intl/icu/source/i18n/decimfmt.cpp

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2 *******************************************************************************
     3 * Copyright (C) 1997-2013, International Business Machines Corporation and    *
     4 * others. All Rights Reserved.                                                *
     5 *******************************************************************************
     6 *
     7 * File DECIMFMT.CPP
     8 *
     9 * Modification History:
    10 *
    11 *   Date        Name        Description
    12 *   02/19/97    aliu        Converted from java.
    13 *   03/20/97    clhuang     Implemented with new APIs.
    14 *   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
    15 *   04/3/97     aliu        Rewrote parsing and formatting completely, and
    16 *                           cleaned up and debugged.  Actually works now.
    17 *                           Implemented NAN and INF handling, for both parsing
    18 *                           and formatting.  Extensive testing & debugging.
    19 *   04/10/97    aliu        Modified to compile on AIX.
    20 *   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
    21 *                           Changed DigitCount to int per code review.
    22 *   07/09/97    helena      Made ParsePosition into a class.
    23 *   08/26/97    aliu        Extensive changes to applyPattern; completely
    24 *                           rewritten from the Java.
    25 *   09/09/97    aliu        Ported over support for exponential formats.
    26 *   07/20/98    stephen     JDK 1.2 sync up.
    27 *                             Various instances of '0' replaced with 'NULL'
    28 *                             Check for grouping size in subFormat()
    29 *                             Brought subParse() in line with Java 1.2
    30 *                             Added method appendAffix()
    31 *   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
    32 *   02/22/99    stephen     Removed character literals for EBCDIC safety
    33 *   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
    34 *   06/28/99    stephen     Fixed bugs in toPattern().
    35 *   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
    36 *                             fPadPosition
    37 ********************************************************************************
    38 */
    40 #include "unicode/utypes.h"
    42 #if !UCONFIG_NO_FORMATTING
    44 #include "fphdlimp.h"
    45 #include "unicode/decimfmt.h"
    46 #include "unicode/choicfmt.h"
    47 #include "unicode/ucurr.h"
    48 #include "unicode/ustring.h"
    49 #include "unicode/dcfmtsym.h"
    50 #include "unicode/ures.h"
    51 #include "unicode/uchar.h"
    52 #include "unicode/uniset.h"
    53 #include "unicode/curramt.h"
    54 #include "unicode/currpinf.h"
    55 #include "unicode/plurrule.h"
    56 #include "unicode/utf16.h"
    57 #include "unicode/numsys.h"
    58 #include "unicode/localpointer.h"
    59 #include "uresimp.h"
    60 #include "ucurrimp.h"
    61 #include "charstr.h"
    62 #include "cmemory.h"
    63 #include "patternprops.h"
    64 #include "digitlst.h"
    65 #include "cstring.h"
    66 #include "umutex.h"
    67 #include "uassert.h"
    68 #include "putilimp.h"
    69 #include <math.h>
    70 #include "hash.h"
    71 #include "decfmtst.h"
    72 #include "dcfmtimp.h"
    73 #include "plurrule_impl.h"
    75 /*
    76  * On certain platforms, round is a macro defined in math.h
    77  * This undefine is to avoid conflict between the macro and
    78  * the function defined below.
    79  */
    80 #ifdef round
    81 #undef round
    82 #endif
    85 U_NAMESPACE_BEGIN
    87 #ifdef FMT_DEBUG
    88 #include <stdio.h>
    89 static void _debugout(const char *f, int l, const UnicodeString& s) {
    90     char buf[2000];
    91     s.extract((int32_t) 0, s.length(), buf, "utf-8");
    92     printf("%s:%d: %s\n", f,l, buf);
    93 }
    94 #define debugout(x) _debugout(__FILE__,__LINE__,x)
    95 #define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
    96 static const UnicodeString dbg_null("<NULL>","");
    97 #define DEREFSTR(x)   ((x!=NULL)?(*x):(dbg_null))
    98 #else
    99 #define debugout(x)
   100 #define debug(x)
   101 #endif
   105 /* == Fastpath calculation. ==
   106  */
   107 #if UCONFIG_FORMAT_FASTPATHS_49
   108 inline DecimalFormatInternal& internalData(uint8_t *reserved) {
   109   return *reinterpret_cast<DecimalFormatInternal*>(reserved);
   110 }
   111 inline const DecimalFormatInternal& internalData(const uint8_t *reserved) {
   112   return *reinterpret_cast<const DecimalFormatInternal*>(reserved);
   113 }
   114 #else
   115 #endif
   117 /* For currency parsing purose,
   118  * Need to remember all prefix patterns and suffix patterns of
   119  * every currency format pattern,
   120  * including the pattern of default currecny style
   121  * and plural currency style. And the patterns are set through applyPattern.
   122  */
   123 struct AffixPatternsForCurrency : public UMemory {
   124 	// negative prefix pattern
   125 	UnicodeString negPrefixPatternForCurrency;
   126 	// negative suffix pattern
   127 	UnicodeString negSuffixPatternForCurrency;
   128 	// positive prefix pattern
   129 	UnicodeString posPrefixPatternForCurrency;
   130 	// positive suffix pattern
   131 	UnicodeString posSuffixPatternForCurrency;
   132 	int8_t patternType;
   134 	AffixPatternsForCurrency(const UnicodeString& negPrefix,
   135 							 const UnicodeString& negSuffix,
   136 							 const UnicodeString& posPrefix,
   137 							 const UnicodeString& posSuffix,
   138 							 int8_t type) {
   139 		negPrefixPatternForCurrency = negPrefix;
   140 		negSuffixPatternForCurrency = negSuffix;
   141 		posPrefixPatternForCurrency = posPrefix;
   142 		posSuffixPatternForCurrency = posSuffix;
   143 		patternType = type;
   144 	}
   145 #ifdef FMT_DEBUG
   146   void dump() const  {
   147     debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
   148               negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
   149               negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" + 
   150               posPrefixPatternForCurrency + (UnicodeString)"\"/\"" + 
   151               posSuffixPatternForCurrency + (UnicodeString)"\" )");
   152   }
   153 #endif
   154 };
   156 /* affix for currency formatting when the currency sign in the pattern
   157  * equals to 3, such as the pattern contains 3 currency sign or
   158  * the formatter style is currency plural format style.
   159  */
   160 struct AffixesForCurrency : public UMemory {
   161 	// negative prefix
   162 	UnicodeString negPrefixForCurrency;
   163 	// negative suffix
   164 	UnicodeString negSuffixForCurrency;
   165 	// positive prefix
   166 	UnicodeString posPrefixForCurrency;
   167 	// positive suffix
   168 	UnicodeString posSuffixForCurrency;
   170 	int32_t formatWidth;
   172 	AffixesForCurrency(const UnicodeString& negPrefix,
   173 					   const UnicodeString& negSuffix,
   174 					   const UnicodeString& posPrefix,
   175 					   const UnicodeString& posSuffix) {
   176 		negPrefixForCurrency = negPrefix;
   177 		negSuffixForCurrency = negSuffix;
   178 		posPrefixForCurrency = posPrefix;
   179 		posSuffixForCurrency = posSuffix;
   180 	}
   181 #ifdef FMT_DEBUG
   182   void dump() const {
   183     debugout( UnicodeString("AffixesForCurrency( -=\"") +
   184               negPrefixForCurrency + (UnicodeString)"\"/\"" +
   185               negSuffixForCurrency + (UnicodeString)"\" +=\"" + 
   186               posPrefixForCurrency + (UnicodeString)"\"/\"" + 
   187               posSuffixForCurrency + (UnicodeString)"\" )");
   188   }
   189 #endif
   190 };
   192 U_CDECL_BEGIN
   194 /**
   195  * @internal ICU 4.2
   196  */
   197 static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
   199 /**
   200  * @internal ICU 4.2
   201  */
   202 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
   205 static UBool
   206 U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
   207     const AffixesForCurrency* affix_1 =
   208         (AffixesForCurrency*)val1.pointer;
   209     const AffixesForCurrency* affix_2 =
   210         (AffixesForCurrency*)val2.pointer;
   211     return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
   212            affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
   213            affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
   214            affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
   215 }
   218 static UBool
   219 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
   220     const AffixPatternsForCurrency* affix_1 =
   221         (AffixPatternsForCurrency*)val1.pointer;
   222     const AffixPatternsForCurrency* affix_2 =
   223         (AffixPatternsForCurrency*)val2.pointer;
   224     return affix_1->negPrefixPatternForCurrency ==
   225            affix_2->negPrefixPatternForCurrency &&
   226            affix_1->negSuffixPatternForCurrency ==
   227            affix_2->negSuffixPatternForCurrency &&
   228            affix_1->posPrefixPatternForCurrency ==
   229            affix_2->posPrefixPatternForCurrency &&
   230            affix_1->posSuffixPatternForCurrency ==
   231            affix_2->posSuffixPatternForCurrency &&
   232            affix_1->patternType == affix_2->patternType;
   233 }
   235 U_CDECL_END
   240 // *****************************************************************************
   241 // class DecimalFormat
   242 // *****************************************************************************
   244 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
   246 // Constants for characters used in programmatic (unlocalized) patterns.
   247 #define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
   248 #define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
   249 #define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
   250 #define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
   251 #define kPatternPerMill              ((UChar)0x2030)
   252 #define kPatternPercent              ((UChar)0x0025) /*'%'*/
   253 #define kPatternDigit                ((UChar)0x0023) /*'#'*/
   254 #define kPatternSeparator            ((UChar)0x003B) /*';'*/
   255 #define kPatternExponent             ((UChar)0x0045) /*'E'*/
   256 #define kPatternPlus                 ((UChar)0x002B) /*'+'*/
   257 #define kPatternMinus                ((UChar)0x002D) /*'-'*/
   258 #define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
   259 #define kQuote                       ((UChar)0x0027) /*'\''*/
   260 /**
   261  * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
   262  * is used in patterns and substitued with either the currency symbol,
   263  * or if it is doubled, with the international currency symbol.  If the
   264  * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
   265  * replaced with the monetary decimal separator.
