3561 +}
  1.3562 +
  1.3563 +
  1.3564 +/**
  1.3565 + * Update the currency object to match the symbols.  This method
  1.3566 + * is used only when the caller has passed in a symbols object
  1.3567 + * that may not be the default object for its locale.
  1.3568 + */
  1.3569 +void
  1.3570 +DecimalFormat::setCurrencyForSymbols() {
  1.3571 +    /*Bug 4212072
  1.3572 +      Update the affix strings accroding to symbols in order to keep
  1.3573 +      the affix strings up to date.
  1.3574 +      [Richard/GCL]
  1.3575 +    */
  1.3576 +
  1.3577 +    // With the introduction of the Currency object, the currency
  1.3578 +    // symbols in the DFS object are ignored.  For backward
  1.3579 +    // compatibility, we check any explicitly set DFS object.  If it
  1.3580 +    // is a default symbols object for its locale, we change the
  1.3581 +    // currency object to one for that locale.  If it is custom,
  1.3582 +    // we set the currency to null.
  1.3583 +    UErrorCode ec = U_ZERO_ERROR;
  1.3584 +    const UChar* c = NULL;
  1.3585 +    const char* loc = fSymbols->getLocale().getName();
  1.3586 +    UChar intlCurrencySymbol[4];
  1.3587 +    ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
  1.3588 +    UnicodeString currencySymbol;
  1.3589 +
  1.3590 +    uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
  1.3591 +    if (U_SUCCESS(ec)
  1.3592 +        && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
  1.3593 +        && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
  1.3594 +    {
  1.3595 +        // Trap an error in mapping locale to currency.  If we can't
  1.3596 +        // map, then don't fail and set the currency to "".
  1.3597 +        c = intlCurrencySymbol;
  1.3598 +    }
  1.3599 +    ec = U_ZERO_ERROR; // reset local error code!
  1.3600 +    setCurrencyInternally(c, ec);
  1.3601 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3602 +    handleChanged();
  1.3603 +#endif
  1.3604 +}
  1.3605 +
  1.3606 +
  1.3607 +//------------------------------------------------------------------------------
  1.3608 +// Gets the positive prefix of the number pattern.
  1.3609 +
  1.3610 +UnicodeString&
  1.3611 +DecimalFormat::getPositivePrefix(UnicodeString& result) const
  1.3612 +{
  1.3613 +    result = fPositivePrefix;
  1.3614 +    return result;
  1.3615 +}
  1.3616 +
  1.3617 +//------------------------------------------------------------------------------
  1.3618 +// Sets the positive prefix of the number pattern.
  1.3619 +
  1.3620 +void
  1.3621 +DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
  1.3622 +{
  1.3623 +    fPositivePrefix = newValue;
  1.3624 +    delete fPosPrefixPattern;
  1.3625 +    fPosPrefixPattern = 0;
  1.3626 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3627 +    handleChanged();
  1.3628 +#endif
  1.3629 +}
  1.3630 +
  1.3631 +//------------------------------------------------------------------------------
  1.3632 +// Gets the negative prefix  of the number pattern.
  1.3633 +
  1.3634 +UnicodeString&
  1.3635 +DecimalFormat::getNegativePrefix(UnicodeString& result) const
  1.3636 +{
  1.3637 +    result = fNegativePrefix;
  1.3638 +    return result;
  1.3639 +}
  1.3640 +
  1.3641 +//------------------------------------------------------------------------------
  1.3642 +// Gets the negative prefix  of the number pattern.
  1.3643 +
  1.3644 +void
  1.3645 +DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
  1.3646 +{
  1.3647 +    fNegativePrefix = newValue;
  1.3648 +    delete fNegPrefixPattern;
  1.3649 +    fNegPrefixPattern = 0;
  1.3650 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3651 +    handleChanged();
  1.3652 +#endif
  1.3653 +}
  1.3654 +
  1.3655 +//------------------------------------------------------------------------------
  1.3656 +// Gets the positive suffix of the number pattern.
  1.3657 +
  1.3658 +UnicodeString&
  1.3659 +DecimalFormat::getPositiveSuffix(UnicodeString& result) const
  1.3660 +{
  1.3661 +    result = fPositiveSuffix;
  1.3662 +    return result;
  1.3663 +}
  1.3664 +
  1.3665 +//------------------------------------------------------------------------------
  1.3666 +// Sets the positive suffix of the number pattern.
  1.3667 +
  1.3668 +void
  1.3669 +DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
  1.3670 +{
  1.3671 +    fPositiveSuffix = newValue;
  1.3672 +    delete fPosSuffixPattern;
  1.3673 +    fPosSuffixPattern = 0;
  1.3674 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3675 +    handleChanged();
  1.3676 +#endif
  1.3677 +}
  1.3678 +
  1.3679 +//------------------------------------------------------------------------------
  1.3680 +// Gets the negative suffix of the number pattern.
  1.3681 +
  1.3682 +UnicodeString&
  1.3683 +DecimalFormat::getNegativeSuffix(UnicodeString& result) const
  1.3684 +{
  1.3685 +    result = fNegativeSuffix;
  1.3686 +    return result;
  1.3687 +}
  1.3688 +
  1.3689 +//------------------------------------------------------------------------------
  1.3690 +// Sets the negative suffix of the number pattern.
  1.3691 +
  1.3692 +void
  1.3693 +DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
  1.3694 +{
  1.3695 +    fNegativeSuffix = newValue;
  1.3696 +    delete fNegSuffixPattern;
  1.3697 +    fNegSuffixPattern = 0;
  1.3698 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3699 +    handleChanged();
  1.3700 +#endif
  1.3701 +}
  1.3702 +
  1.3703 +//------------------------------------------------------------------------------
  1.3704 +// Gets the multiplier of the number pattern.
  1.3705 +//   Multipliers are stored as decimal numbers (DigitLists) because that
  1.3706 +//      is the most convenient for muliplying or dividing the numbers to be formatted.
  1.3707 +//   A NULL multiplier implies one, and the scaling operations are skipped.
  1.3708 +
  1.3709 +int32_t 
  1.3710 +DecimalFormat::getMultiplier() const
  1.3711 +{
  1.3712 +    if (fMultiplier == NULL) {
  1.3713 +        return 1;
  1.3714 +    } else {
  1.3715 +        return fMultiplier->getLong();
  1.3716 +    }
  1.3717 +}
  1.3718 +
  1.3719 +//------------------------------------------------------------------------------
  1.3720 +// Sets the multiplier of the number pattern.
  1.3721 +void
  1.3722 +DecimalFormat::setMultiplier(int32_t newValue)
  1.3723 +{
  1.3724 +//  if (newValue == 0) {
  1.3725 +//      throw new IllegalArgumentException("Bad multiplier: " + newValue);
  1.3726 +//  }
  1.3727 +    if (newValue == 0) {
  1.3728 +        newValue = 1;     // one being the benign default value for a multiplier.
  1.3729 +    }
  1.3730 +    if (newValue == 1) {
  1.3731 +        delete fMultiplier;
  1.3732 +        fMultiplier = NULL;
  1.3733 +    } else {
  1.3734 +        if (fMultiplier == NULL) {
  1.3735 +            fMultiplier = new DigitList;
  1.3736 +        }
  1.3737 +        if (fMultiplier != NULL) {
  1.3738 +            fMultiplier->set(newValue);
  1.3739 +        }
  1.3740 +    }
  1.3741 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3742 +    handleChanged();
  1.3743 +#endif
  1.3744 +}
  1.3745 +
  1.3746 +/**
  1.3747 + * Get the rounding increment.
  1.3748 + * @return A positive rounding increment, or 0.0 if rounding
  1.3749 + * is not in effect.
  1.3750 + * @see #setRoundingIncrement
  1.3751 + * @see #getRoundingMode
  1.3752 + * @see #setRoundingMode
  1.3753 + */
  1.3754 +double DecimalFormat::getRoundingIncrement() const {
  1.3755 +    if (fRoundingIncrement == NULL) {
  1.3756 +        return 0.0;
  1.3757 +    } else {
  1.3758 +        return fRoundingIncrement->getDouble();
  1.3759 +    }
  1.3760 +}
  1.3761 +
  1.3762 +/**
  1.3763 + * Set the rounding increment.  This method also controls whether
  1.3764 + * rounding is enabled.
  1.3765 + * @param newValue A positive rounding increment, or 0.0 to disable rounding.
  1.3766 + * Negative increments are equivalent to 0.0.
  1.3767 + * @see #getRoundingIncrement
  1.3768 + * @see #getRoundingMode
  1.3769 + * @see #setRoundingMode
  1.3770 + */
  1.3771 +void DecimalFormat::setRoundingIncrement(double newValue) {
  1.3772 +    if (newValue > 0.0) {
  1.3773 +        if (fRoundingIncrement == NULL) {
  1.3774 +            fRoundingIncrement = new DigitList();
  1.3775 +        }
  1.3776 +        if (fRoundingIncrement != NULL) {
  1.3777 +            fRoundingIncrement->set(newValue);
  1.3778 +            return;
  1.3779 +        }
  1.3780 +    }
  1.3781 +    // These statements are executed if newValue is less than 0.0
  1.3782 +    // or fRoundingIncrement could not be created.
  1.3783 +    delete fRoundingIncrement;
  1.3784 +    fRoundingIncrement = NULL;
  1.3785 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3786 +    handleChanged();
  1.3787 +#endif
  1.3788 +}
  1.3789 +
  1.3790 +/**
  1.3791 + * Get the rounding mode.
  1.3792 + * @return A rounding mode
  1.3793 + * @see #setRoundingIncrement
  1.3794 + * @see #getRoundingIncrement
  1.3795 + * @see #setRoundingMode
  1.3796 + */
  1.3797 +DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
  1.3798 +    return fRoundingMode;
  1.3799 +}
  1.3800 +
  1.3801 +/**
  1.3802 + * Set the rounding mode.  This has no effect unless the rounding
  1.3803 + * increment is greater than zero.
  1.3804 + * @param roundingMode A rounding mode
  1.3805 + * @see #setRoundingIncrement
  1.3806 + * @see #getRoundingIncrement
  1.3807 + * @see #getRoundingMode
  1.3808 + */
  1.3809 +void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
  1.3810 +    fRoundingMode = roundingMode;
  1.3811 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3812 +    handleChanged();
  1.3813 +#endif
  1.3814 +}
  1.3815 +
  1.3816 +/**
  1.3817 + * Get the width to which the output of <code>format()</code> is padded.
  1.3818 + * @return the format width, or zero if no padding is in effect
  1.3819 + * @see #setFormatWidth
  1.3820 + * @see #getPadCharacter
  1.3821 + * @see #setPadCharacter
  1.3822 + * @see #getPadPosition
  1.3823 + * @see #setPadPosition
  1.3824 + */
  1.3825 +int32_t DecimalFormat::getFormatWidth() const {
  1.3826 +    return fFormatWidth;
  1.3827 +}
  1.3828 +
  1.3829 +/**
  1.3830 + * Set the width to which the output of <code>format()</code> is padded.
  1.3831 + * This method also controls whether padding is enabled.
  1.3832 + * @param width the width to which to pad the result of
  1.3833 + * <code>format()</code>, or zero to disable padding.  A negative
  1.3834 + * width is equivalent to 0.
  1.3835 + * @see #getFormatWidth
  1.3836 + * @see #getPadCharacter
  1.3837 + * @see #setPadCharacter
  1.3838 + * @see #getPadPosition
  1.3839 + * @see #setPadPosition
  1.3840 + */
  1.3841 +void DecimalFormat::setFormatWidth(int32_t width) {
  1.3842 +    fFormatWidth = (width > 0) ? width : 0;
  1.3843 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3844 +    handleChanged();
  1.3845 +#endif
  1.3846 +}
  1.3847 +
  1.3848 +UnicodeString DecimalFormat::getPadCharacterString() const {
  1.3849 +    return UnicodeString(fPad);
  1.3850 +}
  1.3851 +
  1.3852 +void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
  1.3853 +    if (padChar.length() > 0) {
  1.3854 +        fPad = padChar.char32At(0);
  1.3855 +    }
  1.3856 +    else {
  1.3857 +        fPad = kDefaultPad;
  1.3858 +    }
  1.3859 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3860 +    handleChanged();
  1.3861 +#endif
  1.3862 +}
  1.3863 +
  1.3864 +/**
  1.3865 + * Get the position at which padding will take place.  This is the location
  1.3866 + * at which padding will be inserted if the result of <code>format()</code>
  1.3867 + * is shorter than the format width.
  1.3868 + * @return the pad position, one of <code>kPadBeforePrefix</code>,
  1.3869 + * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
  1.3870 + * <code>kPadAfterSuffix</code>.
  1.3871 + * @see #setFormatWidth
  1.3872 + * @see #getFormatWidth
  1.3873 + * @see #setPadCharacter
  1.3874 + * @see #getPadCharacter
  1.3875 + * @see #setPadPosition
  1.3876 + * @see #kPadBeforePrefix
  1.3877 + * @see #kPadAfterPrefix
  1.3878 + * @see #kPadBeforeSuffix
  1.3879 + * @see #kPadAfterSuffix
  1.3880 + */
  1.3881 +DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
  1.3882 +    return fPadPosition;
  1.3883 +}
  1.3884 +
  1.3885 +/**
  1.3886 + * <strong><font face=helvetica color=red>NEW</font></strong>
  1.3887 + * Set the position at which padding will take place.  This is the location
  1.3888 + * at which padding will be inserted if the result of <code>format()</code>
  1.3889 + * is shorter than the format width.  This has no effect unless padding is
  1.3890 + * enabled.
  1.3891 + * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
  1.3892 + * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
  1.3893 + * <code>kPadAfterSuffix</code>.