   266  */
   267 #define kCurrencySign                ((UChar)0x00A4)
   268 #define kDefaultPad                  ((UChar)0x0020) /* */
   270 const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
   271 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
   273 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
   275 /**
   276  * These are the tags we expect to see in normal resource bundle files associated
   277  * with a locale.
   278  */
   279 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
   280 static const char fgNumberElements[]="NumberElements";
   281 static const char fgLatn[]="latn";
   282 static const char fgPatterns[]="patterns";
   283 static const char fgDecimalFormat[]="decimalFormat";
   284 static const char fgCurrencyFormat[]="currencyFormat";
   286 static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
   288 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
   289 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
   291 //------------------------------------------------------------------------------
   292 // Constructs a DecimalFormat instance in the default locale.
   294 DecimalFormat::DecimalFormat(UErrorCode& status) {
   295     init();
   296     UParseError parseError;
   297     construct(status, parseError);
   298 }
   300 //------------------------------------------------------------------------------
   301 // Constructs a DecimalFormat instance with the specified number format
   302 // pattern in the default locale.
   304 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
   305                              UErrorCode& status) {
   306     init();
   307     UParseError parseError;
   308     construct(status, parseError, &pattern);
   309 }
   311 //------------------------------------------------------------------------------
   312 // Constructs a DecimalFormat instance with the specified number format
   313 // pattern and the number format symbols in the default locale.  The
   314 // created instance owns the symbols.
   316 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
   317                              DecimalFormatSymbols* symbolsToAdopt,
   318                              UErrorCode& status) {
   319     init();
   320     UParseError parseError;
   321     if (symbolsToAdopt == NULL)
   322         status = U_ILLEGAL_ARGUMENT_ERROR;
   323     construct(status, parseError, &pattern, symbolsToAdopt);
   324 }
   326 DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
   327                     DecimalFormatSymbols* symbolsToAdopt,
   328                     UParseError& parseErr,
   329                     UErrorCode& status) {
   330     init();
   331     if (symbolsToAdopt == NULL)
   332         status = U_ILLEGAL_ARGUMENT_ERROR;
   333     construct(status,parseErr, &pattern, symbolsToAdopt);
   334 }
   336 //------------------------------------------------------------------------------
   337 // Constructs a DecimalFormat instance with the specified number format
   338 // pattern and the number format symbols in the default locale.  The
   339 // created instance owns the clone of the symbols.
   341 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
   342                              const DecimalFormatSymbols& symbols,
   343                              UErrorCode& status) {
   344     init();
   345     UParseError parseError;
   346     construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
   347 }
   349 //------------------------------------------------------------------------------
   350 // Constructs a DecimalFormat instance with the specified number format
   351 // pattern, the number format symbols, and the number format style.
   352 // The created instance owns the clone of the symbols.
   354 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
   355                              DecimalFormatSymbols* symbolsToAdopt,
   356                              UNumberFormatStyle style,
   357                              UErrorCode& status) {
   358     init();
   359     fStyle = style;
   360     UParseError parseError;
   361     construct(status, parseError, &pattern, symbolsToAdopt);
   362 }
   364 //-----------------------------------------------------------------------------
   365 // Common DecimalFormat initialization.
   366 //    Put all fields of an uninitialized object into a known state.
   367 //    Common code, shared by all constructors.
   368 //    Can not fail. Leave the object in good enough shape that the destructor
   369 //    or assignment operator can run successfully.
   370 void
   371 DecimalFormat::init() {
   372     fPosPrefixPattern = 0;
   373     fPosSuffixPattern = 0;
   374     fNegPrefixPattern = 0;
   375     fNegSuffixPattern = 0;
   376     fCurrencyChoice = 0;
   377     fMultiplier = NULL;
   378     fScale = 0;
   379     fGroupingSize = 0;
   380     fGroupingSize2 = 0;
   381     fDecimalSeparatorAlwaysShown = FALSE;
   382     fSymbols = NULL;
   383     fUseSignificantDigits = FALSE;
   384     fMinSignificantDigits = 1;
   385     fMaxSignificantDigits = 6;
   386     fUseExponentialNotation = FALSE;
   387     fMinExponentDigits = 0;
   388     fExponentSignAlwaysShown = FALSE;
   389     fBoolFlags.clear();
   390     fRoundingIncrement = 0;
   391     fRoundingMode = kRoundHalfEven;
   392     fPad = 0;
   393     fFormatWidth = 0;
   394     fPadPosition = kPadBeforePrefix;
   395     fStyle = UNUM_DECIMAL;
   396     fCurrencySignCount = fgCurrencySignCountZero;
   397     fAffixPatternsForCurrency = NULL;
   398     fAffixesForCurrency = NULL;
   399     fPluralAffixesForCurrency = NULL;
   400     fCurrencyPluralInfo = NULL;
   401 #if UCONFIG_HAVE_PARSEALLINPUT
   402     fParseAllInput = UNUM_MAYBE;
   403 #endif
   405 #if UCONFIG_FORMAT_FASTPATHS_49
   406     DecimalFormatInternal &data = internalData(fReserved);
   407     data.fFastFormatStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
   408     data.fFastParseStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
   409 #endif
   410     fStaticSets = NULL;
   411 }
   413 //------------------------------------------------------------------------------
   414 // Constructs a DecimalFormat instance with the specified number format
   415 // pattern and the number format symbols in the desired locale.  The
   416 // created instance owns the symbols.
   418 void
   419 DecimalFormat::construct(UErrorCode&            status,
   420                          UParseError&           parseErr,
   421                          const UnicodeString*   pattern,
   422                          DecimalFormatSymbols*  symbolsToAdopt)
   423 {
   424     fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
   425     fRoundingIncrement = NULL;
   426     fRoundingMode = kRoundHalfEven;
   427     fPad = kPatternPadEscape;
   428     fPadPosition = kPadBeforePrefix;
   429     if (U_FAILURE(status))
   430         return;
   432     fPosPrefixPattern = fPosSuffixPattern = NULL;
   433     fNegPrefixPattern = fNegSuffixPattern = NULL;
   434     setMultiplier(1);
   435     fGroupingSize = 3;
   436     fGroupingSize2 = 0;
   437     fDecimalSeparatorAlwaysShown = FALSE;
   438     fUseExponentialNotation = FALSE;
   439     fMinExponentDigits = 0;
   441     if (fSymbols == NULL)
   442     {
   443         fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
   444         if (fSymbols == 0) {
   445             status = U_MEMORY_ALLOCATION_ERROR;
   446             return;
   447         }
   448     }
   449     fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
   450     if (U_FAILURE(status)) {
   451         return;
   452     }
   453     UErrorCode nsStatus = U_ZERO_ERROR;
   454     NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
   455     if (U_FAILURE(nsStatus)) {
   456         status = nsStatus;
   457         return;
   458     }
   460     UnicodeString str;
   461     // Uses the default locale's number format pattern if there isn't
   462     // one specified.
   463     if (pattern == NULL)
   464     {
   465         int32_t len = 0;
   466         UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
   468         UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
   469         resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
   470         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
   471         const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
   472         if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
   473             status = U_ZERO_ERROR;
   474             resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
   475             resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
   476             resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
   477             resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
   478         }
   479         str.setTo(TRUE, resStr, len);
   480         pattern = &str;
   481         ures_close(resource);
   482         ures_close(top);
   483     }
   485     delete ns;
   487     if (U_FAILURE(status))
   488     {
   489         return;
   490     }
   492     if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
   493         // If it looks like we are going to use a currency pattern
   494         // then do the time consuming lookup.
   495         setCurrencyForSymbols();
   496     } else {
   497         setCurrencyInternally(NULL, status);
   498     }
   500     const UnicodeString* patternUsed;
   501     UnicodeString currencyPluralPatternForOther;
   502     // apply pattern
   503     if (fStyle == UNUM_CURRENCY_PLURAL) {
   504         fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
   505         if (U_FAILURE(status)) {
   506             return;
   507         }
   509         // the pattern used in format is not fixed until formatting,
   510         // in which, the number is known and
   511         // will be used to pick the right pattern based on plural count.
   512         // Here, set the pattern as the pattern of plural count == "other".
   513         // For most locale, the patterns are probably the same for all
   514         // plural count. If not, the right pattern need to be re-applied
   515         // during format.
   516         fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
   517         patternUsed = &currencyPluralPatternForOther;
   518         // TODO: not needed?
   519         setCurrencyForSymbols();
   521     } else {
   522         patternUsed = pattern;
   523     }
   525     if (patternUsed->indexOf(kCurrencySign) != -1) {
   526         // initialize for currency, not only for plural format,
   527         // but also for mix parsing
   528         if (fCurrencyPluralInfo == NULL) {
   529            fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
   530            if (U_FAILURE(status)) {
   531                return;
   532            }
   533         }
   534         // need it for mix parsing
   535         setupCurrencyAffixPatterns(status);
   536         // expanded affixes for plural names
   537         if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
   538             setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
   539         }
   540     }
   542     applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
   544     // expand affixes
   545     if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
   546         expandAffixAdjustWidth(NULL);
   547     }
   549     // If it was a currency format, apply the appropriate rounding by
   550     // resetting the currency. NOTE: this copies fCurrency on top of itself.