  1.3894 + * @see #setFormatWidth
  1.3895 + * @see #getFormatWidth
  1.3896 + * @see #setPadCharacter
  1.3897 + * @see #getPadCharacter
  1.3898 + * @see #getPadPosition
  1.3899 + * @see #kPadBeforePrefix
  1.3900 + * @see #kPadAfterPrefix
  1.3901 + * @see #kPadBeforeSuffix
  1.3902 + * @see #kPadAfterSuffix
  1.3903 + */
  1.3904 +void DecimalFormat::setPadPosition(EPadPosition padPos) {
  1.3905 +    fPadPosition = padPos;
  1.3906 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3907 +    handleChanged();
  1.3908 +#endif
  1.3909 +}
  1.3910 +
  1.3911 +/**
  1.3912 + * Return whether or not scientific notation is used.
  1.3913 + * @return TRUE if this object formats and parses scientific notation
  1.3914 + * @see #setScientificNotation
  1.3915 + * @see #getMinimumExponentDigits
  1.3916 + * @see #setMinimumExponentDigits
  1.3917 + * @see #isExponentSignAlwaysShown
  1.3918 + * @see #setExponentSignAlwaysShown
  1.3919 + */
  1.3920 +UBool DecimalFormat::isScientificNotation() const {
  1.3921 +    return fUseExponentialNotation;
  1.3922 +}
  1.3923 +
  1.3924 +/**
  1.3925 + * Set whether or not scientific notation is used.
  1.3926 + * @param useScientific TRUE if this object formats and parses scientific
  1.3927 + * notation
  1.3928 + * @see #isScientificNotation
  1.3929 + * @see #getMinimumExponentDigits
  1.3930 + * @see #setMinimumExponentDigits
  1.3931 + * @see #isExponentSignAlwaysShown
  1.3932 + * @see #setExponentSignAlwaysShown
  1.3933 + */
  1.3934 +void DecimalFormat::setScientificNotation(UBool useScientific) {
  1.3935 +    fUseExponentialNotation = useScientific;
  1.3936 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3937 +    handleChanged();
  1.3938 +#endif
  1.3939 +}
  1.3940 +
  1.3941 +/**
  1.3942 + * Return the minimum exponent digits that will be shown.
  1.3943 + * @return the minimum exponent digits that will be shown
  1.3944 + * @see #setScientificNotation
  1.3945 + * @see #isScientificNotation
  1.3946 + * @see #setMinimumExponentDigits
  1.3947 + * @see #isExponentSignAlwaysShown
  1.3948 + * @see #setExponentSignAlwaysShown
  1.3949 + */
  1.3950 +int8_t DecimalFormat::getMinimumExponentDigits() const {
  1.3951 +    return fMinExponentDigits;
  1.3952 +}
  1.3953 +
  1.3954 +/**
  1.3955 + * Set the minimum exponent digits that will be shown.  This has no
  1.3956 + * effect unless scientific notation is in use.
  1.3957 + * @param minExpDig a value >= 1 indicating the fewest exponent digits
  1.3958 + * that will be shown.  Values less than 1 will be treated as 1.
  1.3959 + * @see #setScientificNotation
  1.3960 + * @see #isScientificNotation
  1.3961 + * @see #getMinimumExponentDigits
  1.3962 + * @see #isExponentSignAlwaysShown
  1.3963 + * @see #setExponentSignAlwaysShown
  1.3964 + */
  1.3965 +void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
  1.3966 +    fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
  1.3967 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.3968 +    handleChanged();
  1.3969 +#endif
  1.3970 +}
  1.3971 +
  1.3972 +/**
  1.3973 + * Return whether the exponent sign is always shown.
  1.3974 + * @return TRUE if the exponent is always prefixed with either the
  1.3975 + * localized minus sign or the localized plus sign, false if only negative
  1.3976 + * exponents are prefixed with the localized minus sign.
  1.3977 + * @see #setScientificNotation
  1.3978 + * @see #isScientificNotation
  1.3979 + * @see #setMinimumExponentDigits
  1.3980 + * @see #getMinimumExponentDigits
  1.3981 + * @see #setExponentSignAlwaysShown
  1.3982 + */
  1.3983 +UBool DecimalFormat::isExponentSignAlwaysShown() const {
  1.3984 +    return fExponentSignAlwaysShown;
  1.3985 +}
  1.3986 +
  1.3987 +/**
  1.3988 + * Set whether the exponent sign is always shown.  This has no effect
  1.3989 + * unless scientific notation is in use.
  1.3990 + * @param expSignAlways TRUE if the exponent is always prefixed with either
  1.3991 + * the localized minus sign or the localized plus sign, false if only
  1.3992 + * negative exponents are prefixed with the localized minus sign.
  1.3993 + * @see #setScientificNotation
  1.3994 + * @see #isScientificNotation
  1.3995 + * @see #setMinimumExponentDigits
  1.3996 + * @see #getMinimumExponentDigits
  1.3997 + * @see #isExponentSignAlwaysShown
  1.3998 + */
  1.3999 +void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
  1.4000 +    fExponentSignAlwaysShown = expSignAlways;
  1.4001 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.4002 +    handleChanged();
  1.4003 +#endif
  1.4004 +}
  1.4005 +
  1.4006 +//------------------------------------------------------------------------------
  1.4007 +// Gets the grouping size of the number pattern.  For example, thousand or 10
  1.4008 +// thousand groupings.
  1.4009 +
  1.4010 +int32_t
  1.4011 +DecimalFormat::getGroupingSize() const
  1.4012 +{
  1.4013 +    return fGroupingSize;
  1.4014 +}
  1.4015 +
  1.4016 +//------------------------------------------------------------------------------
  1.4017 +// Gets the grouping size of the number pattern.
  1.4018 +
  1.4019 +void
  1.4020 +DecimalFormat::setGroupingSize(int32_t newValue)
  1.4021 +{
  1.4022 +    fGroupingSize = newValue;
  1.4023 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.4024 +    handleChanged();
  1.4025 +#endif
  1.4026 +}
  1.4027 +
  1.4028 +//------------------------------------------------------------------------------
  1.4029 +
  1.4030 +int32_t
  1.4031 +DecimalFormat::getSecondaryGroupingSize() const
  1.4032 +{
  1.4033 +    return fGroupingSize2;
  1.4034 +}
  1.4035 +
  1.4036 +//------------------------------------------------------------------------------
  1.4037 +
  1.4038 +void
  1.4039 +DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
  1.4040 +{
  1.4041 +    fGroupingSize2 = newValue;
  1.4042 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.4043 +    handleChanged();
  1.4044 +#endif
  1.4045 +}
  1.4046 +
  1.4047 +//------------------------------------------------------------------------------
  1.4048 +// Checks if to show the decimal separator.
  1.4049 +
  1.4050 +UBool
  1.4051 +DecimalFormat::isDecimalSeparatorAlwaysShown() const
  1.4052 +{
  1.4053 +    return fDecimalSeparatorAlwaysShown;
  1.4054 +}
  1.4055 +
  1.4056 +//------------------------------------------------------------------------------
  1.4057 +// Sets to always show the decimal separator.
  1.4058 +
  1.4059 +void
  1.4060 +DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
  1.4061 +{
  1.4062 +    fDecimalSeparatorAlwaysShown = newValue;
  1.4063 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.4064 +    handleChanged();
  1.4065 +#endif
  1.4066 +}
  1.4067 +
  1.4068 +//------------------------------------------------------------------------------
  1.4069 +// Emits the pattern of this DecimalFormat instance.
  1.4070 +
  1.4071 +UnicodeString&
  1.4072 +DecimalFormat::toPattern(UnicodeString& result) const
  1.4073 +{
  1.4074 +    return toPattern(result, FALSE);
  1.4075 +}
  1.4076 +
  1.4077 +//------------------------------------------------------------------------------
  1.4078 +// Emits the localized pattern this DecimalFormat instance.
  1.4079 +
  1.4080 +UnicodeString&
  1.4081 +DecimalFormat::toLocalizedPattern(UnicodeString& result) const
  1.4082 +{
  1.4083 +    return toPattern(result, TRUE);
  1.4084 +}
  1.4085 +
  1.4086 +//------------------------------------------------------------------------------
  1.4087 +/**
  1.4088 + * Expand the affix pattern strings into the expanded affix strings.  If any
  1.4089 + * affix pattern string is null, do not expand it.  This method should be
  1.4090 + * called any time the symbols or the affix patterns change in order to keep
  1.4091 + * the expanded affix strings up to date.
  1.4092 + * This method also will be called before formatting if format currency
  1.4093 + * plural names, since the plural name is not a static one, it is
  1.4094 + * based on the currency plural count, the affix will be known only
  1.4095 + * after the currency plural count is know.
  1.4096 + * In which case, the parameter
  1.4097 + * 'pluralCount' will be a non-null currency plural count.
  1.4098 + * In all other cases, the 'pluralCount' is null, which means it is not needed.
  1.4099 + */
  1.4100 +void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
  1.4101 +    FieldPositionHandler none;
  1.4102 +    if (fPosPrefixPattern != 0) {
  1.4103 +      expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
  1.4104 +    }
  1.4105 +    if (fPosSuffixPattern != 0) {
  1.4106 +      expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
  1.4107 +    }
  1.4108 +    if (fNegPrefixPattern != 0) {
  1.4109 +      expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
  1.4110 +    }
  1.4111 +    if (fNegSuffixPattern != 0) {
  1.4112 +      expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
  1.4113 +    }
  1.4114 +#ifdef FMT_DEBUG
  1.4115 +    UnicodeString s;
  1.4116 +    s.append(UnicodeString("["))
  1.4117 +      .append(DEREFSTR(fPosPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fPosSuffixPattern))
  1.4118 +      .append((UnicodeString)";") .append(DEREFSTR(fNegPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fNegSuffixPattern))
  1.4119 +        .append((UnicodeString)"]->[")
  1.4120 +        .append(fPositivePrefix).append((UnicodeString)"|").append(fPositiveSuffix)
  1.4121 +        .append((UnicodeString)";") .append(fNegativePrefix).append((UnicodeString)"|").append(fNegativeSuffix)
  1.4122 +        .append((UnicodeString)"]\n");
  1.4123 +    debugout(s);
  1.4124 +#endif
  1.4125 +}
  1.4126 +
  1.4127 +/**
  1.4128 + * Expand an affix pattern into an affix string.  All characters in the
  1.4129 + * pattern are literal unless prefixed by kQuote.  The following characters
  1.4130 + * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
  1.4131 + * PATTERN_MINUS, and kCurrencySign.  If kCurrencySign is doubled (kQuote +
  1.4132 + * kCurrencySign + kCurrencySign), it is interpreted as an international
  1.4133 + * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
  1.4134 + * currency plural long names, such as "US Dollars".
  1.4135 + * Any other character after a kQuote represents itself.
  1.4136 + * kQuote must be followed by another character; kQuote may not occur by
  1.4137 + * itself at the end of the pattern.
  1.4138 + *
  1.4139 + * This method is used in two distinct ways.  First, it is used to expand
  1.4140 + * the stored affix patterns into actual affixes.  For this usage, doFormat
  1.4141 + * must be false.  Second, it is used to expand the stored affix patterns
  1.4142 + * given a specific number (doFormat == true), for those rare cases in
  1.4143 + * which a currency format references a ChoiceFormat (e.g., en_IN display
  1.4144 + * name for INR).  The number itself is taken from digitList.
  1.4145 + *
  1.4146 + * When used in the first way, this method has a side effect: It sets
  1.4147 + * currencyChoice to a ChoiceFormat object, if the currency's display name
  1.4148 + * in this locale is a ChoiceFormat pattern (very rare).  It only does this
  1.4149 + * if currencyChoice is null to start with.
  1.4150 + *
  1.4151 + * @param pattern the non-null, fPossibly empty pattern
  1.4152 + * @param affix string to receive the expanded equivalent of pattern.
  1.4153 + * Previous contents are deleted.
  1.4154 + * @param doFormat if false, then the pattern will be expanded, and if a
  1.4155 + * currency symbol is encountered that expands to a ChoiceFormat, the
  1.4156 + * currencyChoice member variable will be initialized if it is null.  If
  1.4157 + * doFormat is true, then it is assumed that the currencyChoice has been
  1.4158 + * created, and it will be used to format the value in digitList.
  1.4159 + * @param pluralCount the plural count. It is only used for currency
  1.4160 + *                    plural format. In which case, it is the plural
  1.4161 + *                    count of the currency amount. For example,
  1.4162 + *                    in en_US, it is the singular "one", or the plural
  1.4163 + *                    "other". For all other cases, it is null, and
  1.4164 + *                    is not being used.
  1.4165 + */
  1.4166 +void DecimalFormat::expandAffix(const UnicodeString& pattern,
  1.4167 +                                UnicodeString& affix,
  1.4168 +                                double number,
  1.4169 +                                FieldPositionHandler& handler,
  1.4170 +                                UBool doFormat,
  1.4171 +                                const UnicodeString* pluralCount) const {
  1.4172 +    affix.remove();
  1.4173 +    for (int i=0; i<pattern.length(); ) {
  1.4174 +        UChar32 c = pattern.char32At(i);
  1.4175 +        i += U16_LENGTH(c);
  1.4176 +        if (c == kQuote) {
  1.4177 +            c = pattern.char32At(i);
  1.4178 +            i += U16_LENGTH(c);
  1.4179 +            int beginIdx = affix.length();
  1.4180 +            switch (c) {
  1.4181 +            case kCurrencySign: {
  1.4182 +                // As of ICU 2.2 we use the currency object, and
  1.4183 +                // ignore the currency symbols in the DFS, unless
  1.4184 +                // we have a null currency object.  This occurs if
  1.4185 +                // resurrecting a pre-2.2 object or if the user
  1.4186 +                // sets a custom DFS.