   551     if (fCurrencySignCount != fgCurrencySignCountZero) {
   552         setCurrencyInternally(getCurrency(), status);
   553     }
   554 #if UCONFIG_FORMAT_FASTPATHS_49
   555     DecimalFormatInternal &data = internalData(fReserved);
   556     data.fFastFormatStatus = kFastpathNO; // allow it to be calculated
   557     data.fFastParseStatus = kFastpathNO; // allow it to be calculated
   558     handleChanged();
   559 #endif
   560 }
   563 void
   564 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
   565     if (U_FAILURE(status)) {
   566         return;
   567     }
   568     UParseError parseErr;
   569     fAffixPatternsForCurrency = initHashForAffixPattern(status);
   570     if (U_FAILURE(status)) {
   571         return;
   572     }
   574     NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
   575     if (U_FAILURE(status)) {
   576         return;
   577     }
   579     // Save the default currency patterns of this locale.
   580     // Here, chose onlyApplyPatternWithoutExpandAffix without
   581     // expanding the affix patterns into affixes.
   582     UnicodeString currencyPattern;
   583     UErrorCode error = U_ZERO_ERROR;   
   585     UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
   586     UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
   587     resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
   588     resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
   589     int32_t patLen = 0;
   590     const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
   591     if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
   592         error = U_ZERO_ERROR;
   593         resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
   594         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
   595         patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
   596     }
   597     ures_close(numElements);
   598     ures_close(resource);
   599     delete ns;
   601     if (U_SUCCESS(error)) {
   602         applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
   603                                        parseErr, status);
   604         AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
   605                                                     *fNegPrefixPattern,
   606                                                     *fNegSuffixPattern,
   607                                                     *fPosPrefixPattern,
   608                                                     *fPosSuffixPattern,
   609                                                     UCURR_SYMBOL_NAME);
   610         fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
   611     }
   613     // save the unique currency plural patterns of this locale.
   614     Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
   615     const UHashElement* element = NULL;
   616     int32_t pos = -1;
   617     Hashtable pluralPatternSet;
   618     while ((element = pluralPtn->nextElement(pos)) != NULL) {
   619         const UHashTok valueTok = element->value;
   620         const UnicodeString* value = (UnicodeString*)valueTok.pointer;
   621         const UHashTok keyTok = element->key;
   622         const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   623         if (pluralPatternSet.geti(*value) != 1) {
   624             pluralPatternSet.puti(*value, 1, status);
   625             applyPatternWithoutExpandAffix(*value, false, parseErr, status);
   626             AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
   627                                                     *fNegPrefixPattern,
   628                                                     *fNegSuffixPattern,
   629                                                     *fPosPrefixPattern,
   630                                                     *fPosSuffixPattern,
   631                                                     UCURR_LONG_NAME);
   632             fAffixPatternsForCurrency->put(*key, affixPtn, status);
   633         }
   634     }
   635 }
   638 void
   639 DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
   640                                     UBool setupForCurrentPattern,
   641                                     UBool setupForPluralPattern,
   642                                     UErrorCode& status) {
   643     if (U_FAILURE(status)) {
   644         return;
   645     }
   646     UParseError parseErr;
   647     if (setupForCurrentPattern) {
   648         if (fAffixesForCurrency) {
   649             deleteHashForAffix(fAffixesForCurrency);
   650         }
   651         fAffixesForCurrency = initHashForAffix(status);
   652         if (U_SUCCESS(status)) {
   653             applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
   654             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
   655             StringEnumeration* keywords = pluralRules->getKeywords(status);
   656             if (U_SUCCESS(status)) {
   657                 const UnicodeString* pluralCount;
   658                 while ((pluralCount = keywords->snext(status)) != NULL) {
   659                     if ( U_SUCCESS(status) ) {
   660                         expandAffixAdjustWidth(pluralCount);
   661                         AffixesForCurrency* affix = new AffixesForCurrency(
   662                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
   663                         fAffixesForCurrency->put(*pluralCount, affix, status);
   664                     }
   665                 }
   666             }
   667             delete keywords;
   668         }
   669     }
   671     if (U_FAILURE(status)) {
   672         return;
   673     }
   675     if (setupForPluralPattern) {
   676         if (fPluralAffixesForCurrency) {
   677             deleteHashForAffix(fPluralAffixesForCurrency);
   678         }
   679         fPluralAffixesForCurrency = initHashForAffix(status);
   680         if (U_SUCCESS(status)) {
   681             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
   682             StringEnumeration* keywords = pluralRules->getKeywords(status);
   683             if (U_SUCCESS(status)) {
   684                 const UnicodeString* pluralCount;
   685                 while ((pluralCount = keywords->snext(status)) != NULL) {
   686                     if ( U_SUCCESS(status) ) {
   687                         UnicodeString ptn;
   688                         fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
   689                         applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
   690                         AffixesForCurrency* affix = new AffixesForCurrency(
   691                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
   692                         fPluralAffixesForCurrency->put(*pluralCount, affix, status);
   693                     }
   694                 }
   695             }
   696             delete keywords;
   697         }
   698     }
   699 }
   702 //------------------------------------------------------------------------------
   704 DecimalFormat::~DecimalFormat()
   705 {
   706     delete fPosPrefixPattern;
   707     delete fPosSuffixPattern;
   708     delete fNegPrefixPattern;
   709     delete fNegSuffixPattern;
   710     delete fCurrencyChoice;
   711     delete fMultiplier;
   712     delete fSymbols;
   713     delete fRoundingIncrement;
   714     deleteHashForAffixPattern();
   715     deleteHashForAffix(fAffixesForCurrency);
   716     deleteHashForAffix(fPluralAffixesForCurrency);
   717     delete fCurrencyPluralInfo;
   718 }
   720 //------------------------------------------------------------------------------
   721 // copy constructor
   723 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
   724     NumberFormat(source) {
   725     init();
   726     *this = source;
   727 }
   729 //------------------------------------------------------------------------------
   730 // assignment operator
   732 template <class T>
   733 static void _copy_ptr(T** pdest, const T* source) {
   734     if (source == NULL) {
   735         delete *pdest;
   736         *pdest = NULL;
   737     } else if (*pdest == NULL) {
   738         *pdest = new T(*source);
   739     } else {
   740         **pdest = *source;
   741     }
   742 }
   744 template <class T>
   745 static void _clone_ptr(T** pdest, const T* source) {
   746     delete *pdest;
   747     if (source == NULL) {
   748         *pdest = NULL;
   749     } else {
   750         *pdest = static_cast<T*>(source->clone());
   751     }
   752 }
   754 DecimalFormat&
   755 DecimalFormat::operator=(const DecimalFormat& rhs)
   756 {
   757     if(this != &rhs) {
   758         UErrorCode status = U_ZERO_ERROR;
   759         NumberFormat::operator=(rhs);
   760         fStaticSets     = DecimalFormatStaticSets::getStaticSets(status);
   761         fPositivePrefix = rhs.fPositivePrefix;
   762         fPositiveSuffix = rhs.fPositiveSuffix;
   763         fNegativePrefix = rhs.fNegativePrefix;
   764         fNegativeSuffix = rhs.fNegativeSuffix;
   765         _copy_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
   766         _copy_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
   767         _copy_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
   768         _copy_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
   769         _clone_ptr(&fCurrencyChoice, rhs.fCurrencyChoice);
   770         setRoundingIncrement(rhs.getRoundingIncrement());
   771         fRoundingMode = rhs.fRoundingMode;
   772         setMultiplier(rhs.getMultiplier());
   773         fGroupingSize = rhs.fGroupingSize;
   774         fGroupingSize2 = rhs.fGroupingSize2;
   775         fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
   776         _copy_ptr(&fSymbols, rhs.fSymbols);
   777         fUseExponentialNotation = rhs.fUseExponentialNotation;
   778         fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
   779         fBoolFlags = rhs.fBoolFlags;
   780         /*Bertrand A. D. Update 98.03.17*/
   781         fCurrencySignCount = rhs.fCurrencySignCount;
   782         /*end of Update*/
   783         fMinExponentDigits = rhs.fMinExponentDigits;
   785         /* sfb 990629 */
   786         fFormatWidth = rhs.fFormatWidth;
   787         fPad = rhs.fPad;
   788         fPadPosition = rhs.fPadPosition;
   789         /* end sfb */
   790         fMinSignificantDigits = rhs.fMinSignificantDigits;
   791         fMaxSignificantDigits = rhs.fMaxSignificantDigits;
   792         fUseSignificantDigits = rhs.fUseSignificantDigits;
   793         fFormatPattern = rhs.fFormatPattern;
   794         fStyle = rhs.fStyle;
   795         fCurrencySignCount = rhs.fCurrencySignCount;
   796         _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
   797         deleteHashForAffixPattern();
   798         if (rhs.fAffixPatternsForCurrency) {
   799             UErrorCode status = U_ZERO_ERROR;
   800             fAffixPatternsForCurrency = initHashForAffixPattern(status);
   801             copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
   802                                     fAffixPatternsForCurrency, status);
   803         }
   804         deleteHashForAffix(fAffixesForCurrency);
   805         if (rhs.fAffixesForCurrency) {
   806             UErrorCode status = U_ZERO_ERROR;
   807             fAffixesForCurrency = initHashForAffixPattern(status);
   808             copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
   809         }
   810         deleteHashForAffix(fPluralAffixesForCurrency);
   811         if (rhs.fPluralAffixesForCurrency) {
   812             UErrorCode status = U_ZERO_ERROR;
   813             fPluralAffixesForCurrency = initHashForAffixPattern(status);
   814             copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
   815         }
   816     }
   817 #if UCONFIG_FORMAT_FASTPATHS_49
   818     handleChanged();
   819 #endif
   820     return *this;
   821 }
   823 //------------------------------------------------------------------------------
   825 UBool
   826 DecimalFormat::operator==(const Format& that) const
   827 {
   828     if (this == &that)
   829         return TRUE;
   831     // NumberFormat::operator== guarantees this cast is safe
   832     const DecimalFormat* other = (DecimalFormat*)&that;
   834 #ifdef FMT_DEBUG
   835     // This code makes it easy to determine why two format objects that should
   836     // be equal aren't.