  1.4187 +                UBool intl = i<pattern.length() &&
  1.4188 +                    pattern.char32At(i) == kCurrencySign;
  1.4189 +                UBool plural = FALSE;
  1.4190 +                if (intl) {
  1.4191 +                    ++i;
  1.4192 +                    plural = i<pattern.length() &&
  1.4193 +                        pattern.char32At(i) == kCurrencySign;
  1.4194 +                    if (plural) {
  1.4195 +                        intl = FALSE;
  1.4196 +                        ++i;
  1.4197 +                    }
  1.4198 +                }
  1.4199 +                const UChar* currencyUChars = getCurrency();
  1.4200 +                if (currencyUChars[0] != 0) {
  1.4201 +                    UErrorCode ec = U_ZERO_ERROR;
  1.4202 +                    if (plural && pluralCount != NULL) {
  1.4203 +                        // plural name is only needed when pluralCount != null,
  1.4204 +                        // which means when formatting currency plural names.
  1.4205 +                        // For other cases, pluralCount == null,
  1.4206 +                        // and plural names are not needed.
  1.4207 +                        int32_t len;
  1.4208 +                        CharString pluralCountChar;
  1.4209 +                        pluralCountChar.appendInvariantChars(*pluralCount, ec);
  1.4210 +                        UBool isChoiceFormat;
  1.4211 +                        const UChar* s = ucurr_getPluralName(currencyUChars,
  1.4212 +                            fSymbols != NULL ? fSymbols->getLocale().getName() :
  1.4213 +                            Locale::getDefault().getName(), &isChoiceFormat,
  1.4214 +                            pluralCountChar.data(), &len, &ec);
  1.4215 +                        affix += UnicodeString(s, len);
  1.4216 +                        handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  1.4217 +                    } else if(intl) {
  1.4218 +                        affix.append(currencyUChars, -1);
  1.4219 +                        handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  1.4220 +                    } else {
  1.4221 +                        int32_t len;
  1.4222 +                        UBool isChoiceFormat;
  1.4223 +                        // If fSymbols is NULL, use default locale
  1.4224 +                        const UChar* s = ucurr_getName(currencyUChars,
  1.4225 +                            fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
  1.4226 +                            UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
  1.4227 +                        if (isChoiceFormat) {
  1.4228 +                            // Two modes here: If doFormat is false, we set up
  1.4229 +                            // currencyChoice.  If doFormat is true, we use the
  1.4230 +                            // previously created currencyChoice to format the
  1.4231 +                            // value in digitList.
  1.4232 +                            if (!doFormat) {
  1.4233 +                                // If the currency is handled by a ChoiceFormat,
  1.4234 +                                // then we're not going to use the expanded
  1.4235 +                                // patterns.  Instantiate the ChoiceFormat and
  1.4236 +                                // return.
  1.4237 +                                if (fCurrencyChoice == NULL) {
  1.4238 +                                    // TODO Replace double-check with proper thread-safe code
  1.4239 +                                    ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
  1.4240 +                                    if (U_SUCCESS(ec)) {
  1.4241 +                                        umtx_lock(NULL);
  1.4242 +                                        if (fCurrencyChoice == NULL) {
  1.4243 +                                            // Cast away const
  1.4244 +                                            ((DecimalFormat*)this)->fCurrencyChoice = fmt;
  1.4245 +                                            fmt = NULL;
  1.4246 +                                        }
  1.4247 +                                        umtx_unlock(NULL);
  1.4248 +                                        delete fmt;
  1.4249 +                                    }
  1.4250 +                                }
  1.4251 +                                // We could almost return null or "" here, since the
  1.4252 +                                // expanded affixes are almost not used at all
  1.4253 +                                // in this situation.  However, one method --
  1.4254 +                                // toPattern() -- still does use the expanded
  1.4255 +                                // affixes, in order to set up a padding
  1.4256 +                                // pattern.  We use the CURRENCY_SIGN as a
  1.4257 +                                // placeholder.
  1.4258 +                                affix.append(kCurrencySign);
  1.4259 +                            } else {
  1.4260 +                                if (fCurrencyChoice != NULL) {
  1.4261 +                                    FieldPosition pos(0); // ignored
  1.4262 +                                    if (number < 0) {
  1.4263 +                                        number = -number;
  1.4264 +                                    }
  1.4265 +                                    fCurrencyChoice->format(number, affix, pos);
  1.4266 +                                } else {
  1.4267 +                                    // We only arrive here if the currency choice
  1.4268 +                                    // format in the locale data is INVALID.
  1.4269 +                                    affix.append(currencyUChars, -1);
  1.4270 +                                    handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  1.4271 +                                }
  1.4272 +                            }
  1.4273 +                            continue;
  1.4274 +                        }
  1.4275 +                        affix += UnicodeString(s, len);
  1.4276 +                        handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  1.4277 +                    }
  1.4278 +                } else {
  1.4279 +                    if(intl) {
  1.4280 +                        affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
  1.4281 +                    } else {
  1.4282 +                        affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
  1.4283 +                    }
  1.4284 +                    handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  1.4285 +                }
  1.4286 +                break;
  1.4287 +            }
  1.4288 +            case kPatternPercent:
  1.4289 +                affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
  1.4290 +                handler.addAttribute(kPercentField, beginIdx, affix.length());
  1.4291 +                break;
  1.4292 +            case kPatternPerMill:
  1.4293 +                affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
  1.4294 +                handler.addAttribute(kPermillField, beginIdx, affix.length());
  1.4295 +                break;
  1.4296 +            case kPatternPlus:
  1.4297 +                affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  1.4298 +                handler.addAttribute(kSignField, beginIdx, affix.length());
  1.4299 +                break;
  1.4300 +            case kPatternMinus:
  1.4301 +                affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  1.4302 +                handler.addAttribute(kSignField, beginIdx, affix.length());
  1.4303 +                break;
  1.4304 +            default:
  1.4305 +                affix.append(c);
  1.4306 +                break;
  1.4307 +            }
  1.4308 +        }
  1.4309 +        else {
  1.4310 +            affix.append(c);
  1.4311 +        }
  1.4312 +    }
  1.4313 +}
  1.4314 +
  1.4315 +/**
  1.4316 + * Append an affix to the given StringBuffer.
  1.4317 + * @param buf buffer to append to
  1.4318 + * @param isNegative
  1.4319 + * @param isPrefix
  1.4320 + */
  1.4321 +int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
  1.4322 +                                   FieldPositionHandler& handler,
  1.4323 +                                   UBool isNegative, UBool isPrefix) const {
  1.4324 +    // plural format precedes choice format
  1.4325 +    if (fCurrencyChoice != 0 &&
  1.4326 +        fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
  1.4327 +        const UnicodeString* affixPat;
  1.4328 +        if (isPrefix) {
  1.4329 +            affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
  1.4330 +        } else {
  1.4331 +            affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
  1.4332 +        }
  1.4333 +        if (affixPat) {
  1.4334 +            UnicodeString affixBuf;
  1.4335 +            expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
  1.4336 +            buf.append(affixBuf);
  1.4337 +            return affixBuf.length();
  1.4338 +        }
  1.4339 +        // else someone called a function that reset the pattern.
  1.4340 +    }
  1.4341 +
  1.4342 +    const UnicodeString* affix;
  1.4343 +    if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
  1.4344 +        // TODO: get an accurate count of visible fraction digits.
  1.4345 +        UnicodeString pluralCount;
  1.4346 +        int32_t minFractionDigits = this->getMinimumFractionDigits();
  1.4347 +        if (minFractionDigits > 0) {
  1.4348 +            FixedDecimal ni(number, this->getMinimumFractionDigits());
  1.4349 +            pluralCount = fCurrencyPluralInfo->getPluralRules()->select(ni);
  1.4350 +        } else {
  1.4351 +            pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
  1.4352 +        }
  1.4353 +        AffixesForCurrency* oneSet;
  1.4354 +        if (fStyle == UNUM_CURRENCY_PLURAL) {
  1.4355 +            oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
  1.4356 +        } else {
  1.4357 +            oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
  1.4358 +        }
  1.4359 +        if (isPrefix) {
  1.4360 +            affix = isNegative ? &oneSet->negPrefixForCurrency :
  1.4361 +                                 &oneSet->posPrefixForCurrency;
  1.4362 +        } else {
  1.4363 +            affix = isNegative ? &oneSet->negSuffixForCurrency :
  1.4364 +                                 &oneSet->posSuffixForCurrency;
  1.4365 +        }
  1.4366 +    } else {
  1.4367 +        if (isPrefix) {
  1.4368 +            affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
  1.4369 +        } else {
  1.4370 +            affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
  1.4371 +        }
  1.4372 +    }
  1.4373 +
  1.4374 +    int32_t begin = (int) buf.length();
  1.4375 +
  1.4376 +    buf.append(*affix);
  1.4377 +
  1.4378 +    if (handler.isRecording()) {
  1.4379 +      int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
  1.4380 +      if (offset > -1) {
  1.4381 +        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
  1.4382 +        handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
  1.4383 +      }
  1.4384 +
  1.4385 +      offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
  1.4386 +      if (offset > -1) {
  1.4387 +        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
  1.4388 +        handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
  1.4389 +      }
  1.4390 +
  1.4391 +      offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
  1.4392 +      if (offset > -1) {
  1.4393 +        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  1.4394 +        handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
  1.4395 +      }
  1.4396 +
  1.4397 +      offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
  1.4398 +      if (offset > -1) {
  1.4399 +        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
  1.4400 +        handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
  1.4401 +      }
  1.4402 +
  1.4403 +      offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
  1.4404 +      if (offset > -1) {
  1.4405 +        UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
  1.4406 +        handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
  1.4407 +      }
  1.4408 +    }
  1.4409 +    return affix->length();
  1.4410 +}
  1.4411 +
  1.4412 +/**
  1.4413 + * Appends an affix pattern to the given StringBuffer, quoting special
  1.4414 + * characters as needed.  Uses the internal affix pattern, if that exists,
  1.4415 + * or the literal affix, if the internal affix pattern is null.  The
  1.4416 + * appended string will generate the same affix pattern (or literal affix)
  1.4417 + * when passed to toPattern().
  1.4418 + *
  1.4419 + * @param appendTo the affix string is appended to this
  1.4420 + * @param affixPattern a pattern such as fPosPrefixPattern; may be null
  1.4421 + * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
  1.4422 + * Ignored unless affixPattern is null.  If affixPattern is null, then
  1.4423 + * expAffix is appended as a literal affix.
  1.4424 + * @param localized true if the appended pattern should contain localized
  1.4425 + * pattern characters; otherwise, non-localized pattern chars are appended
  1.4426 + */
  1.4427 +void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
  1.4428 +                                       const UnicodeString* affixPattern,
  1.4429 +                                       const UnicodeString& expAffix,
  1.4430 +                                       UBool localized) const {
  1.4431 +    if (affixPattern == 0) {
  1.4432 +        appendAffixPattern(appendTo, expAffix, localized);
  1.4433 +    } else {
  1.4434 +        int i;
  1.4435 +        for (int pos=0; pos<affixPattern->length(); pos=i) {
  1.4436 +            i = affixPattern->indexOf(kQuote, pos);
  1.4437 +            if (i < 0) {
  1.4438 +                UnicodeString s;
  1.4439 +                affixPattern->extractBetween(pos, affixPattern->length(), s);
  1.4440 +                appendAffixPattern(appendTo, s, localized);
  1.4441 +                break;
  1.4442 +            }
  1.4443 +            if (i > pos) {
  1.4444 +                UnicodeString s;
  1.4445 +                affixPattern->extractBetween(pos, i, s);
  1.4446 +                appendAffixPattern(appendTo, s, localized);
  1.4447 +            }
  1.4448 +            UChar32 c = affixPattern->char32At(++i);
  1.4449 +            ++i;
  1.4450 +            if (c == kQuote) {
  1.4451 +                appendTo.append(c).append(c);
  1.4452 +                // Fall through and append another kQuote below
  1.4453 +            } else if (c == kCurrencySign &&
  1.4454 +                       i<affixPattern->length() &&
  1.4455 +                       affixPattern->char32At(i) == kCurrencySign) {
  1.4456 +                ++i;
  1.4457 +                appendTo.append(c).append(c);
  1.4458 +            } else if (localized) {
  1.4459 +                switch (c) {
  1.4460 +                case kPatternPercent:
  1.4461 +                    appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
  1.4462 +                    break;
  1.4463 +                case kPatternPerMill:
  1.4464 +                    appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
  1.4465 +                    break;
  1.4466 +                case kPatternPlus:
  1.4467 +                    appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  1.4468 +                    break;
  1.4469 +                case kPatternMinus:
  1.4470 +                    appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  1.4471 +                    break;
  1.4472 +                default:
  1.4473 +                    appendTo.append(c);
  1.4474 +                }
  1.4475 +            } else {
  1.4476 +                appendTo.append(c);
  1.4477 +            }
  1.4478 +        }
  1.4479 +    }
  1.4480 +}
  1.4481 +
  1.4482 +/**
  1.4483 + * Append an affix to the given StringBuffer, using quotes if
  1.4484 + * there are special characters.  Single quotes themselves must be
  1.4485 + * escaped in either case.