   837     UBool first = TRUE;
   838     if (!NumberFormat::operator==(that)) {
   839         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   840         debug("NumberFormat::!=");
   841     } else {
   842     if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
   843               fPositivePrefix == other->fPositivePrefix)
   844            || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
   845                *fPosPrefixPattern  == *other->fPosPrefixPattern))) {
   846         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   847         debug("Pos Prefix !=");
   848     }
   849     if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
   850            fPositiveSuffix == other->fPositiveSuffix)
   851           || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
   852               *fPosSuffixPattern  == *other->fPosSuffixPattern))) {
   853         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   854         debug("Pos Suffix !=");
   855     }
   856     if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
   857            fNegativePrefix == other->fNegativePrefix)
   858           || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
   859               *fNegPrefixPattern  == *other->fNegPrefixPattern))) {
   860         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   861         debug("Neg Prefix ");
   862         if (fNegPrefixPattern == NULL) {
   863             debug("NULL(");
   864             debugout(fNegativePrefix);
   865             debug(")");
   866         } else {
   867             debugout(*fNegPrefixPattern);
   868         }
   869         debug(" != ");
   870         if (other->fNegPrefixPattern == NULL) {
   871             debug("NULL(");
   872             debugout(other->fNegativePrefix);
   873             debug(")");
   874         } else {
   875             debugout(*other->fNegPrefixPattern);
   876         }
   877     }
   878     if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
   879            fNegativeSuffix == other->fNegativeSuffix)
   880           || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
   881               *fNegSuffixPattern  == *other->fNegSuffixPattern))) {
   882         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   883         debug("Neg Suffix ");
   884         if (fNegSuffixPattern == NULL) {
   885             debug("NULL(");
   886             debugout(fNegativeSuffix);
   887             debug(")");
   888         } else {
   889             debugout(*fNegSuffixPattern);
   890         }
   891         debug(" != ");
   892         if (other->fNegSuffixPattern == NULL) {
   893             debug("NULL(");
   894             debugout(other->fNegativeSuffix);
   895             debug(")");
   896         } else {
   897             debugout(*other->fNegSuffixPattern);
   898         }
   899     }
   900     if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
   901           || (fRoundingIncrement != NULL &&
   902               other->fRoundingIncrement != NULL &&
   903               *fRoundingIncrement == *other->fRoundingIncrement))) {
   904         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   905         debug("Rounding Increment !=");
   906               }
   907     if (getMultiplier() != other->getMultiplier()) {
   908         if (first) { printf("[ "); first = FALSE; }
   909         printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
   910     }
   911     if (fGroupingSize != other->fGroupingSize) {
   912         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   913         printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
   914     }
   915     if (fGroupingSize2 != other->fGroupingSize2) {
   916         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   917         printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
   918     }
   919     if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
   920         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   921         printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
   922     }
   923     if (fUseExponentialNotation != other->fUseExponentialNotation) {
   924         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   925         debug("Use Exp !=");
   926     }
   927     if (!(!fUseExponentialNotation ||
   928           fMinExponentDigits != other->fMinExponentDigits)) {
   929         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   930         debug("Exp Digits !=");
   931     }
   932     if (*fSymbols != *(other->fSymbols)) {
   933         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
   934         debug("Symbols !=");
   935     }
   936     // TODO Add debug stuff for significant digits here
   937     if (fUseSignificantDigits != other->fUseSignificantDigits) {
   938         debug("fUseSignificantDigits !=");
   939     }
   940     if (fUseSignificantDigits &&
   941         fMinSignificantDigits != other->fMinSignificantDigits) {
   942         debug("fMinSignificantDigits !=");
   943     }
   944     if (fUseSignificantDigits &&
   945         fMaxSignificantDigits != other->fMaxSignificantDigits) {
   946         debug("fMaxSignificantDigits !=");
   947     }
   949     if (!first) { printf(" ]"); }
   950     if (fCurrencySignCount != other->fCurrencySignCount) {
   951         debug("fCurrencySignCount !=");
   952     }
   953     if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
   954         debug("fCurrencyPluralInfo == ");
   955         if (fCurrencyPluralInfo == NULL) {
   956             debug("fCurrencyPluralInfo == NULL");
   957         }
   958     }
   959     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
   960          *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
   961         debug("fCurrencyPluralInfo !=");
   962     }
   963     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
   964         fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
   965         debug("fCurrencyPluralInfo one NULL, the other not");
   966     }
   967     if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
   968         debug("fCurrencyPluralInfo == ");
   969     }
   970     }
   971 #endif
   973     return (NumberFormat::operator==(that) &&
   974             ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
   975             (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
   976             (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
   977               fPositivePrefix == other->fPositivePrefix)
   978              || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
   979                  *fPosPrefixPattern  == *other->fPosPrefixPattern)) &&
   980             ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
   981               fPositiveSuffix == other->fPositiveSuffix)
   982              || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
   983                  *fPosSuffixPattern  == *other->fPosSuffixPattern)) &&
   984             ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
   985               fNegativePrefix == other->fNegativePrefix)
   986              || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
   987                  *fNegPrefixPattern  == *other->fNegPrefixPattern)) &&
   988             ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
   989               fNegativeSuffix == other->fNegativeSuffix)
   990              || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
   991                  *fNegSuffixPattern  == *other->fNegSuffixPattern)))) &&
   992             ((fRoundingIncrement == other->fRoundingIncrement) // both null
   993              || (fRoundingIncrement != NULL &&
   994                  other->fRoundingIncrement != NULL &&
   995                  *fRoundingIncrement == *other->fRoundingIncrement)) &&
   996         getMultiplier() == other->getMultiplier() &&
   997         fGroupingSize == other->fGroupingSize &&
   998         fGroupingSize2 == other->fGroupingSize2 &&
   999         fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
  1000         fUseExponentialNotation == other->fUseExponentialNotation &&
  1001         (!fUseExponentialNotation ||
  1002          fMinExponentDigits == other->fMinExponentDigits) &&
  1003         *fSymbols == *(other->fSymbols) &&
  1004         fUseSignificantDigits == other->fUseSignificantDigits &&
  1005         (!fUseSignificantDigits ||
  1006          (fMinSignificantDigits == other->fMinSignificantDigits &&
  1007           fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
  1008         fCurrencySignCount == other->fCurrencySignCount &&
  1009         ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
  1010           fCurrencyPluralInfo == NULL) ||
  1011          (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
  1012          *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
  1015 //------------------------------------------------------------------------------
  1017 Format*
  1018 DecimalFormat::clone() const
  1020     return new DecimalFormat(*this);
  1024 FixedDecimal
  1025 DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
  1026     FixedDecimal result;
  1028     if (U_FAILURE(status)) {
  1029         return result;
  1032     if (uprv_isNaN(number) || uprv_isPositiveInfinity(fabs(number))) {
  1033         // For NaN and Infinity the state of the formatter is ignored.
  1034         result.init(number);
  1035         return result;
  1038     if (fMultiplier == NULL && fScale == 0 && fRoundingIncrement == 0 && areSignificantDigitsUsed() == FALSE &&
  1039             result.quickInit(number) && result.visibleDecimalDigitCount <= getMaximumFractionDigits()) {
  1040         // Fast Path. Construction of an exact FixedDecimal directly from the double, without passing
  1041         //   through a DigitList, was successful, and the formatter is doing nothing tricky with rounding.
  1042         // printf("getFixedDecimal(%g): taking fast path.\n", number);
  1043         result.adjustForMinFractionDigits(getMinimumFractionDigits());
  1044     } else {
  1045         // Slow path. Create a DigitList, and have this formatter round it according to the
  1046         //     requirements of the format, and fill the fixedDecimal from that.
  1047         DigitList digits;
  1048         digits.set(number);
  1049         result = getFixedDecimal(digits, status);
  1051     return result;
  1054 // MSVC optimizer bug? 
  1055 // turn off optimization as it causes different behavior in the int64->double->int64 conversion
  1056 #if defined (_MSC_VER)
  1057 #pragma optimize ( "", off )
  1058 #endif
  1059 FixedDecimal
  1060 DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
  1061     if (U_FAILURE(status)) {
  1062         return FixedDecimal();
  1064     if (!number.isNumeric()) {
  1065         status = U_ILLEGAL_ARGUMENT_ERROR;
  1066         return FixedDecimal();
  1069     DigitList *dl = number.getDigitList();
  1070     if (dl != NULL) {
  1071         DigitList clonedDL(*dl);
  1072         return getFixedDecimal(clonedDL, status);
  1075     Formattable::Type type = number.getType();
  1076     if (type == Formattable::kDouble || type == Formattable::kLong) { 
  1077         return getFixedDecimal(number.getDouble(status), status);
  1080     if (type == Formattable::kInt64) {
  1081         // "volatile" here is a workaround to avoid optimization issues.
  1082         volatile double fdv = number.getDouble(status);
  1083         // Note: conversion of int64_t -> double rounds with some compilers to
  1084         //       values beyond what can be represented as a 64 bit int. Subsequent
  1085         //       testing or conversion with int64_t produces bad results.
  1086         //       So filter the problematic values, route them to DigitList.
  1087         if (fdv != (double)U_INT64_MAX && fdv != (double)U_INT64_MIN &&
  1088                 number.getInt64() == (int64_t)fdv) {
  1089             return getFixedDecimal(number.getDouble(status), status);
  1093     // The only case left is type==int64_t, with a value with more digits than a double can represent.