  1.4486 + */
  1.4487 +void
  1.4488 +DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
  1.4489 +                                  const UnicodeString& affix,
  1.4490 +                                  UBool localized) const {
  1.4491 +    UBool needQuote;
  1.4492 +    if(localized) {
  1.4493 +        needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
  1.4494 +            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
  1.4495 +            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
  1.4496 +            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
  1.4497 +            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
  1.4498 +            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
  1.4499 +            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
  1.4500 +            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
  1.4501 +            || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
  1.4502 +            || affix.indexOf(kCurrencySign) >= 0;
  1.4503 +    }
  1.4504 +    else {
  1.4505 +        needQuote = affix.indexOf(kPatternZeroDigit) >= 0
  1.4506 +            || affix.indexOf(kPatternGroupingSeparator) >= 0
  1.4507 +            || affix.indexOf(kPatternDecimalSeparator) >= 0
  1.4508 +            || affix.indexOf(kPatternPercent) >= 0
  1.4509 +            || affix.indexOf(kPatternPerMill) >= 0
  1.4510 +            || affix.indexOf(kPatternDigit) >= 0
  1.4511 +            || affix.indexOf(kPatternSeparator) >= 0
  1.4512 +            || affix.indexOf(kPatternExponent) >= 0
  1.4513 +            || affix.indexOf(kPatternPlus) >= 0
  1.4514 +            || affix.indexOf(kPatternMinus) >= 0
  1.4515 +            || affix.indexOf(kCurrencySign) >= 0;
  1.4516 +    }
  1.4517 +    if (needQuote)
  1.4518 +        appendTo += (UChar)0x0027 /*'\''*/;
  1.4519 +    if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
  1.4520 +        appendTo += affix;
  1.4521 +    else {
  1.4522 +        for (int32_t j = 0; j < affix.length(); ) {
  1.4523 +            UChar32 c = affix.char32At(j);
  1.4524 +            j += U16_LENGTH(c);
  1.4525 +            appendTo += c;
  1.4526 +            if (c == 0x0027 /*'\''*/)
  1.4527 +                appendTo += c;
  1.4528 +        }
  1.4529 +    }
  1.4530 +    if (needQuote)
  1.4531 +        appendTo += (UChar)0x0027 /*'\''*/;
  1.4532 +}
  1.4533 +
  1.4534 +//------------------------------------------------------------------------------
  1.4535 +
  1.4536 +UnicodeString&
  1.4537 +DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
  1.4538 +{
  1.4539 +    if (fStyle == UNUM_CURRENCY_PLURAL) {
  1.4540 +        // the prefix or suffix pattern might not be defined yet,
  1.4541 +        // so they can not be synthesized,
  1.4542 +        // instead, get them directly.
  1.4543 +        // but it might not be the actual pattern used in formatting.
  1.4544 +        // the actual pattern used in formatting depends on the
  1.4545 +        // formatted number's plural count.
  1.4546 +        result = fFormatPattern;
  1.4547 +        return result;
  1.4548 +    }
  1.4549 +    result.remove();
  1.4550 +    UChar32 zero, sigDigit = kPatternSignificantDigit;
  1.4551 +    UnicodeString digit, group;
  1.4552 +    int32_t i;
  1.4553 +    int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
  1.4554 +    UnicodeString roundingDigits;
  1.4555 +    int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
  1.4556 +    UnicodeString padSpec;
  1.4557 +    UBool useSigDig = areSignificantDigitsUsed();
  1.4558 +
  1.4559 +    if (localized) {
  1.4560 +        digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
  1.4561 +        group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
  1.4562 +        zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
  1.4563 +        if (useSigDig) {
  1.4564 +            sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
  1.4565 +        }
  1.4566 +    }
  1.4567 +    else {
  1.4568 +        digit.append((UChar)kPatternDigit);
  1.4569 +        group.append((UChar)kPatternGroupingSeparator);
  1.4570 +        zero = (UChar32)kPatternZeroDigit;
  1.4571 +    }
  1.4572 +    if (fFormatWidth > 0) {
  1.4573 +        if (localized) {
  1.4574 +            padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
  1.4575 +        }
  1.4576 +        else {
  1.4577 +            padSpec.append((UChar)kPatternPadEscape);
  1.4578 +        }
  1.4579 +        padSpec.append(fPad);
  1.4580 +    }
  1.4581 +    if (fRoundingIncrement != NULL) {
  1.4582 +        for(i=0; i<fRoundingIncrement->getCount(); ++i) {
  1.4583 +          roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
  1.4584 +        }
  1.4585 +        roundingDecimalPos = fRoundingIncrement->getDecimalAt();
  1.4586 +    }
  1.4587 +    for (int32_t part=0; part<2; ++part) {
  1.4588 +        if (padPos == kPadBeforePrefix) {
  1.4589 +            result.append(padSpec);
  1.4590 +        }
  1.4591 +        appendAffixPattern(result,
  1.4592 +                    (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
  1.4593 +                    (part==0 ? fPositivePrefix : fNegativePrefix),
  1.4594 +                    localized);
  1.4595 +        if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
  1.4596 +            result.append(padSpec);
  1.4597 +        }
  1.4598 +        int32_t sub0Start = result.length();
  1.4599 +        int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
  1.4600 +        if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
  1.4601 +            g += fGroupingSize2;
  1.4602 +        }
  1.4603 +        int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
  1.4604 +        if (useSigDig) {
  1.4605 +            minDig = getMinimumSignificantDigits();
  1.4606 +            maxDig = maxSigDig = getMaximumSignificantDigits();
  1.4607 +        } else {
  1.4608 +            minDig = getMinimumIntegerDigits();
  1.4609 +            maxDig = getMaximumIntegerDigits();
  1.4610 +        }
  1.4611 +        if (fUseExponentialNotation) {
  1.4612 +            if (maxDig > kMaxScientificIntegerDigits) {
  1.4613 +                maxDig = 1;
  1.4614 +            }
  1.4615 +        } else if (useSigDig) {
  1.4616 +            maxDig = _max(maxDig, g+1);
  1.4617 +        } else {
  1.4618 +            maxDig = _max(_max(g, getMinimumIntegerDigits()),
  1.4619 +                          roundingDecimalPos) + 1;
  1.4620 +        }
  1.4621 +        for (i = maxDig; i > 0; --i) {
  1.4622 +            if (!fUseExponentialNotation && i<maxDig &&
  1.4623 +                isGroupingPosition(i)) {
  1.4624 +                result.append(group);
  1.4625 +            }
  1.4626 +            if (useSigDig) {
  1.4627 +                //  #@,@###   (maxSigDig == 5, minSigDig == 2)
  1.4628 +                //  65 4321   (1-based pos, count from the right)
  1.4629 +                // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
  1.4630 +                // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
  1.4631 +                if (maxSigDig >= i && i > (maxSigDig - minDig)) {
  1.4632 +                    result.append(sigDigit);
  1.4633 +                } else {
  1.4634 +                    result.append(digit);
  1.4635 +                }
  1.4636 +            } else {
  1.4637 +                if (! roundingDigits.isEmpty()) {
  1.4638 +                    int32_t pos = roundingDecimalPos - i;
  1.4639 +                    if (pos >= 0 && pos < roundingDigits.length()) {
  1.4640 +                        result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
  1.4641 +                        continue;
  1.4642 +                    }
  1.4643 +                }
  1.4644 +                if (i<=minDig) {
  1.4645 +                    result.append(zero);
  1.4646 +                } else {
  1.4647 +                    result.append(digit);
  1.4648 +                }
  1.4649 +            }
  1.4650 +        }
  1.4651 +        if (!useSigDig) {
  1.4652 +            if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
  1.4653 +                if (localized) {
  1.4654 +                    result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
  1.4655 +                }
  1.4656 +                else {
  1.4657 +                    result.append((UChar)kPatternDecimalSeparator);
  1.4658 +                }
  1.4659 +            }
  1.4660 +            int32_t pos = roundingDecimalPos;
  1.4661 +            for (i = 0; i < getMaximumFractionDigits(); ++i) {
  1.4662 +                if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
  1.4663 +                    if (pos < 0) {
  1.4664 +                        result.append(zero);
  1.4665 +                    }
  1.4666 +                    else {
  1.4667 +                        result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
  1.4668 +                    }
  1.4669 +                    ++pos;
  1.4670 +                    continue;
  1.4671 +                }
  1.4672 +                if (i<getMinimumFractionDigits()) {
  1.4673 +                    result.append(zero);
  1.4674 +                }
  1.4675 +                else {
  1.4676 +                    result.append(digit);
  1.4677 +                }
  1.4678 +            }
  1.4679 +        }
  1.4680 +        if (fUseExponentialNotation) {
  1.4681 +            if (localized) {
  1.4682 +                result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
  1.4683 +            }
  1.4684 +            else {
  1.4685 +                result.append((UChar)kPatternExponent);
  1.4686 +            }
  1.4687 +            if (fExponentSignAlwaysShown) {
  1.4688 +                if (localized) {
  1.4689 +                    result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  1.4690 +                }
  1.4691 +                else {
  1.4692 +                    result.append((UChar)kPatternPlus);
  1.4693 +                }
  1.4694 +            }
  1.4695 +            for (i=0; i<fMinExponentDigits; ++i) {
  1.4696 +                result.append(zero);
  1.4697 +            }
  1.4698 +        }
  1.4699 +        if (! padSpec.isEmpty() && !fUseExponentialNotation) {
  1.4700 +            int32_t add = fFormatWidth - result.length() + sub0Start
  1.4701 +                - ((part == 0)
  1.4702 +                   ? fPositivePrefix.length() + fPositiveSuffix.length()
  1.4703 +                   : fNegativePrefix.length() + fNegativeSuffix.length());
  1.4704 +            while (add > 0) {
  1.4705 +                result.insert(sub0Start, digit);
  1.4706 +                ++maxDig;
  1.4707 +                --add;
  1.4708 +                // Only add a grouping separator if we have at least
  1.4709 +                // 2 additional characters to be added, so we don't
  1.4710 +                // end up with ",###".
  1.4711 +                if (add>1 && isGroupingPosition(maxDig)) {
  1.4712 +                    result.insert(sub0Start, group);
  1.4713 +                    --add;
  1.4714 +                }
  1.4715 +            }
  1.4716 +        }
  1.4717 +        if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
  1.4718 +            result.append(padSpec);
  1.4719 +        }
  1.4720 +        if (part == 0) {
  1.4721 +            appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
  1.4722 +            if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
  1.4723 +                result.append(padSpec);
  1.4724 +            }
  1.4725 +            UBool isDefault = FALSE;
  1.4726 +            if ((fNegSuffixPattern == fPosSuffixPattern && // both null
  1.4727 +                 fNegativeSuffix == fPositiveSuffix)
  1.4728 +                || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
  1.4729 +                    *fNegSuffixPattern == *fPosSuffixPattern))
  1.4730 +            {
  1.4731 +                if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
  1.4732 +                {
  1.4733 +                    int32_t length = fPosPrefixPattern->length();
  1.4734 +                    isDefault = fNegPrefixPattern->length() == (length+2) &&
  1.4735 +                        (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
  1.4736 +                        (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
  1.4737 +                        fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
  1.4738 +                }
  1.4739 +                if (!isDefault &&
  1.4740 +                    fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
  1.4741 +                {
  1.4742 +                    int32_t length = fPositivePrefix.length();
  1.4743 +                    isDefault = fNegativePrefix.length() == (length+1) &&
  1.4744 +                        fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
  1.4745 +                        fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
  1.4746 +                }
  1.4747 +            }
  1.4748 +            if (isDefault) {
  1.4749 +                break; // Don't output default negative subpattern
  1.4750 +            } else {
  1.4751 +                if (localized) {
  1.4752 +                    result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
  1.4753 +                }
  1.4754 +                else {
  1.4755 +                    result.append((UChar)kPatternSeparator);
  1.4756 +                }
  1.4757 +            }
  1.4758 +        } else {
  1.4759 +            appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
  1.4760 +            if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
  1.4761 +                result.append(padSpec);
  1.4762 +            }
  1.4763 +        }
  1.4764 +    }
  1.4765 +
  1.4766 +    return result;
  1.4767 +}
  1.4768 +
  1.4769 +//------------------------------------------------------------------------------
  1.4770 +
  1.4771 +void
  1.4772 +DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
  1.4773 +{
  1.4774 +    UParseError parseError;
  1.4775 +    applyPattern(pattern, FALSE, parseError, status);
  1.4776 +}
  1.4777 +
  1.4778 +//------------------------------------------------------------------------------
  1.4779 +
  1.4780 +void
  1.4781 +DecimalFormat::applyPattern(const UnicodeString& pattern,
  1.4782 +                            UParseError& parseError,
  1.4783 +                            UErrorCode& status)
  1.4784 +{
  1.4785 +    applyPattern(pattern, FALSE, parseError, status);
  1.4786 +}
  1.4787 +//------------------------------------------------------------------------------
  1.4788 +
  1.4789 +void
  1.4790 +DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
  1.4791 +{
  1.4792 +    UParseError parseError;
  1.4793 +    applyPattern(pattern, TRUE,parseError,status);
  1.4794 +}
  1.4795 +
  1.4796 +//------------------------------------------------------------------------------
  1.4797 +
  1.4798 +void
  1.4799 +DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
  1.4800 +                                     UParseError& parseError,
  1.4801 +                                     UErrorCode& status)
  1.4802 +{
  1.4803 +    applyPattern(pattern, TRUE,parseError,status);
  1.4804 +}
  1.4805 +
  1.4806 +//------------------------------------------------------------------------------
  1.4807 +
  1.4808 +void
  1.4809 +DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
  1.4810 +                                              UBool localized,
  1.4811 +                                              UParseError& parseError,
  1.4812 +                                              UErrorCode& status)
  1.4813 +{
  1.4814 +    if (U_FAILURE(status))
  1.4815 +    {
  1.4816 +        return;
  1.4817 +    }
  1.4818 +    // Clear error struct
  1.4819 +    parseError.offset = -1;
  1.4820 +    parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
  1.4821 +
  1.4822 +    // Set the significant pattern symbols
  1.4823 +    UChar32 zeroDigit               = kPatternZeroDigit; // '0'
  1.4824 +    UChar32 sigDigit                = kPatternSignificantDigit; // '@'
  1.4825 +    UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
  1.4826 +    UnicodeString decimalSeparator  ((UChar)kPatternDecimalSeparator);
  1.4827 +    UnicodeString percent           ((UChar)kPatternPercent);
  1.4828 +    UnicodeString perMill           ((UChar)kPatternPerMill);
  1.4829 +    UnicodeString digit             ((UChar)kPatternDigit); // '#'
  1.4830 +    UnicodeString separator         ((UChar)kPatternSeparator);
  1.4831 +    UnicodeString exponent          ((UChar)kPatternExponent);
  1.4832 +    UnicodeString plus              ((UChar)kPatternPlus);
  1.4833 +    UnicodeString minus             ((UChar)kPatternMinus);
  1.4834 +    UnicodeString padEscape         ((UChar)kPatternPadEscape);
  1.4835 +    // Substitute with the localized symbols if necessary
  1.4836 +    if (localized) {
  1.4837 +        zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
  1.4838 +        sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
  1.4839 +        groupingSeparator.  remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
  1.4840 +        decimalSeparator.   remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
  1.4841 +        percent.            remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
  1.4842 +        perMill.            remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
  1.4843 +        digit.              remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
  1.4844 +        separator.          remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
  1.4845 +        exponent.           remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
  1.4846 +        plus.               remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
  1.4847 +        minus.              remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
  1.4848 +        padEscape.          remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
  1.4849 +    }
  1.4850 +    UChar nineDigit = (UChar)(zeroDigit + 9);
  1.4851 +    int32_t digitLen = digit.length();
  1.4852 +    int32_t groupSepLen = groupingSeparator.length();
  1.4853 +    int32_t decimalSepLen = decimalSeparator.length();
  1.4854 +
  1.4855 +    int32_t pos = 0;
  1.4856 +    int32_t patLen = pattern.length();
  1.4857 +    // Part 0 is the positive pattern.  Part 1, if present, is the negative
  1.4858 +    // pattern.
  1.4859 +    for (int32_t part=0; part<2 && pos<patLen; ++part) {
  1.4860 +        // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
  1.4861 +        // 2=suffix, 3=prefix in quote, 4=suffix in quote.  Subpart 0 is
  1.4862 +        // between the prefix and suffix, and consists of pattern
  1.4863 +        // characters.  In the prefix and suffix, percent, perMill, and
  1.4864 +        // currency symbols are recognized and translated.
  1.4865 +        int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
  1.4866 +
  1.4867 +        // It's important that we don't change any fields of this object
  1.4868 +        // prematurely.  We set the following variables for the multiplier,
  1.4869 +        // grouping, etc., and then only change the actual object fields if
  1.4870 +        // everything parses correctly.  This also lets us register
  1.4871 +        // the data from part 0 and ignore the part 1, except for the
  1.4872 +        // prefix and suffix.
  1.4873 +        UnicodeString prefix;
  1.4874 +        UnicodeString suffix;
  1.4875 +        int32_t decimalPos = -1;
  1.4876 +        int32_t multiplier = 1;
  1.4877 +        int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
  1.4878 +        int8_t groupingCount = -1;
  1.4879 +        int8_t groupingCount2 = -1;
  1.4880 +        int32_t padPos = -1;
  1.4881 +        UChar32 padChar = 0;
  1.4882 +        int32_t roundingPos = -1;
  1.4883 +        DigitList roundingInc;
  1.4884 +        int8_t expDigits = -1;
  1.4885 +        UBool expSignAlways = FALSE;
  1.4886 +
  1.4887 +        // The affix is either the prefix or the suffix.
  1.4888 +        UnicodeString* affix = &prefix;
  1.4889 +
  1.4890 +        int32_t start = pos;
  1.4891 +        UBool isPartDone = FALSE;
  1.4892 +        UChar32 ch;
  1.4893 +
  1.4894 +        for (; !isPartDone && pos < patLen; ) {
  1.4895 +            // Todo: account for surrogate pairs
  1.4896 +            ch = pattern.char32At(pos);
  1.4897 +            switch (subpart) {
  1.4898 +            case 0: // Pattern proper subpart (between prefix & suffix)
  1.4899 +                // Process the digits, decimal, and grouping characters.  We
  1.4900 +                // record five pieces of information.  We expect the digits
  1.4901 +                // to occur in the pattern ####00.00####, and we record the
  1.4902 +                // number of left digits, zero (central) digits, and right
  1.4903 +                // digits.  The position of the last grouping character is
  1.4904 +                // recorded (should be somewhere within the first two blocks
  1.4905 +                // of characters), as is the position of the decimal point,
  1.4906 +                // if any (should be in the zero digits).  If there is no
  1.4907 +                // decimal point, then there should be no right digits.
  1.4908 +                if (pattern.compare(pos, digitLen, digit) == 0) {
  1.4909 +                    if (zeroDigitCount > 0 || sigDigitCount > 0) {
  1.4910 +                        ++digitRightCount;
  1.4911 +                    } else {
  1.4912 +                        ++digitLeftCount;
  1.4913 +                    }
  1.4914 +                    if (groupingCount >= 0 && decimalPos < 0) {
  1.4915 +                        ++groupingCount;
  1.4916 +                    }
  1.4917 +                    pos += digitLen;
  1.4918 +                } else if ((ch >= zeroDigit && ch <= nineDigit) ||
  1.4919 +                           ch == sigDigit) {
  1.4920 +                    if (digitRightCount > 0) {
  1.4921 +                        // Unexpected '0'
  1.4922 +                        debug("Unexpected '0'")
  1.4923 +                        status = U_UNEXPECTED_TOKEN;
  1.4924 +                        syntaxError(pattern,pos,parseError);
  1.4925 +                        return;
  1.4926 +                    }
  1.4927 +                    if (ch == sigDigit) {
  1.4928 +                        ++sigDigitCount;
  1.4929 +                    } else {
  1.4930 +                        if (ch != zeroDigit && roundingPos < 0) {
  1.4931 +                            roundingPos = digitLeftCount + zeroDigitCount;
  1.4932 +                        }
  1.4933 +                        if (roundingPos >= 0) {
  1.4934 +                            roundingInc.append((char)(ch - zeroDigit + '0'));
  1.4935 +                        }
  1.4936 +                        ++zeroDigitCount;
  1.4937 +                    }
  1.4938 +                    if (groupingCount >= 0 && decimalPos < 0) {
  1.4939 +                        ++groupingCount;
  1.4940 +                    }
  1.4941 +                    pos += U16_LENGTH(ch);
  1.4942 +                } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
  1.4943 +                    if (decimalPos >= 0) {
  1.4944 +                        // Grouping separator after decimal
  1.4945 +                        debug("Grouping separator after decimal")
  1.4946 +                        status = U_UNEXPECTED_TOKEN;
  1.4947 +                        syntaxError(pattern,pos,parseError);
  1.4948 +                        return;
  1.4949 +                    }
  1.4950 +                    groupingCount2 = groupingCount;
  1.4951 +                    groupingCount = 0;
  1.4952 +                    pos += groupSepLen;
  1.4953 +                } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
  1.4954 +                    if (decimalPos >= 0) {
  1.4955 +                        // Multiple decimal separators
  1.4956 +                        debug("Multiple decimal separators")
  1.4957 +                        status = U_MULTIPLE_DECIMAL_SEPARATORS;
  1.4958 +                        syntaxError(pattern,pos,parseError);
  1.4959 +                        return;
  1.4960 +                    }
  1.4961 +                    // Intentionally incorporate the digitRightCount,
  1.4962 +                    // even though it is illegal for this to be > 0
  1.4963 +                    // at this point.  We check pattern syntax below.
  1.4964 +                    decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
  1.4965 +                    pos += decimalSepLen;
  1.4966 +                } else {
  1.4967 +                    if (pattern.compare(pos, exponent.length(), exponent) == 0) {
  1.4968 +                        if (expDigits >= 0) {
  1.4969 +                            // Multiple exponential symbols
  1.4970 +                            debug("Multiple exponential symbols")
  1.4971 +                            status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
  1.4972 +                            syntaxError(pattern,pos,parseError);
  1.4973 +                            return;
  1.4974 +                        }
  1.4975 +                        if (groupingCount >= 0) {
  1.4976 +                            // Grouping separator in exponential pattern
  1.4977 +                            debug("Grouping separator in exponential pattern")
  1.4978 +                            status = U_MALFORMED_EXPONENTIAL_PATTERN;
  1.4979 +                            syntaxError(pattern,pos,parseError);
  1.4980 +                            return;
  1.4981 +                        }
  1.4982 +                        pos += exponent.length();
  1.4983 +                        // Check for positive prefix
  1.4984 +                        if (pos < patLen
  1.4985 +                            && pattern.compare(pos, plus.length(), plus) == 0) {
  1.4986 +                            expSignAlways = TRUE;
  1.4987 +                            pos += plus.length();
  1.4988 +                        }
  1.4989 +                        // Use lookahead to parse out the exponential part of the
  1.4990 +                        // pattern, then jump into suffix subpart.
  1.4991 +                        expDigits = 0;
  1.4992 +                        while (pos < patLen &&
  1.4993 +                               pattern.char32At(pos) == zeroDigit) {
  1.4994 +                            ++expDigits;
  1.4995 +                            pos += U16_LENGTH(zeroDigit);
  1.4996 +                        }
  1.4997 +
  1.4998 +                        // 1. Require at least one mantissa pattern digit
  1.4999 +                        // 2. Disallow "#+ @" in mantissa
  1.5000 +                        // 3. Require at least one exponent pattern digit
  1.5001 +                        if (((digitLeftCount + zeroDigitCount) < 1 &&
  1.5002 +                             (sigDigitCount + digitRightCount) < 1) ||
  1.5003 +                            (sigDigitCount > 0 && digitLeftCount > 0) ||
  1.5004 +                            expDigits < 1) {
  1.5005 +                            // Malformed exponential pattern
  1.5006 +                            debug("Malformed exponential pattern")
  1.5007 +                            status = U_MALFORMED_EXPONENTIAL_PATTERN;
  1.5008 +                            syntaxError(pattern,pos,parseError);
  1.5009 +                            return;
  1.5010 +                        }
  1.5011 +                    }
  1.5012 +                    // Transition to suffix subpart
  1.5013 +                    subpart = 2; // suffix subpart
  1.5014 +                    affix = &suffix;
  1.5015 +                    sub0Limit = pos;
  1.5016 +                    continue;
  1.5017 +                }
  1.5018 +                break;
  1.5019 +            case 1: // Prefix subpart
  1.5020 +            case 2: // Suffix subpart
  1.5021 +                // Process the prefix / suffix characters
  1.5022 +                // Process unquoted characters seen in prefix or suffix
  1.5023 +                // subpart.
  1.5024 +
  1.5025 +                // Several syntax characters implicitly begins the
  1.5026 +                // next subpart if we are in the prefix; otherwise
  1.5027 +                // they are illegal if unquoted.
  1.5028 +                if (!pattern.compare(pos, digitLen, digit) ||
  1.5029 +                    !pattern.compare(pos, groupSepLen, groupingSeparator) ||
  1.5030 +                    !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
  1.5031 +                    (ch >= zeroDigit && ch <= nineDigit) ||
  1.5032 +                    ch == sigDigit) {
  1.5033 +                    if (subpart == 1) { // prefix subpart
  1.5034 +                        subpart = 0; // pattern proper subpart
  1.5035 +                        sub0Start = pos; // Reprocess this character
  1.5036 +                        continue;
  1.5037 +                    } else {
  1.5038 +                        status = U_UNQUOTED_SPECIAL;
  1.5039 +                        syntaxError(pattern,pos,parseError);
  1.5040 +                        return;
  1.5041 +                    }
  1.5042 +                } else if (ch == kCurrencySign) {
  1.5043 +                    affix->append(kQuote); // Encode currency
  1.5044 +                    // Use lookahead to determine if the currency sign is
  1.5045 +                    // doubled or not.
  1.5046 +                    U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
  1.5047 +                    if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
  1.5048 +                        affix->append(kCurrencySign);
  1.5049 +                        ++pos; // Skip over the doubled character
  1.5050 +                        if ((pos+1) < pattern.length() &&
  1.5051 +                            pattern[pos+1] == kCurrencySign) {
  1.5052 +                            affix->append(kCurrencySign);
  1.5053 +                            ++pos; // Skip over the doubled character
  1.5054 +                            fCurrencySignCount = fgCurrencySignCountInPluralFormat;
  1.5055 +                        } else {
  1.5056 +                            fCurrencySignCount = fgCurrencySignCountInISOFormat;
  1.5057 +                        }
  1.5058 +                    } else {
  1.5059 +                        fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
  1.5060 +                    }
  1.5061 +                    // Fall through to append(ch)
  1.5062 +                } else if (ch == kQuote) {
  1.5063 +                    // A quote outside quotes indicates either the opening
  1.5064 +                    // quote or two quotes, which is a quote literal.  That is,
  1.5065 +                    // we have the first quote in 'do' or o''clock.
  1.5066 +                    U_ASSERT(U16_LENGTH(kQuote) == 1);
  1.5067 +                    ++pos;
  1.5068 +                    if (pos < pattern.length() && pattern[pos] == kQuote) {
  1.5069 +                        affix->append(kQuote); // Encode quote
  1.5070 +                        // Fall through to append(ch)
  1.5071 +                    } else {
  1.5072 +                        subpart += 2; // open quote
  1.5073 +                        continue;
  1.5074 +                    }
  1.5075 +                } else if (pattern.compare(pos, separator.length(), separator) == 0) {
  1.5076 +                    // Don't allow separators in the prefix, and don't allow
  1.5077 +                    // separators in the second pattern (part == 1).
  1.5078 +                    if (subpart == 1 || part == 1) {
  1.5079 +                        // Unexpected separator
  1.5080 +                        debug("Unexpected separator")
  1.5081 +                        status = U_UNEXPECTED_TOKEN;
  1.5082 +                        syntaxError(pattern,pos,parseError);
  1.5083 +                        return;
  1.5084 +                    }
  1.5085 +                    sub2Limit = pos;
  1.5086 +                    isPartDone = TRUE; // Go to next part
  1.5087 +                    pos += separator.length();
  1.5088 +                    break;
  1.5089 +                } else if (pattern.compare(pos, percent.length(), percent) == 0) {
  1.5090 +                    // Next handle characters which are appended directly.