  1094     // Any formattable originating as a big decimal will have had a pre-existing digit list.
  1095     // Any originating as a double or int32 will have been handled as a double.
  1097     U_ASSERT(type == Formattable::kInt64);
  1098     DigitList digits;
  1099     digits.set(number.getInt64());
  1100     return getFixedDecimal(digits, status);
  1102 // end workaround MSVC optimizer bug
  1103 #if defined (_MSC_VER)
  1104 #pragma optimize ( "", on )
  1105 #endif
  1108 // Create a fixed decimal from a DigitList.
  1109 //    The digit list may be modified.
  1110 //    Internal function only.
  1111 FixedDecimal
  1112 DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
  1113     // Round the number according to the requirements of this Format.
  1114     FixedDecimal result;
  1115     _round(number, number, result.isNegative, status);
  1117     // The int64_t fields in FixedDecimal can easily overflow.
  1118     // In deciding what to discard in this event, consider that fixedDecimal
  1119     //   is being used only with PluralRules, and those rules mostly look at least significant
  1120     //   few digits of the integer part, and whether the fraction part is zero or not.
  1121     // 
  1122     // So, in case of overflow when filling in the fields of the FixedDecimal object,
  1123     //    for the integer part, discard the most significant digits.
  1124     //    for the fraction part, discard the least significant digits,
  1125     //                           don't truncate the fraction value to zero.
  1126     // For simplicity, the int64_t fields are limited to 18 decimal digits, even
  1127     // though they could hold most (but not all) 19 digit values.
  1129     // Integer Digits.
  1130     int32_t di = number.getDecimalAt()-18;  // Take at most 18 digits.
  1131     if (di < 0) {
  1132         di = 0;
  1134     result.intValue = 0;
  1135     for (; di<number.getDecimalAt(); di++) {
  1136         result.intValue = result.intValue * 10 + (number.getDigit(di) & 0x0f);
  1138     if (result.intValue == 0 && number.getDecimalAt()-18 > 0) {
  1139         // The number is something like 100000000000000000000000.
  1140         // More than 18 digits integer digits, but the least significant 18 are all zero.
  1141         // We don't want to return zero as the int part, but want to keep zeros
  1142         //   for several of the least significant digits.
  1143         result.intValue = 100000000000000000LL;
  1146     // Fraction digits.
  1147     result.decimalDigits = result.decimalDigitsWithoutTrailingZeros = result.visibleDecimalDigitCount = 0;
  1148     for (di = number.getDecimalAt(); di < number.getCount(); di++) {
  1149         result.visibleDecimalDigitCount++;
  1150         if (result.decimalDigits <  100000000000000000LL) {
  1151                    //              9223372036854775807    Largest 64 bit signed integer
  1152             int32_t digitVal = number.getDigit(di) & 0x0f;  // getDigit() returns a char, '0'-'9'.
  1153             result.decimalDigits = result.decimalDigits * 10 + digitVal;
  1154             if (digitVal > 0) {
  1155                 result.decimalDigitsWithoutTrailingZeros = result.decimalDigits;
  1160     result.hasIntegerValue = (result.decimalDigits == 0);
  1162     // Trailing fraction zeros. The format specification may require more trailing
  1163     //    zeros than the numeric value. Add any such on now.
  1165     int32_t minFractionDigits;
  1166     if (areSignificantDigitsUsed()) {
  1167         minFractionDigits = getMinimumSignificantDigits() - number.getDecimalAt();
  1168         if (minFractionDigits < 0) {
  1169             minFractionDigits = 0;
  1171     } else {
  1172         minFractionDigits = getMinimumFractionDigits();
  1174     result.adjustForMinFractionDigits(minFractionDigits);
  1176     return result;
  1180 //------------------------------------------------------------------------------
  1182 UnicodeString&
  1183 DecimalFormat::format(int32_t number,
  1184                       UnicodeString& appendTo,
  1185                       FieldPosition& fieldPosition) const
  1187     return format((int64_t)number, appendTo, fieldPosition);
  1190 UnicodeString&
  1191 DecimalFormat::format(int32_t number,
  1192                       UnicodeString& appendTo,
  1193                       FieldPosition& fieldPosition,
  1194                       UErrorCode& status) const
  1196     return format((int64_t)number, appendTo, fieldPosition, status);
  1199 UnicodeString&
  1200 DecimalFormat::format(int32_t number,
  1201                       UnicodeString& appendTo,
  1202                       FieldPositionIterator* posIter,
  1203                       UErrorCode& status) const
  1205     return format((int64_t)number, appendTo, posIter, status);
  1209 #if UCONFIG_FORMAT_FASTPATHS_49
  1210 void DecimalFormat::handleChanged() {
  1211   DecimalFormatInternal &data = internalData(fReserved);
  1213   if(data.fFastFormatStatus == kFastpathUNKNOWN || data.fFastParseStatus == kFastpathUNKNOWN) {
  1214     return; // still constructing. Wait.
  1217   data.fFastParseStatus = data.fFastFormatStatus = kFastpathNO;
  1219 #if UCONFIG_HAVE_PARSEALLINPUT
  1220   if(fParseAllInput == UNUM_NO) {
  1221     debug("No Parse fastpath: fParseAllInput==UNUM_NO");
  1222   } else 
  1223 #endif
  1224   if (fFormatWidth!=0) {
  1225       debug("No Parse fastpath: fFormatWidth");
  1226   } else if(fPositivePrefix.length()>0) {
  1227     debug("No Parse fastpath: positive prefix");
  1228   } else if(fPositiveSuffix.length()>0) {
  1229     debug("No Parse fastpath: positive suffix");
  1230   } else if(fNegativePrefix.length()>1 
  1231             || ((fNegativePrefix.length()==1) && (fNegativePrefix.charAt(0)!=0x002D))) {
  1232     debug("No Parse fastpath: negative prefix that isn't '-'");
  1233   } else if(fNegativeSuffix.length()>0) {
  1234     debug("No Parse fastpath: negative suffix");
  1235   } else {
  1236     data.fFastParseStatus = kFastpathYES;
  1237     debug("parse fastpath: YES");
  1240   if (fGroupingSize!=0 && isGroupingUsed()) {
  1241     debug("No format fastpath: fGroupingSize!=0 and grouping is used");
  1242 #ifdef FMT_DEBUG
  1243     printf("groupingsize=%d\n", fGroupingSize);
  1244 #endif
  1245   } else if(fGroupingSize2!=0 && isGroupingUsed()) {
  1246     debug("No format fastpath: fGroupingSize2!=0");
  1247   } else if(fUseExponentialNotation) {
  1248     debug("No format fastpath: fUseExponentialNotation");
  1249   } else if(fFormatWidth!=0) {
  1250     debug("No format fastpath: fFormatWidth!=0");
  1251   } else if(fMinSignificantDigits!=1) {
  1252     debug("No format fastpath: fMinSignificantDigits!=1");
  1253   } else if(fMultiplier!=NULL) {
  1254     debug("No format fastpath: fMultiplier!=NULL");
  1255   } else if(fScale!=0) {
  1256     debug("No format fastpath: fScale!=0");
  1257   } else if(0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)) {
  1258     debug("No format fastpath: 0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)");
  1259   } else if(fDecimalSeparatorAlwaysShown) {
  1260     debug("No format fastpath: fDecimalSeparatorAlwaysShown");
  1261   } else if(getMinimumFractionDigits()>0) {
  1262     debug("No format fastpath: fMinFractionDigits>0");
  1263   } else if(fCurrencySignCount != fgCurrencySignCountZero) {
  1264     debug("No format fastpath: fCurrencySignCount != fgCurrencySignCountZero");
  1265   } else if(fRoundingIncrement!=0) {
  1266     debug("No format fastpath: fRoundingIncrement!=0");
  1267   } else {
  1268     data.fFastFormatStatus = kFastpathYES;
  1269     debug("format:kFastpathYES!");
  1274 #endif
  1275 //------------------------------------------------------------------------------
  1277 UnicodeString&
  1278 DecimalFormat::format(int64_t number,
  1279                       UnicodeString& appendTo,
  1280                       FieldPosition& fieldPosition) const
  1282     UErrorCode status = U_ZERO_ERROR; /* ignored */
  1283     FieldPositionOnlyHandler handler(fieldPosition);
  1284     return _format(number, appendTo, handler, status);
  1287 UnicodeString&
  1288 DecimalFormat::format(int64_t number,
  1289                       UnicodeString& appendTo,
  1290                       FieldPosition& fieldPosition,
  1291                       UErrorCode& status) const
  1293     FieldPositionOnlyHandler handler(fieldPosition);
  1294     return _format(number, appendTo, handler, status);
  1297 UnicodeString&
  1298 DecimalFormat::format(int64_t number,
  1299                       UnicodeString& appendTo,
  1300                       FieldPositionIterator* posIter,
  1301                       UErrorCode& status) const
  1303     FieldPositionIteratorHandler handler(posIter, status);
  1304     return _format(number, appendTo, handler, status);
  1307 UnicodeString&
  1308 DecimalFormat::_format(int64_t number,
  1309                        UnicodeString& appendTo,
  1310                        FieldPositionHandler& handler,
  1311                        UErrorCode &status) const
  1313     // Bottleneck function for formatting int64_t
  1314     if (U_FAILURE(status)) {
  1315         return appendTo;
  1318 #if UCONFIG_FORMAT_FASTPATHS_49
  1319   // const UnicodeString *posPrefix = fPosPrefixPattern;
  1320   // const UnicodeString *posSuffix = fPosSuffixPattern;
  1321   // const UnicodeString *negSuffix = fNegSuffixPattern;
  1323   const DecimalFormatInternal &data = internalData(fReserved);
  1325 #ifdef FMT_DEBUG
  1326   data.dump();
  1327   printf("fastpath? [%d]\n", number);
  1328 #endif
  1330   if( data.fFastFormatStatus==kFastpathYES) {
  1332 #define kZero 0x0030