  1.5091 +                    if (multiplier != 1) {
  1.5092 +                        // Too many percent/perMill characters
  1.5093 +                        debug("Too many percent characters")
  1.5094 +                        status = U_MULTIPLE_PERCENT_SYMBOLS;
  1.5095 +                        syntaxError(pattern,pos,parseError);
  1.5096 +                        return;
  1.5097 +                    }
  1.5098 +                    affix->append(kQuote); // Encode percent/perMill
  1.5099 +                    affix->append(kPatternPercent); // Use unlocalized pattern char
  1.5100 +                    multiplier = 100;
  1.5101 +                    pos += percent.length();
  1.5102 +                    break;
  1.5103 +                } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
  1.5104 +                    // Next handle characters which are appended directly.
  1.5105 +                    if (multiplier != 1) {
  1.5106 +                        // Too many percent/perMill characters
  1.5107 +                        debug("Too many perMill characters")
  1.5108 +                        status = U_MULTIPLE_PERMILL_SYMBOLS;
  1.5109 +                        syntaxError(pattern,pos,parseError);
  1.5110 +                        return;
  1.5111 +                    }
  1.5112 +                    affix->append(kQuote); // Encode percent/perMill
  1.5113 +                    affix->append(kPatternPerMill); // Use unlocalized pattern char
  1.5114 +                    multiplier = 1000;
  1.5115 +                    pos += perMill.length();
  1.5116 +                    break;
  1.5117 +                } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
  1.5118 +                    if (padPos >= 0 ||               // Multiple pad specifiers
  1.5119 +                        (pos+1) == pattern.length()) { // Nothing after padEscape
  1.5120 +                        debug("Multiple pad specifiers")
  1.5121 +                        status = U_MULTIPLE_PAD_SPECIFIERS;
  1.5122 +                        syntaxError(pattern,pos,parseError);
  1.5123 +                        return;
  1.5124 +                    }
  1.5125 +                    padPos = pos;
  1.5126 +                    pos += padEscape.length();
  1.5127 +                    padChar = pattern.char32At(pos);
  1.5128 +                    pos += U16_LENGTH(padChar);
  1.5129 +                    break;
  1.5130 +                } else if (pattern.compare(pos, minus.length(), minus) == 0) {
  1.5131 +                    affix->append(kQuote); // Encode minus
  1.5132 +                    affix->append(kPatternMinus);
  1.5133 +                    pos += minus.length();
  1.5134 +                    break;
  1.5135 +                } else if (pattern.compare(pos, plus.length(), plus) == 0) {
  1.5136 +                    affix->append(kQuote); // Encode plus
  1.5137 +                    affix->append(kPatternPlus);
  1.5138 +                    pos += plus.length();
  1.5139 +                    break;
  1.5140 +                }
  1.5141 +                // Unquoted, non-special characters fall through to here, as
  1.5142 +                // well as other code which needs to append something to the
  1.5143 +                // affix.
  1.5144 +                affix->append(ch);
  1.5145 +                pos += U16_LENGTH(ch);
  1.5146 +                break;
  1.5147 +            case 3: // Prefix subpart, in quote
  1.5148 +            case 4: // Suffix subpart, in quote
  1.5149 +                // A quote within quotes indicates either the closing
  1.5150 +                // quote or two quotes, which is a quote literal.  That is,
  1.5151 +                // we have the second quote in 'do' or 'don''t'.
  1.5152 +                if (ch == kQuote) {
  1.5153 +                    ++pos;
  1.5154 +                    if (pos < pattern.length() && pattern[pos] == kQuote) {
  1.5155 +                        affix->append(kQuote); // Encode quote
  1.5156 +                        // Fall through to append(ch)
  1.5157 +                    } else {
  1.5158 +                        subpart -= 2; // close quote
  1.5159 +                        continue;
  1.5160 +                    }
  1.5161 +                }
  1.5162 +                affix->append(ch);
  1.5163 +                pos += U16_LENGTH(ch);
  1.5164 +                break;
  1.5165 +            }
  1.5166 +        }
  1.5167 +
  1.5168 +        if (sub0Limit == 0) {
  1.5169 +            sub0Limit = pattern.length();
  1.5170 +        }
  1.5171 +
  1.5172 +        if (sub2Limit == 0) {
  1.5173 +            sub2Limit = pattern.length();
  1.5174 +        }
  1.5175 +
  1.5176 +        /* Handle patterns with no '0' pattern character.  These patterns
  1.5177 +         * are legal, but must be recodified to make sense.  "##.###" ->
  1.5178 +         * "#0.###".  ".###" -> ".0##".
  1.5179 +         *
  1.5180 +         * We allow patterns of the form "####" to produce a zeroDigitCount
  1.5181 +         * of zero (got that?); although this seems like it might make it
  1.5182 +         * possible for format() to produce empty strings, format() checks
  1.5183 +         * for this condition and outputs a zero digit in this situation.
  1.5184 +         * Having a zeroDigitCount of zero yields a minimum integer digits
  1.5185 +         * of zero, which allows proper round-trip patterns.  We don't want
  1.5186 +         * "#" to become "#0" when toPattern() is called (even though that's
  1.5187 +         * what it really is, semantically).
  1.5188 +         */
  1.5189 +        if (zeroDigitCount == 0 && sigDigitCount == 0 &&
  1.5190 +            digitLeftCount > 0 && decimalPos >= 0) {
  1.5191 +            // Handle "###.###" and "###." and ".###"
  1.5192 +            int n = decimalPos;
  1.5193 +            if (n == 0)
  1.5194 +                ++n; // Handle ".###"
  1.5195 +            digitRightCount = digitLeftCount - n;
  1.5196 +            digitLeftCount = n - 1;
  1.5197 +            zeroDigitCount = 1;
  1.5198 +        }
  1.5199 +
  1.5200 +        // Do syntax checking on the digits, decimal points, and quotes.
  1.5201 +        if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
  1.5202 +            (decimalPos >= 0 &&
  1.5203 +             (sigDigitCount > 0 ||
  1.5204 +              decimalPos < digitLeftCount ||
  1.5205 +              decimalPos > (digitLeftCount + zeroDigitCount))) ||
  1.5206 +            groupingCount == 0 || groupingCount2 == 0 ||
  1.5207 +            (sigDigitCount > 0 && zeroDigitCount > 0) ||
  1.5208 +            subpart > 2)
  1.5209 +        { // subpart > 2 == unmatched quote
  1.5210 +            debug("Syntax error")
  1.5211 +            status = U_PATTERN_SYNTAX_ERROR;
  1.5212 +            syntaxError(pattern,pos,parseError);
  1.5213 +            return;
  1.5214 +        }
  1.5215 +
  1.5216 +        // Make sure pad is at legal position before or after affix.
  1.5217 +        if (padPos >= 0) {
  1.5218 +            if (padPos == start) {
  1.5219 +                padPos = kPadBeforePrefix;
  1.5220 +            } else if (padPos+2 == sub0Start) {
  1.5221 +                padPos = kPadAfterPrefix;
  1.5222 +            } else if (padPos == sub0Limit) {
  1.5223 +                padPos = kPadBeforeSuffix;
  1.5224 +            } else if (padPos+2 == sub2Limit) {
  1.5225 +                padPos = kPadAfterSuffix;
  1.5226 +            } else {
  1.5227 +                // Illegal pad position
  1.5228 +                debug("Illegal pad position")
  1.5229 +                status = U_ILLEGAL_PAD_POSITION;
  1.5230 +                syntaxError(pattern,pos,parseError);
  1.5231 +                return;
  1.5232 +            }
  1.5233 +        }
  1.5234 +
  1.5235 +        if (part == 0) {
  1.5236 +            delete fPosPrefixPattern;
  1.5237 +            delete fPosSuffixPattern;
  1.5238 +            delete fNegPrefixPattern;
  1.5239 +            delete fNegSuffixPattern;
  1.5240 +            fPosPrefixPattern = new UnicodeString(prefix);
  1.5241 +            /* test for NULL */
  1.5242 +            if (fPosPrefixPattern == 0) {
  1.5243 +                status = U_MEMORY_ALLOCATION_ERROR;
  1.5244 +                return;
  1.5245 +            }
  1.5246 +            fPosSuffixPattern = new UnicodeString(suffix);
  1.5247 +            /* test for NULL */
  1.5248 +            if (fPosSuffixPattern == 0) {
  1.5249 +                status = U_MEMORY_ALLOCATION_ERROR;
  1.5250 +                delete fPosPrefixPattern;
  1.5251 +                return;
  1.5252 +            }
  1.5253 +            fNegPrefixPattern = 0;
  1.5254 +            fNegSuffixPattern = 0;
  1.5255 +
  1.5256 +            fUseExponentialNotation = (expDigits >= 0);
  1.5257 +            if (fUseExponentialNotation) {
  1.5258 +                fMinExponentDigits = expDigits;
  1.5259 +            }
  1.5260 +            fExponentSignAlwaysShown = expSignAlways;
  1.5261 +            int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
  1.5262 +            // The effectiveDecimalPos is the position the decimal is at or
  1.5263 +            // would be at if there is no decimal.  Note that if
  1.5264 +            // decimalPos<0, then digitTotalCount == digitLeftCount +
  1.5265 +            // zeroDigitCount.
  1.5266 +            int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
  1.5267 +            UBool isSigDig = (sigDigitCount > 0);
  1.5268 +            setSignificantDigitsUsed(isSigDig);
  1.5269 +            if (isSigDig) {
  1.5270 +                setMinimumSignificantDigits(sigDigitCount);
  1.5271 +                setMaximumSignificantDigits(sigDigitCount + digitRightCount);
  1.5272 +            } else {
  1.5273 +                int32_t minInt = effectiveDecimalPos - digitLeftCount;
  1.5274 +                setMinimumIntegerDigits(minInt);
  1.5275 +                setMaximumIntegerDigits(fUseExponentialNotation
  1.5276 +                    ? digitLeftCount + getMinimumIntegerDigits()
  1.5277 +                    : NumberFormat::gDefaultMaxIntegerDigits);
  1.5278 +                setMaximumFractionDigits(decimalPos >= 0
  1.5279 +                    ? (digitTotalCount - decimalPos) : 0);
  1.5280 +                setMinimumFractionDigits(decimalPos >= 0
  1.5281 +                    ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
  1.5282 +            }
  1.5283 +            setGroupingUsed(groupingCount > 0);
  1.5284 +            fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
  1.5285 +            fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
  1.5286 +                ? groupingCount2 : 0;
  1.5287 +            setMultiplier(multiplier);
  1.5288 +            setDecimalSeparatorAlwaysShown(decimalPos == 0
  1.5289 +                    || decimalPos == digitTotalCount);
  1.5290 +            if (padPos >= 0) {
  1.5291 +                fPadPosition = (EPadPosition) padPos;
  1.5292 +                // To compute the format width, first set up sub0Limit -
  1.5293 +                // sub0Start.  Add in prefix/suffix length later.
  1.5294 +
  1.5295 +                // fFormatWidth = prefix.length() + suffix.length() +
  1.5296 +                //    sub0Limit - sub0Start;
  1.5297 +                fFormatWidth = sub0Limit - sub0Start;
  1.5298 +                fPad = padChar;
  1.5299 +            } else {
  1.5300 +                fFormatWidth = 0;
  1.5301 +            }
  1.5302 +            if (roundingPos >= 0) {
  1.5303 +                roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
  1.5304 +                if (fRoundingIncrement != NULL) {
  1.5305 +                    *fRoundingIncrement = roundingInc;
  1.5306 +                } else {
  1.5307 +                    fRoundingIncrement = new DigitList(roundingInc);
  1.5308 +                    /* test for NULL */
  1.5309 +                    if (fRoundingIncrement == NULL) {
  1.5310 +                        status = U_MEMORY_ALLOCATION_ERROR;
  1.5311 +                        delete fPosPrefixPattern;
  1.5312 +                        delete fPosSuffixPattern;
  1.5313 +                        return;
  1.5314 +                    }
  1.5315 +                }
  1.5316 +                fRoundingMode = kRoundHalfEven;
  1.5317 +            } else {
  1.5318 +                setRoundingIncrement(0.0);
  1.5319 +            }
  1.5320 +        } else {
  1.5321 +            fNegPrefixPattern = new UnicodeString(prefix);
  1.5322 +            /* test for NULL */
  1.5323 +            if (fNegPrefixPattern == 0) {
  1.5324 +                status = U_MEMORY_ALLOCATION_ERROR;
  1.5325 +                return;
  1.5326 +            }
  1.5327 +            fNegSuffixPattern = new UnicodeString(suffix);
  1.5328 +            /* test for NULL */
  1.5329 +            if (fNegSuffixPattern == 0) {
  1.5330 +                delete fNegPrefixPattern;
  1.5331 +                status = U_MEMORY_ALLOCATION_ERROR;
  1.5332 +                return;
  1.5333 +            }
  1.5334 +        }
  1.5335 +    }
  1.5336 +
  1.5337 +    if (pattern.length() == 0) {
  1.5338 +        delete fNegPrefixPattern;
  1.5339 +        delete fNegSuffixPattern;
  1.5340 +        fNegPrefixPattern = NULL;
  1.5341 +        fNegSuffixPattern = NULL;
  1.5342 +        if (fPosPrefixPattern != NULL) {
  1.5343 +            fPosPrefixPattern->remove();
  1.5344 +        } else {
  1.5345 +            fPosPrefixPattern = new UnicodeString();
  1.5346 +            /* test for NULL */
  1.5347 +            if (fPosPrefixPattern == 0) {
  1.5348 +                status = U_MEMORY_ALLOCATION_ERROR;
  1.5349 +                return;
  1.5350 +            }
  1.5351 +        }
  1.5352 +        if (fPosSuffixPattern != NULL) {
  1.5353 +            fPosSuffixPattern->remove();
  1.5354 +        } else {
  1.5355 +            fPosSuffixPattern = new UnicodeString();
  1.5356 +            /* test for NULL */
  1.5357 +            if (fPosSuffixPattern == 0) {
  1.5358 +                delete fPosPrefixPattern;
  1.5359 +                status = U_MEMORY_ALLOCATION_ERROR;
  1.5360 +                return;
  1.5361 +            }
  1.5362 +        }
  1.5363 +
  1.5364 +        setMinimumIntegerDigits(0);
  1.5365 +        setMaximumIntegerDigits(kDoubleIntegerDigits);
  1.5366 +        setMinimumFractionDigits(0);
  1.5367 +        setMaximumFractionDigits(kDoubleFractionDigits);
  1.5368 +
  1.5369 +        fUseExponentialNotation = FALSE;
  1.5370 +        fCurrencySignCount = fgCurrencySignCountZero;
  1.5371 +        setGroupingUsed(FALSE);
  1.5372 +        fGroupingSize = 0;
  1.5373 +        fGroupingSize2 = 0;
  1.5374 +        setMultiplier(1);
  1.5375 +        setDecimalSeparatorAlwaysShown(FALSE);
  1.5376 +        fFormatWidth = 0;
  1.5377 +        setRoundingIncrement(0.0);
  1.5378 +    }
  1.5379 +
  1.5380 +    // If there was no negative pattern, or if the negative pattern is
  1.5381 +    // identical to the positive pattern, then prepend the minus sign to the
  1.5382 +    // positive pattern to form the negative pattern.