  1333     const int32_t MAX_IDX = MAX_DIGITS+2;
  1334     UChar outputStr[MAX_IDX];
  1335     int32_t destIdx = MAX_IDX;
  1336     outputStr[--destIdx] = 0;  // term
  1338     int64_t  n = number;
  1339     if (number < 1) {
  1340       // Negative numbers are slightly larger than positive
  1341       // output the first digit (or the leading zero)
  1342       outputStr[--destIdx] = (-(n % 10) + kZero);
  1343       n /= -10;
  1345     // get any remaining digits
  1346     while (n > 0) {
  1347       outputStr[--destIdx] = (n % 10) + kZero;
  1348       n /= 10;
  1352         // Slide the number to the start of the output str
  1353     U_ASSERT(destIdx >= 0);
  1354     int32_t length = MAX_IDX - destIdx -1;
  1355     /*int32_t prefixLen = */ appendAffix(appendTo, number, handler, number<0, TRUE);
  1356     int32_t maxIntDig = getMaximumIntegerDigits();
  1357     int32_t destlength = length<=maxIntDig?length:maxIntDig; // dest length pinned to max int digits
  1359     if(length>maxIntDig && fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
  1360       status = U_ILLEGAL_ARGUMENT_ERROR;
  1363     int32_t prependZero = getMinimumIntegerDigits() - destlength;
  1365 #ifdef FMT_DEBUG
  1366     printf("prependZero=%d, length=%d, minintdig=%d maxintdig=%d destlength=%d skip=%d\n", prependZero, length, getMinimumIntegerDigits(), maxIntDig, destlength, length-destlength);
  1367 #endif    
  1368     int32_t intBegin = appendTo.length();
  1370     while((prependZero--)>0) {
  1371       appendTo.append((UChar)0x0030); // '0'
  1374     appendTo.append(outputStr+destIdx+
  1375                     (length-destlength), // skip any leading digits
  1376                     destlength);
  1377     handler.addAttribute(kIntegerField, intBegin, appendTo.length());
  1379     /*int32_t suffixLen =*/ appendAffix(appendTo, number, handler, number<0, FALSE);
  1381     //outputStr[length]=0;
  1383 #ifdef FMT_DEBUG
  1384         printf("Writing [%s] length [%d] max %d for [%d]\n", outputStr+destIdx, length, MAX_IDX, number);
  1385 #endif
  1387 #undef kZero
  1389     return appendTo;
  1390   } // end fastpath
  1391 #endif
  1393   // Else the slow way - via DigitList
  1394     DigitList digits;
  1395     digits.set(number);
  1396     return _format(digits, appendTo, handler, status);
  1399 //------------------------------------------------------------------------------
  1401 UnicodeString&
  1402 DecimalFormat::format(  double number,
  1403                         UnicodeString& appendTo,
  1404                         FieldPosition& fieldPosition) const
  1406     UErrorCode status = U_ZERO_ERROR; /* ignored */
  1407     FieldPositionOnlyHandler handler(fieldPosition);
  1408     return _format(number, appendTo, handler, status);
  1411 UnicodeString&
  1412 DecimalFormat::format(  double number,
  1413                         UnicodeString& appendTo,
  1414                         FieldPosition& fieldPosition,
  1415                         UErrorCode& status) const
  1417     FieldPositionOnlyHandler handler(fieldPosition);
  1418     return _format(number, appendTo, handler, status);
  1421 UnicodeString&
  1422 DecimalFormat::format(  double number,
  1423                         UnicodeString& appendTo,
  1424                         FieldPositionIterator* posIter,
  1425                         UErrorCode& status) const
  1427   FieldPositionIteratorHandler handler(posIter, status);
  1428   return _format(number, appendTo, handler, status);
  1431 UnicodeString&
  1432 DecimalFormat::_format( double number,
  1433                         UnicodeString& appendTo,
  1434                         FieldPositionHandler& handler,
  1435                         UErrorCode &status) const
  1437     if (U_FAILURE(status)) {
  1438         return appendTo;
  1440     // Special case for NaN, sets the begin and end index to be the
  1441     // the string length of localized name of NaN.
  1442     // TODO:  let NaNs go through DigitList.
  1443     if (uprv_isNaN(number))
  1445         int begin = appendTo.length();
  1446         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
  1448         handler.addAttribute(kIntegerField, begin, appendTo.length());
  1450         addPadding(appendTo, handler, 0, 0);
  1451         return appendTo;
  1454     DigitList digits;
  1455     digits.set(number);
  1456     _format(digits, appendTo, handler, status);
  1457     // No way to return status from here.
  1458     return appendTo;
  1461 //------------------------------------------------------------------------------
  1464 UnicodeString&
  1465 DecimalFormat::format(const StringPiece &number,
  1466                       UnicodeString &toAppendTo,
  1467                       FieldPositionIterator *posIter,
  1468                       UErrorCode &status) const
  1470 #if UCONFIG_FORMAT_FASTPATHS_49
  1471   // don't bother if the int64 path is not optimized
  1472   int32_t len    = number.length();
  1474   if(len>0&&len<10) { /* 10 or more digits may not be an int64 */
  1475     const char *data = number.data();
  1476     int64_t num = 0;
  1477     UBool neg = FALSE;
  1478     UBool ok = TRUE;
  1480     int32_t start  = 0;
  1482     if(data[start]=='+') {
  1483       start++;
  1484     } else if(data[start]=='-') {
  1485       neg=TRUE;
  1486       start++;
  1489     int32_t place = 1; /* 1, 10, ... */
  1490     for(int32_t i=len-1;i>=start;i--) {
  1491       if(data[i]>='0'&&data[i]<='9') {
  1492         num+=place*(int64_t)(data[i]-'0');
  1493       } else {
  1494         ok=FALSE;
  1495         break;
  1497       place *= 10;
  1500     if(ok) {
  1501       if(neg) {
  1502         num = -num;// add minus bit
  1504       // format as int64_t
  1505       return format(num, toAppendTo, posIter, status);
  1507     // else fall through
  1509 #endif
  1511     DigitList   dnum;
  1512     dnum.set(number, status);
  1513     if (U_FAILURE(status)) {
  1514         return toAppendTo;
  1516     FieldPositionIteratorHandler handler(posIter, status);
  1517     _format(dnum, toAppendTo, handler, status);
  1518     return toAppendTo;
  1522 UnicodeString&
  1523 DecimalFormat::format(const DigitList &number,
  1524                       UnicodeString &appendTo,
  1525                       FieldPositionIterator *posIter,
  1526                       UErrorCode &status) const {
  1527     FieldPositionIteratorHandler handler(posIter, status);
  1528     _format(number, appendTo, handler, status);
  1529     return appendTo;
  1534 UnicodeString&
  1535 DecimalFormat::format(const DigitList &number,
  1536                      UnicodeString& appendTo,
  1537                      FieldPosition& pos,
  1538                      UErrorCode &status) const {
  1539     FieldPositionOnlyHandler handler(pos);
  1540     _format(number, appendTo, handler, status);
  1541     return appendTo;
  1544 DigitList&
  1545 DecimalFormat::_round(const DigitList &number, DigitList &adjustedNum, UBool& isNegative, UErrorCode &status) const {
  1546     if (U_FAILURE(status)) {
  1547         return adjustedNum;
  1550     // note: number and adjustedNum may refer to the same DigitList, in cases where a copy
  1551     //       is not needed by the caller.
  1553     adjustedNum = number;
  1554     isNegative = false;
  1555     if (number.isNaN()) {
  1556         return adjustedNum;
  1559     // Do this BEFORE checking to see if value is infinite or negative! Sets the
  1560     // begin and end index to be length of the string composed of
  1561     // localized name of Infinite and the positive/negative localized
  1562     // signs.
  1564     adjustedNum.setRoundingMode(fRoundingMode);
  1565     if (fMultiplier != NULL) {
  1566         adjustedNum.mult(*fMultiplier, status);
  1567         if (U_FAILURE(status)) {
  1568             return adjustedNum;
  1572     if (fScale != 0) {
  1573         DigitList ten;
  1574         ten.set((int32_t)10);
  1575         if (fScale > 0) {
  1576             for (int32_t i = fScale ; i > 0 ; i--) {
  1577                 adjustedNum.mult(ten, status);
  1578                 if (U_FAILURE(status)) {
  1579                     return adjustedNum;
  1582         } else {
  1583             for (int32_t i = fScale ; i < 0 ; i++) {
  1584                 adjustedNum.div(ten, status);
  1585                 if (U_FAILURE(status)) {
  1586                     return adjustedNum;
  1592     /*
  1593      * Note: sign is important for zero as well as non-zero numbers.
  1594      * Proper detection of -0.0 is needed to deal with the
  1595      * issues raised by bugs 4106658, 4106667, and 4147706.  Liu 7/6/98.
  1596      */
  1597     isNegative = !adjustedNum.isPositive();
  1599     // Apply rounding after multiplier
  1601     adjustedNum.fContext.status &= ~DEC_Inexact;
  1602     if (fRoundingIncrement != NULL) {
  1603         adjustedNum.div(*fRoundingIncrement, status);
  1604         adjustedNum.toIntegralValue();
  1605         adjustedNum.mult(*fRoundingIncrement, status);
  1606         adjustedNum.trim();
  1607         if (U_FAILURE(status)) {
  1608             return adjustedNum;
  1611     if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
  1612         status = U_FORMAT_INEXACT_ERROR;
  1613         return adjustedNum;
  1616     if (adjustedNum.isInfinite()) {
  1617         return adjustedNum;
  1620     if (fUseExponentialNotation || areSignificantDigitsUsed()) {
  1621         int32_t sigDigits = precision();
  1622         if (sigDigits > 0) {
  1623             adjustedNum.round(sigDigits);
  1625     } else {
  1626         // Fixed point format.  Round to a set number of fraction digits.
  1627         int32_t numFractionDigits = precision();
  1628         adjustedNum.roundFixedPoint(numFractionDigits);
  1630     if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
  1631         status = U_FORMAT_INEXACT_ERROR;
  1632         return adjustedNum;
  1634     return adjustedNum;
  1637 UnicodeString&
  1638 DecimalFormat::_format(const DigitList &number,
  1639                         UnicodeString& appendTo,
  1640                         FieldPositionHandler& handler,
  1641                         UErrorCode &status) const
  1643     if (U_FAILURE(status)) {
  1644         return appendTo;
  1647     // Special case for NaN, sets the begin and end index to be the
  1648     // the string length of localized name of NaN.
  1649     if (number.isNaN())
  1651         int begin = appendTo.length();
  1652         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
  1654         handler.addAttribute(kIntegerField, begin, appendTo.length());
  1656         addPadding(appendTo, handler, 0, 0);
  1657         return appendTo;
  1660     DigitList adjustedNum;
  1661     UBool isNegative;
  1662     _round(number, adjustedNum, isNegative, status);
  1663     if (U_FAILURE(status)) {
  1664         return appendTo;
  1667     // Special case for INFINITE,
  1668     if (adjustedNum.isInfinite()) {
  1669         int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
  1671         int begin = appendTo.length();
  1672         appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
  1674         handler.addAttribute(kIntegerField, begin, appendTo.length());
  1676         int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
  1678         addPadding(appendTo, handler, prefixLen, suffixLen);
  1679         return appendTo;
  1681     return subformat(appendTo, handler, adjustedNum, FALSE, status);
  1684 /**
  1685  * Return true if a grouping separator belongs at the given
  1686  * position, based on whether grouping is in use and the values of
  1687  * the primary and secondary grouping interval.
  1688  * @param pos the number of integer digits to the right of
  1689  * the current position.  Zero indicates the position after the
  1690  * rightmost integer digit.
  1691  * @return true if a grouping character belongs at the current
  1692  * position.
  1693  */
  1694 UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
  1695     UBool result = FALSE;
  1696     if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
  1697         if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
  1698             result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
  1699         } else {
  1700             result = pos % fGroupingSize == 0;
  1703     return result;
  1706 //------------------------------------------------------------------------------
  1708 /**
  1709  * Complete the formatting of a finite number.  On entry, the DigitList must
  1710  * be filled in with the correct digits.
  1711  */
  1712 UnicodeString&
  1713 DecimalFormat::subformat(UnicodeString& appendTo,
  1714                          FieldPositionHandler& handler,
  1715                          DigitList&     digits,
  1716                          UBool          isInteger,
  1717                          UErrorCode& status) const
  1719     // char zero = '0'; 
  1720     // DigitList returns digits as '0' thru '9', so we will need to 
  1721     // always need to subtract the character 0 to get the numeric value to use for indexing.
  1723     UChar32 localizedDigits[10];
  1724     localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
  1725     localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
  1726     localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
  1727     localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
  1728     localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
  1729     localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
  1730     localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
  1731     localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
  1732     localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
  1733     localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
  1735     const UnicodeString *grouping ;
  1736     if(fCurrencySignCount == fgCurrencySignCountZero) {
  1737         grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
  1738     }else{
  1739         grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
  1741     const UnicodeString *decimal;
  1742     if(fCurrencySignCount == fgCurrencySignCountZero) {
  1743         decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
  1744     } else {
  1745         decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
  1747     UBool useSigDig = areSignificantDigitsUsed();
  1748     int32_t maxIntDig = getMaximumIntegerDigits();
  1749     int32_t minIntDig = getMinimumIntegerDigits();
  1751     // Appends the prefix.
  1752     double doubleValue = digits.getDouble();
  1753     int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
  1755     if (fUseExponentialNotation)
  1757         int currentLength = appendTo.length();
  1758         int intBegin = currentLength;
  1759         int intEnd = -1;
  1760         int fracBegin = -1;
  1762         int32_t minFracDig = 0;
  1763         if (useSigDig) {
  1764             maxIntDig = minIntDig = 1;
  1765             minFracDig = getMinimumSignificantDigits() - 1;
  1766         } else {
  1767             minFracDig = getMinimumFractionDigits();
  1768             if (maxIntDig > kMaxScientificIntegerDigits) {
  1769                 maxIntDig = 1;
  1770                 if (maxIntDig < minIntDig) {
  1771                     maxIntDig = minIntDig;
  1774             if (maxIntDig > minIntDig) {
  1775                 minIntDig = 1;
  1779         // Minimum integer digits are handled in exponential format by
  1780         // adjusting the exponent.  For example, 0.01234 with 3 minimum
  1781         // integer digits is "123.4E-4".
  1783         // Maximum integer digits are interpreted as indicating the
  1784         // repeating range.  This is useful for engineering notation, in
  1785         // which the exponent is restricted to a multiple of 3.  For
  1786         // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
  1787         // If maximum integer digits are defined and are larger than
  1788         // minimum integer digits, then minimum integer digits are
  1789         // ignored.
  1790         digits.reduce();   // Removes trailing zero digits.
  1791         int32_t exponent = digits.getDecimalAt();
  1792         if (maxIntDig > 1 && maxIntDig != minIntDig) {
  1793             // A exponent increment is defined; adjust to it.
  1794             exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
  1795                                       : (exponent / maxIntDig) - 1;
  1796             exponent *= maxIntDig;
  1797         } else {
  1798             // No exponent increment is defined; use minimum integer digits.
  1799             // If none is specified, as in "#E0", generate 1 integer digit.
  1800             exponent -= (minIntDig > 0 || minFracDig > 0)
  1801                         ? minIntDig : 1;
  1804         // We now output a minimum number of digits, and more if there
  1805         // are more digits, up to the maximum number of digits.  We
  1806         // place the decimal point after the "integer" digits, which
  1807         // are the first (decimalAt - exponent) digits.
  1808         int32_t minimumDigits =  minIntDig + minFracDig;
  1809         // The number of integer digits is handled specially if the number
  1810         // is zero, since then there may be no digits.
  1811         int32_t integerDigits = digits.isZero() ? minIntDig :
  1812             digits.getDecimalAt() - exponent;
  1813         int32_t totalDigits = digits.getCount();
  1814         if (minimumDigits > totalDigits)
  1815             totalDigits = minimumDigits;
  1816         if (integerDigits > totalDigits)
  1817             totalDigits = integerDigits;
  1819         // totalDigits records total number of digits needs to be processed
  1820         int32_t i;
  1821         for (i=0; i<totalDigits; ++i)
  1823             if (i == integerDigits)
  1825                 intEnd = appendTo.length();
  1826                 handler.addAttribute(kIntegerField, intBegin, intEnd);
  1828                 appendTo += *decimal;
  1830                 fracBegin = appendTo.length();
  1831                 handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
  1833             // Restores the digit character or pads the buffer with zeros.
  1834             UChar32 c = (UChar32)((i < digits.getCount()) ?
  1835                           localizedDigits[digits.getDigitValue(i)] :
  1836                           localizedDigits[0]);
  1837             appendTo += c;
  1840         currentLength = appendTo.length();
  1842         if (intEnd < 0) {
  1843             handler.addAttribute(kIntegerField, intBegin, currentLength);
  1845         if (fracBegin > 0) {
  1846             handler.addAttribute(kFractionField, fracBegin, currentLength);
  1849         // The exponent is output using the pattern-specified minimum
  1850         // exponent digits.  There is no maximum limit to the exponent
  1851         // digits, since truncating the exponent would appendTo in an
  1852         // unacceptable inaccuracy.
  1853         appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
  1855         handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
  1856         currentLength = appendTo.length();
  1858         // For zero values, we force the exponent to zero.  We
  1859         // must do this here, and not earlier, because the value
  1860         // is used to determine integer digit count above.
  1861         if (digits.isZero())
  1862             exponent = 0;
  1864         if (exponent < 0) {
  1865             appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  1866             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
  1867         } else if (fExponentSignAlwaysShown) {
  1868             appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  1869             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
  1872         currentLength = appendTo.length();
  1874         DigitList expDigits;
  1875         expDigits.set(exponent);
  1877             int expDig = fMinExponentDigits;
  1878             if (fUseExponentialNotation && expDig < 1) {
  1879                 expDig = 1;
  1881             for (i=expDigits.getDecimalAt(); i<expDig; ++i)
  1882                 appendTo += (localizedDigits[0]);
  1884         for (i=0; i<expDigits.getDecimalAt(); ++i)
  1886             UChar32 c = (UChar32)((i < expDigits.getCount()) ?
  1887                           localizedDigits[expDigits.getDigitValue(i)] : 
  1888                           localizedDigits[0]);
  1889             appendTo += c;
  1892         handler.addAttribute(kExponentField, currentLength, appendTo.length());
  1894     else  // Not using exponential notation
  1896         int currentLength = appendTo.length();
  1897         int intBegin = currentLength;
  1899         int32_t sigCount = 0;
  1900         int32_t minSigDig = getMinimumSignificantDigits();
  1901         int32_t maxSigDig = getMaximumSignificantDigits();
  1902         if (!useSigDig) {
  1903             minSigDig = 0;
  1904             maxSigDig = INT32_MAX;
  1907         // Output the integer portion.  Here 'count' is the total
  1908         // number of integer digits we will display, including both
  1909         // leading zeros required to satisfy getMinimumIntegerDigits,
  1910         // and actual digits present in the number.