  1.5383 +    if (fNegPrefixPattern == NULL ||
  1.5384 +        (*fNegPrefixPattern == *fPosPrefixPattern
  1.5385 +         && *fNegSuffixPattern == *fPosSuffixPattern)) {
  1.5386 +        _copy_ptr(&fNegSuffixPattern, fPosSuffixPattern);
  1.5387 +        if (fNegPrefixPattern == NULL) {
  1.5388 +            fNegPrefixPattern = new UnicodeString();
  1.5389 +            /* test for NULL */
  1.5390 +            if (fNegPrefixPattern == 0) {
  1.5391 +                status = U_MEMORY_ALLOCATION_ERROR;
  1.5392 +                return;
  1.5393 +            }
  1.5394 +        } else {
  1.5395 +            fNegPrefixPattern->remove();
  1.5396 +        }
  1.5397 +        fNegPrefixPattern->append(kQuote).append(kPatternMinus)
  1.5398 +            .append(*fPosPrefixPattern);
  1.5399 +    }
  1.5400 +#ifdef FMT_DEBUG
  1.5401 +    UnicodeString s;
  1.5402 +    s.append((UnicodeString)"\"").append(pattern).append((UnicodeString)"\"->");
  1.5403 +    debugout(s);
  1.5404 +#endif
  1.5405 +
  1.5406 +    // save the pattern
  1.5407 +    fFormatPattern = pattern;
  1.5408 +}
  1.5409 +
  1.5410 +
  1.5411 +void
  1.5412 +DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
  1.5413 +    expandAffixes(pluralCount);
  1.5414 +    if (fFormatWidth > 0) {
  1.5415 +        // Finish computing format width (see above)
  1.5416 +            // TODO: how to handle fFormatWidth,
  1.5417 +            // need to save in f(Plural)AffixesForCurrecy?
  1.5418 +            fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
  1.5419 +    }
  1.5420 +}
  1.5421 +
  1.5422 +
  1.5423 +void
  1.5424 +DecimalFormat::applyPattern(const UnicodeString& pattern,
  1.5425 +                            UBool localized,
  1.5426 +                            UParseError& parseError,
  1.5427 +                            UErrorCode& status)
  1.5428 +{
  1.5429 +    // do the following re-set first. since they change private data by
  1.5430 +    // apply pattern again.
  1.5431 +    if (pattern.indexOf(kCurrencySign) != -1) {
  1.5432 +        if (fCurrencyPluralInfo == NULL) {
  1.5433 +            // initialize currencyPluralInfo if needed
  1.5434 +            fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
  1.5435 +        }
  1.5436 +        if (fAffixPatternsForCurrency == NULL) {
  1.5437 +            setupCurrencyAffixPatterns(status);
  1.5438 +        }
  1.5439 +        if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
  1.5440 +            // only setup the affixes of the current pattern.
  1.5441 +            setupCurrencyAffixes(pattern, TRUE, FALSE, status);
  1.5442 +        }
  1.5443 +    }
  1.5444 +    applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
  1.5445 +    expandAffixAdjustWidth(NULL);
  1.5446 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5447 +    handleChanged();
  1.5448 +#endif
  1.5449 +}
  1.5450 +
  1.5451 +
  1.5452 +void
  1.5453 +DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
  1.5454 +                                      const UnicodeString& pattern,
  1.5455 +                                      UBool localized,
  1.5456 +                                      UParseError& parseError,
  1.5457 +                                      UErrorCode& status) {
  1.5458 +    applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
  1.5459 +    expandAffixAdjustWidth(&pluralCount);
  1.5460 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5461 +    handleChanged();
  1.5462 +#endif
  1.5463 +}
  1.5464 +
  1.5465 +
  1.5466 +/**
  1.5467 + * Sets the maximum number of digits allowed in the integer portion of a
  1.5468 + * number. 
  1.5469 + * @see NumberFormat#setMaximumIntegerDigits
  1.5470 + */
  1.5471 +void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
  1.5472 +    NumberFormat::setMaximumIntegerDigits(_min(newValue, gDefaultMaxIntegerDigits));
  1.5473 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5474 +    handleChanged();
  1.5475 +#endif
  1.5476 +}
  1.5477 +
  1.5478 +/**
  1.5479 + * Sets the minimum number of digits allowed in the integer portion of a
  1.5480 + * number. This override limits the integer digit count to 309.
  1.5481 + * @see NumberFormat#setMinimumIntegerDigits
  1.5482 + */
  1.5483 +void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
  1.5484 +    NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
  1.5485 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5486 +    handleChanged();
  1.5487 +#endif
  1.5488 +}
  1.5489 +
  1.5490 +/**
  1.5491 + * Sets the maximum number of digits allowed in the fraction portion of a
  1.5492 + * number. This override limits the fraction digit count to 340.
  1.5493 + * @see NumberFormat#setMaximumFractionDigits
  1.5494 + */
  1.5495 +void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
  1.5496 +    NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
  1.5497 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5498 +    handleChanged();
  1.5499 +#endif
  1.5500 +}
  1.5501 +
  1.5502 +/**
  1.5503 + * Sets the minimum number of digits allowed in the fraction portion of a
  1.5504 + * number. This override limits the fraction digit count to 340.
  1.5505 + * @see NumberFormat#setMinimumFractionDigits
  1.5506 + */
  1.5507 +void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
  1.5508 +    NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
  1.5509 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5510 +    handleChanged();
  1.5511 +#endif
  1.5512 +}
  1.5513 +
  1.5514 +int32_t DecimalFormat::getMinimumSignificantDigits() const {
  1.5515 +    return fMinSignificantDigits;
  1.5516 +}
  1.5517 +
  1.5518 +int32_t DecimalFormat::getMaximumSignificantDigits() const {
  1.5519 +    return fMaxSignificantDigits;
  1.5520 +}
  1.5521 +
  1.5522 +void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
  1.5523 +    if (min < 1) {
  1.5524 +        min = 1;
  1.5525 +    }
  1.5526 +    // pin max sig dig to >= min
  1.5527 +    int32_t max = _max(fMaxSignificantDigits, min);
  1.5528 +    fMinSignificantDigits = min;
  1.5529 +    fMaxSignificantDigits = max;
  1.5530 +    fUseSignificantDigits = TRUE;
  1.5531 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5532 +    handleChanged();
  1.5533 +#endif
  1.5534 +}
  1.5535 +
  1.5536 +void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
  1.5537 +    if (max < 1) {
  1.5538 +        max = 1;
  1.5539 +    }
  1.5540 +    // pin min sig dig to 1..max
  1.5541 +    U_ASSERT(fMinSignificantDigits >= 1);
  1.5542 +    int32_t min = _min(fMinSignificantDigits, max);
  1.5543 +    fMinSignificantDigits = min;
  1.5544 +    fMaxSignificantDigits = max;
  1.5545 +    fUseSignificantDigits = TRUE;
  1.5546 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5547 +    handleChanged();
  1.5548 +#endif
  1.5549 +}
  1.5550 +
  1.5551 +UBool DecimalFormat::areSignificantDigitsUsed() const {
  1.5552 +    return fUseSignificantDigits;
  1.5553 +}
  1.5554 +
  1.5555 +void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
  1.5556 +    fUseSignificantDigits = useSignificantDigits;
  1.5557 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5558 +    handleChanged();
  1.5559 +#endif
  1.5560 +}
  1.5561 +
  1.5562 +void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
  1.5563 +                                          UErrorCode& ec) {
  1.5564 +    // If we are a currency format, then modify our affixes to
  1.5565 +    // encode the currency symbol for the given currency in our
  1.5566 +    // locale, and adjust the decimal digits and rounding for the
  1.5567 +    // given currency.
  1.5568 +
  1.5569 +    // Note: The code is ordered so that this object is *not changed*
  1.5570 +    // until we are sure we are going to succeed.
  1.5571 +
  1.5572 +    // NULL or empty currency is *legal* and indicates no currency.
  1.5573 +    UBool isCurr = (theCurrency && *theCurrency);
  1.5574 +
  1.5575 +    double rounding = 0.0;
  1.5576 +    int32_t frac = 0;
  1.5577 +    if (fCurrencySignCount != fgCurrencySignCountZero && isCurr) {
  1.5578 +        rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
  1.5579 +        frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
  1.5580 +    }
  1.5581 +
  1.5582 +    NumberFormat::setCurrency(theCurrency, ec);
  1.5583 +    if (U_FAILURE(ec)) return;
  1.5584 +
  1.5585 +    if (fCurrencySignCount != fgCurrencySignCountZero) {
  1.5586 +        // NULL or empty currency is *legal* and indicates no currency.
  1.5587 +        if (isCurr) {
  1.5588 +            setRoundingIncrement(rounding);
  1.5589 +            setMinimumFractionDigits(frac);
  1.5590 +            setMaximumFractionDigits(frac);
  1.5591 +        }
  1.5592 +        expandAffixes(NULL);
  1.5593 +    }
  1.5594 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5595 +    handleChanged();
  1.5596 +#endif
  1.5597 +}
  1.5598 +
  1.5599 +void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
  1.5600 +    // set the currency before compute affixes to get the right currency names
  1.5601 +    NumberFormat::setCurrency(theCurrency, ec);
  1.5602 +    if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
  1.5603 +        UnicodeString savedPtn = fFormatPattern;
  1.5604 +        setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
  1.5605 +        UParseError parseErr;
  1.5606 +        applyPattern(savedPtn, FALSE, parseErr, ec);
  1.5607 +    }
  1.5608 +    // set the currency after apply pattern to get the correct rounding/fraction
  1.5609 +    setCurrencyInternally(theCurrency, ec);
  1.5610 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5611 +    handleChanged();
  1.5612 +#endif
  1.5613 +}
  1.5614 +
  1.5615 +// Deprecated variant with no UErrorCode parameter
  1.5616 +void DecimalFormat::setCurrency(const UChar* theCurrency) {
  1.5617 +    UErrorCode ec = U_ZERO_ERROR;
  1.5618 +    setCurrency(theCurrency, ec);
  1.5619 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5620 +    handleChanged();
  1.5621 +#endif
  1.5622 +}
  1.5623 +
  1.5624 +void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
  1.5625 +    if (fSymbols == NULL) {
  1.5626 +        ec = U_MEMORY_ALLOCATION_ERROR;
  1.5627 +        return;
  1.5628 +    }
  1.5629 +    ec = U_ZERO_ERROR;
  1.5630 +    const UChar* c = getCurrency();
  1.5631 +    if (*c == 0) {
  1.5632 +        const UnicodeString &intl =
  1.5633 +            fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
  1.5634 +        c = intl.getBuffer(); // ok for intl to go out of scope
  1.5635 +    }
  1.5636 +    u_strncpy(result, c, 3);
  1.5637 +    result[3] = 0;
  1.5638 +}
  1.5639 +
  1.5640 +/**
  1.5641 + * Return the number of fraction digits to display, or the total
  1.5642 + * number of digits for significant digit formats and exponential
  1.5643 + * formats.
  1.5644 + */
  1.5645 +int32_t
  1.5646 +DecimalFormat::precision() const {
  1.5647 +    if (areSignificantDigitsUsed()) {
  1.5648 +        return getMaximumSignificantDigits();
  1.5649 +    } else if (fUseExponentialNotation) {
  1.5650 +        return getMinimumIntegerDigits() + getMaximumFractionDigits();
  1.5651 +    } else {
  1.5652 +        return getMaximumFractionDigits();
  1.5653 +    }
  1.5654 +}
  1.5655 +
  1.5656 +
  1.5657 +// TODO: template algorithm
  1.5658 +Hashtable*
  1.5659 +DecimalFormat::initHashForAffix(UErrorCode& status) {
  1.5660 +    if ( U_FAILURE(status) ) {
  1.5661 +        return NULL;
  1.5662 +    }
  1.5663 +    Hashtable* hTable;
  1.5664 +    if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
  1.5665 +        status = U_MEMORY_ALLOCATION_ERROR;
  1.5666 +        return NULL;
  1.5667 +    }
  1.5668 +    if ( U_FAILURE(status) ) {
  1.5669 +        delete hTable; 
  1.5670 +        return NULL;
  1.5671 +    }
  1.5672 +    hTable->setValueComparator(decimfmtAffixValueComparator);
  1.5673 +    return hTable;
  1.5674 +}
  1.5675 +
  1.5676 +Hashtable*
  1.5677 +DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
  1.5678 +    if ( U_FAILURE(status) ) {
  1.5679 +        return NULL;
  1.5680 +    }
  1.5681 +    Hashtable* hTable;
  1.5682 +    if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
  1.5683 +        status = U_MEMORY_ALLOCATION_ERROR;
  1.5684 +        return NULL;
  1.5685 +    }
  1.5686 +    if ( U_FAILURE(status) ) {
  1.5687 +        delete hTable; 
  1.5688 +        return NULL;
  1.5689 +    }
  1.5690 +    hTable->setValueComparator(decimfmtAffixPatternValueComparator);
  1.5691 +    return hTable;
  1.5692 +}
  1.5693 +
  1.5694 +void
  1.5695 +DecimalFormat::deleteHashForAffix(Hashtable*& table)
  1.5696 +{
  1.5697 +    if ( table == NULL ) {
  1.5698 +        return;
  1.5699 +    }
  1.5700 +    int32_t pos = -1;
  1.5701 +    const UHashElement* element = NULL;
  1.5702 +    while ( (element = table->nextElement(pos)) != NULL ) {
  1.5703 +        const UHashTok valueTok = element->value;
  1.5704 +        const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
  1.5705 +        delete value;
  1.5706 +    }
  1.5707 +    delete table;
  1.5708 +    table = NULL;
  1.5709 +}
  1.5710 +
  1.5711 +
  1.5712 +
  1.5713 +void
  1.5714 +DecimalFormat::deleteHashForAffixPattern()
  1.5715 +{
  1.5716 +    if ( fAffixPatternsForCurrency == NULL ) {
  1.5717 +        return;
  1.5718 +    }
  1.5719 +    int32_t pos = -1;
  1.5720 +    const UHashElement* element = NULL;
  1.5721 +    while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
  1.5722 +        const UHashTok valueTok = element->value;
  1.5723 +        const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
  1.5724 +        delete value;
  1.5725 +    }
  1.5726 +    delete fAffixPatternsForCurrency;
  1.5727 +    fAffixPatternsForCurrency = NULL;
  1.5728 +}
  1.5729 +
  1.5730 +
  1.5731 +void
  1.5732 +DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
  1.5733 +                                       Hashtable* target,
  1.5734 +                                       UErrorCode& status) {
  1.5735 +    if ( U_FAILURE(status) ) {
  1.5736 +        return;
  1.5737 +    }
  1.5738 +    int32_t pos = -1;
  1.5739 +    const UHashElement* element = NULL;
  1.5740 +    if ( source ) {
  1.5741 +        while ( (element = source->nextElement(pos)) != NULL ) {
  1.5742 +            const UHashTok keyTok = element->key;
  1.5743 +            const UnicodeString* key = (UnicodeString*)keyTok.pointer;
  1.5744 +            const UHashTok valueTok = element->value;
  1.5745 +            const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
  1.5746 +            AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
  1.5747 +                value->negPrefixPatternForCurrency,
  1.5748 +                value->negSuffixPatternForCurrency,
  1.5749 +                value->posPrefixPatternForCurrency,
  1.5750 +                value->posSuffixPatternForCurrency,
  1.5751 +                value->patternType);
  1.5752 +            target->put(UnicodeString(*key), copy, status);
  1.5753 +            if ( U_FAILURE(status) ) {
  1.5754 +                return;
  1.5755 +            }
  1.5756 +        }
  1.5757 +    }
  1.5758 +}
  1.5759 +
  1.5760 +DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
  1.5761 +                                            int32_t newValue,
  1.5762 +                                            UErrorCode &status) {
  1.5763 +  if(U_FAILURE(status)) return *this;
  1.5764 +
  1.5765 +  switch(attr) {
  1.5766 +  case UNUM_LENIENT_PARSE:
  1.5767 +    setLenient(newValue!=0);
  1.5768 +    break;
  1.5769 +
  1.5770 +    case UNUM_PARSE_INT_ONLY:
  1.5771 +      setParseIntegerOnly(newValue!=0);
  1.5772 +      break;
  1.5773 +      
  1.5774 +    case UNUM_GROUPING_USED:
  1.5775 +      setGroupingUsed(newValue!=0);
  1.5776 +      break;
  1.5777 +        
  1.5778 +    case UNUM_DECIMAL_ALWAYS_SHOWN:
  1.5779 +      setDecimalSeparatorAlwaysShown(newValue!=0);
  1.5780 +        break;
  1.5781 +        
  1.5782 +    case UNUM_MAX_INTEGER_DIGITS:
  1.5783 +      setMaximumIntegerDigits(newValue);
  1.5784 +        break;
  1.5785 +        
  1.5786 +    case UNUM_MIN_INTEGER_DIGITS:
  1.5787 +      setMinimumIntegerDigits(newValue);
  1.5788 +        break;
  1.5789 +        
  1.5790 +    case UNUM_INTEGER_DIGITS:
  1.5791 +      setMinimumIntegerDigits(newValue);
  1.5792 +      setMaximumIntegerDigits(newValue);
  1.5793 +        break;
  1.5794 +        
  1.5795 +    case UNUM_MAX_FRACTION_DIGITS:
  1.5796 +      setMaximumFractionDigits(newValue);
  1.5797 +        break;
  1.5798 +        
  1.5799 +    case UNUM_MIN_FRACTION_DIGITS:
  1.5800 +      setMinimumFractionDigits(newValue);
  1.5801 +        break;
  1.5802 +        
  1.5803 +    case UNUM_FRACTION_DIGITS:
  1.5804 +      setMinimumFractionDigits(newValue);
  1.5805 +      setMaximumFractionDigits(newValue);
  1.5806 +      break;
  1.5807 +        
  1.5808 +    case UNUM_SIGNIFICANT_DIGITS_USED:
  1.5809 +      setSignificantDigitsUsed(newValue!=0);
  1.5810 +        break;
  1.5811 +
  1.5812 +    case UNUM_MAX_SIGNIFICANT_DIGITS:
  1.5813 +      setMaximumSignificantDigits(newValue);
  1.5814 +        break;
  1.5815 +        
  1.5816 +    case UNUM_MIN_SIGNIFICANT_DIGITS:
  1.5817 +      setMinimumSignificantDigits(newValue);
  1.5818 +        break;
  1.5819 +        
  1.5820 +    case UNUM_MULTIPLIER:
  1.5821 +      setMultiplier(newValue);    
  1.5822 +       break;
  1.5823 +        
  1.5824 +    case UNUM_GROUPING_SIZE:
  1.5825 +      setGroupingSize(newValue);    
  1.5826 +        break;
  1.5827 +        
  1.5828 +    case UNUM_ROUNDING_MODE:
  1.5829 +      setRoundingMode((DecimalFormat::ERoundingMode)newValue);
  1.5830 +        break;
  1.5831 +        
  1.5832 +    case UNUM_FORMAT_WIDTH:
  1.5833 +      setFormatWidth(newValue);
  1.5834 +        break;
  1.5835 +        
  1.5836 +    case UNUM_PADDING_POSITION:
  1.5837 +        /** The position at which padding will take place. */
  1.5838 +      setPadPosition((DecimalFormat::EPadPosition)newValue);
  1.5839 +        break;
  1.5840 +        
  1.5841 +    case UNUM_SECONDARY_GROUPING_SIZE:
  1.5842 +      setSecondaryGroupingSize(newValue);
  1.5843 +        break;
  1.5844 +
  1.5845 +#if UCONFIG_HAVE_PARSEALLINPUT
  1.5846 +    case UNUM_PARSE_ALL_INPUT:
  1.5847 +      setParseAllInput((UNumberFormatAttributeValue)newValue);
  1.5848 +        break;
  1.5849 +#endif
  1.5850 +
  1.5851 +    /* These are stored in fBoolFlags */
  1.5852 +    case UNUM_PARSE_NO_EXPONENT:
  1.5853 +    case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
  1.5854 +      if(!fBoolFlags.isValidValue(newValue)) {
  1.5855 +          status = U_ILLEGAL_ARGUMENT_ERROR;
  1.5856 +      } else {
  1.5857 +          fBoolFlags.set(attr, newValue);
  1.5858 +      }
  1.5859 +      break;
  1.5860 +
  1.5861 +    case UNUM_SCALE:
  1.5862 +        fScale = newValue;
  1.5863 +        break;
  1.5864 +
  1.5865 +    default:
  1.5866 +      status = U_UNSUPPORTED_ERROR;
  1.5867 +      break;
  1.5868 +  }
  1.5869 +  return *this;
  1.5870 +}
  1.5871 +
  1.5872 +int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr, 
  1.5873 +                                     UErrorCode &status ) const {
  1.5874 +  if(U_FAILURE(status)) return -1;
  1.5875 +  switch(attr) {
  1.5876 +    case UNUM_LENIENT_PARSE: 
  1.5877 +        return isLenient();
  1.5878 +
  1.5879 +    case UNUM_PARSE_INT_ONLY:
  1.5880 +        return isParseIntegerOnly();
  1.5881 +        
  1.5882 +    case UNUM_GROUPING_USED:
  1.5883 +        return isGroupingUsed();
  1.5884 +        
  1.5885 +    case UNUM_DECIMAL_ALWAYS_SHOWN:
  1.5886 +        return isDecimalSeparatorAlwaysShown();    
  1.5887 +        
  1.5888 +    case UNUM_MAX_INTEGER_DIGITS:
  1.5889 +        return getMaximumIntegerDigits();
  1.5890 +        
  1.5891 +    case UNUM_MIN_INTEGER_DIGITS:
  1.5892 +        return getMinimumIntegerDigits();
  1.5893 +        
  1.5894 +    case UNUM_INTEGER_DIGITS:
  1.5895 +        // TBD: what should this return?
  1.5896 +        return getMinimumIntegerDigits();
  1.5897 +        
  1.5898 +    case UNUM_MAX_FRACTION_DIGITS:
  1.5899 +        return getMaximumFractionDigits();
  1.5900 +        
  1.5901 +    case UNUM_MIN_FRACTION_DIGITS:
  1.5902 +        return getMinimumFractionDigits();
  1.5903 +        
  1.5904 +    case UNUM_FRACTION_DIGITS:
  1.5905 +        // TBD: what should this return?
  1.5906 +        return getMinimumFractionDigits();
  1.5907 +        
  1.5908 +    case UNUM_SIGNIFICANT_DIGITS_USED:
  1.5909 +        return areSignificantDigitsUsed();
  1.5910 +        
  1.5911 +    case UNUM_MAX_SIGNIFICANT_DIGITS:
  1.5912 +        return getMaximumSignificantDigits();
  1.5913 +        
  1.5914 +    case UNUM_MIN_SIGNIFICANT_DIGITS:
  1.5915 +        return getMinimumSignificantDigits();
  1.5916 +        
  1.5917 +    case UNUM_MULTIPLIER:
  1.5918 +        return getMultiplier();    
  1.5919 +        
  1.5920 +    case UNUM_GROUPING_SIZE:
  1.5921 +        return getGroupingSize();    
  1.5922 +        
  1.5923 +    case UNUM_ROUNDING_MODE:
  1.5924 +        return getRoundingMode();
  1.5925 +        
  1.5926 +    case UNUM_FORMAT_WIDTH:
  1.5927 +        return getFormatWidth();
  1.5928 +        
  1.5929 +    case UNUM_PADDING_POSITION:
  1.5930 +        return getPadPosition();
  1.5931 +        
  1.5932 +    case UNUM_SECONDARY_GROUPING_SIZE:
  1.5933 +        return getSecondaryGroupingSize();
  1.5934 +        
  1.5935 +    /* These are stored in fBoolFlags */
  1.5936 +    case UNUM_PARSE_NO_EXPONENT:
  1.5937 +    case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
  1.5938 +      return fBoolFlags.get(attr);
  1.5939 +
  1.5940 +    case UNUM_SCALE:
  1.5941 +        return fScale;
  1.5942 +
  1.5943 +    default:
  1.5944 +        status = U_UNSUPPORTED_ERROR;
  1.5945 +        break;
  1.5946 +  }
  1.5947 +
  1.5948 +  return -1; /* undefined */
  1.5949 +}
  1.5950 +
  1.5951 +#if UCONFIG_HAVE_PARSEALLINPUT
  1.5952 +void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
  1.5953 +  fParseAllInput = value;
  1.5954 +#if UCONFIG_FORMAT_FASTPATHS_49
  1.5955 +  handleChanged();
  1.5956 +#endif
  1.5957 +}
  1.5958 +#endif
  1.5959 +
  1.5960 +void
  1.5961 +DecimalFormat::copyHashForAffix(const Hashtable* source,
  1.5962 +                                Hashtable* target,
  1.5963 +                                UErrorCode& status) {
  1.5964 +    if ( U_FAILURE(status) ) {
  1.5965 +        return;
  1.5966 +    }
  1.5967 +    int32_t pos = -1;
  1.5968 +    const UHashElement* element = NULL;
  1.5969 +    if ( source ) {
  1.5970 +        while ( (element = source->nextElement(pos)) != NULL ) {
  1.5971 +            const UHashTok keyTok = element->key;
  1.5972 +            const UnicodeString* key = (UnicodeString*)keyTok.pointer;
  1.5973 +
  1.5974 +            const UHashTok valueTok = element->value;
  1.5975 +            const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
  1.5976 +            AffixesForCurrency* copy = new AffixesForCurrency(
  1.5977 +                value->negPrefixForCurrency,
  1.5978 +                value->negSuffixForCurrency,
  1.5979 +                value->posPrefixForCurrency,
  1.5980 +                value->posSuffixForCurrency);
  1.5981 +            target->put(UnicodeString(*key), copy, status);
  1.5982 +            if ( U_FAILURE(status) ) {
  1.5983 +                return;
  1.5984 +            }
  1.5985 +        }
  1.5986 +    }
  1.5987 +}
  1.5988 +
  1.5989 +U_NAMESPACE_END
  1.5990 +
  1.5991 +#endif /* #if !UCONFIG_NO_FORMATTING */
  1.5992 +
  1.5993 +//eof

mercurial