  1911         int32_t count = useSigDig ?
  1912             _max(1, digits.getDecimalAt()) : minIntDig;
  1913         if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
  1914             count = digits.getDecimalAt();
  1917         // Handle the case where getMaximumIntegerDigits() is smaller
  1918         // than the real number of integer digits.  If this is so, we
  1919         // output the least significant max integer digits.  For example,
  1920         // the value 1997 printed with 2 max integer digits is just "97".
  1922         int32_t digitIndex = 0; // Index into digitList.fDigits[]
  1923         if (count > maxIntDig && maxIntDig >= 0) {
  1924             count = maxIntDig;
  1925             digitIndex = digits.getDecimalAt() - count;
  1926             if(fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
  1927                 status = U_ILLEGAL_ARGUMENT_ERROR;
  1931         int32_t sizeBeforeIntegerPart = appendTo.length();
  1933         int32_t i;
  1934         for (i=count-1; i>=0; --i)
  1936             if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
  1937                 sigCount < maxSigDig) {
  1938                 // Output a real digit
  1939                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
  1940                 ++sigCount;
  1942             else
  1944                 // Output a zero (leading or trailing)
  1945                 appendTo += localizedDigits[0];
  1946                 if (sigCount > 0) {
  1947                     ++sigCount;
  1951             // Output grouping separator if necessary.
  1952             if (isGroupingPosition(i)) {
  1953                 currentLength = appendTo.length();
  1954                 appendTo.append(*grouping);
  1955                 handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
  1959         // This handles the special case of formatting 0. For zero only, we count the
  1960         // zero to the left of the decimal point as one signficant digit. Ordinarily we
  1961         // do not count any leading 0's as significant. If the number we are formatting
  1962         // is not zero, then either sigCount or digits.getCount() will be non-zero.
  1963         if (sigCount == 0 && digits.getCount() == 0) {
  1964           sigCount = 1;
  1967         // TODO(dlf): this looks like it was a bug, we marked the int field as ending
  1968         // before the zero was generated.
  1969         // Record field information for caller.
  1970         // if (fieldPosition.getField() == NumberFormat::kIntegerField)
  1971         //     fieldPosition.setEndIndex(appendTo.length());
  1973         // Determine whether or not there are any printable fractional
  1974         // digits.  If we've used up the digits we know there aren't.
  1975         UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
  1976             (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
  1978         // If there is no fraction present, and we haven't printed any
  1979         // integer digits, then print a zero.  Otherwise we won't print
  1980         // _any_ digits, and we won't be able to parse this string.
  1981         if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
  1982             appendTo += localizedDigits[0];
  1984         currentLength = appendTo.length();
  1985         handler.addAttribute(kIntegerField, intBegin, currentLength);
  1987         // Output the decimal separator if we always do so.
  1988         if (fDecimalSeparatorAlwaysShown || fractionPresent) {
  1989             appendTo += *decimal;
  1990             handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
  1991             currentLength = appendTo.length();
  1994         int fracBegin = currentLength;
  1996         count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
  1997         if (useSigDig && (sigCount == maxSigDig ||
  1998                           (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
  1999             count = 0;
  2002         for (i=0; i < count; ++i) {
  2003             // Here is where we escape from the loop.  We escape
  2004             // if we've output the maximum fraction digits
  2005             // (specified in the for expression above).  We also
  2006             // stop when we've output the minimum digits and
  2007             // either: we have an integer, so there is no
  2008             // fractional stuff to display, or we're out of
  2009             // significant digits.
  2010             if (!useSigDig && i >= getMinimumFractionDigits() &&
  2011                 (isInteger || digitIndex >= digits.getCount())) {
  2012                 break;
  2015             // Output leading fractional zeros.  These are zeros
  2016             // that come after the decimal but before any
  2017             // significant digits.  These are only output if
  2018             // abs(number being formatted) < 1.0.
  2019             if (-1-i > (digits.getDecimalAt()-1)) {
  2020                 appendTo += localizedDigits[0];
  2021                 continue;
  2024             // Output a digit, if we have any precision left, or a
  2025             // zero if we don't.  We don't want to output noise digits.
  2026             if (!isInteger && digitIndex < digits.getCount()) {
  2027                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
  2028             } else {
  2029                 appendTo += localizedDigits[0];
  2032             // If we reach the maximum number of significant
  2033             // digits, or if we output all the real digits and
  2034             // reach the minimum, then we are done.
  2035             ++sigCount;
  2036             if (useSigDig &&
  2037                 (sigCount == maxSigDig ||
  2038                  (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
  2039                 break;
  2043         handler.addAttribute(kFractionField, fracBegin, appendTo.length());
  2046     int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
  2048     addPadding(appendTo, handler, prefixLen, suffixLen);
  2049     return appendTo;
  2052 /**
  2053  * Inserts the character fPad as needed to expand result to fFormatWidth.
  2054  * @param result the string to be padded
  2055  */
  2056 void DecimalFormat::addPadding(UnicodeString& appendTo,
  2057                                FieldPositionHandler& handler,
  2058                                int32_t prefixLen,
  2059                                int32_t suffixLen) const
  2061     if (fFormatWidth > 0) {
  2062         int32_t len = fFormatWidth - appendTo.length();
  2063         if (len > 0) {
  2064             UnicodeString padding;
  2065             for (int32_t i=0; i<len; ++i) {
  2066                 padding += fPad;
  2068             switch (fPadPosition) {
  2069             case kPadAfterPrefix:
  2070                 appendTo.insert(prefixLen, padding);
  2071                 break;
  2072             case kPadBeforePrefix:
  2073                 appendTo.insert(0, padding);
  2074                 break;
  2075             case kPadBeforeSuffix:
  2076                 appendTo.insert(appendTo.length() - suffixLen, padding);
  2077                 break;
  2078             case kPadAfterSuffix:
  2079                 appendTo += padding;
  2080                 break;
  2082             if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
  2083                 handler.shiftLast(len);
  2089 //------------------------------------------------------------------------------
  2091 void
  2092 DecimalFormat::parse(const UnicodeString& text,
  2093                      Formattable& result,
  2094                      ParsePosition& parsePosition) const {
  2095     parse(text, result, parsePosition, NULL);
  2098 CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
  2099                                              ParsePosition& pos) const {
  2100     Formattable parseResult;
  2101     int32_t start = pos.getIndex();
  2102     UChar curbuf[4] = {};
  2103     parse(text, parseResult, pos, curbuf);
  2104     if (pos.getIndex() != start) {
  2105         UErrorCode ec = U_ZERO_ERROR;
  2106         LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec));
  2107         if (U_FAILURE(ec)) {
  2108             pos.setIndex(start); // indicate failure
  2109         } else {
  2110             return currAmt.orphan();
  2113     return NULL;
  2116 /**
  2117  * Parses the given text as a number, optionally providing a currency amount.
  2118  * @param text the string to parse
  2119  * @param result output parameter for the numeric result.
  2120  * @param parsePosition input-output position; on input, the
  2121  * position within text to match; must have 0 <= pos.getIndex() <
  2122  * text.length(); on output, the position after the last matched
  2123  * character. If the parse fails, the position in unchanged upon
  2124  * output.
  2125  * @param currency if non-NULL, it should point to a 4-UChar buffer.
  2126  * In this case the text is parsed as a currency format, and the
  2127  * ISO 4217 code for the parsed currency is put into the buffer.
  2128  * Otherwise the text is parsed as a non-currency format.
  2129  */
  2130 void DecimalFormat::parse(const UnicodeString& text,
  2131                           Formattable& result,
  2132                           ParsePosition& parsePosition,
  2133                           UChar* currency) const {
  2134     int32_t startIdx, backup;
  2135     int32_t i = startIdx = backup = parsePosition.getIndex();
  2137     // clear any old contents in the result.  In particular, clears any DigitList
  2138     //   that it may be holding.
  2139     result.setLong(0);
  2140     if (currency != NULL) {
  2141         for (int32_t ci=0; ci<4; ci++) {
  2142             currency[ci] = 0;
  2146     // Handle NaN as a special case:
  2148     // Skip padding characters, if around prefix
  2149     if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
  2150                              fPadPosition == kPadAfterPrefix)) {
  2151         i = skipPadding(text, i);
  2154     if (isLenient()) {
  2155         // skip any leading whitespace
  2156         i = backup = skipUWhiteSpace(text, i);
  2159     // If the text is composed of the representation of NaN, returns NaN.length
  2160     const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
  2161     int32_t nanLen = (text.compare(i, nan->length(), *nan)
  2162                       ? 0 : nan->length());
  2163     if (nanLen) {
  2164         i += nanLen;
  2165         if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
  2166                                  fPadPosition == kPadAfterSuffix)) {
  2167             i = skipPadding(text, i);
  2169         parsePosition.setIndex(i);
  2170         result.setDouble(uprv_getNaN());
  2171         return;
  2174     // NaN parse failed; start over
  2175     i = backup;
  2176     parsePosition.setIndex(i);
  2178     // status is used to record whether a number is infinite.
  2179     UBool status[fgStatusLength];
  2181     DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
  2182     if (digits == NULL) {
  2183         return;    // no way to report error from here.
  2186     if (fCurrencySignCount != fgCurrencySignCountZero) {
  2187         if (!parseForCurrency(text, parsePosition, *digits,
  2188                               status, currency)) {
  2189           return;
  2191     } else {
  2192         if (!subparse(text,
  2193                       fNegPrefixPattern, fNegSuffixPattern,
  2194                       fPosPrefixPattern, fPosSuffixPattern,
  2195                       FALSE, UCURR_SYMBOL_NAME,
  2196                       parsePosition, *digits, status, currency)) {
  2197             debug("!subparse(...) - rewind");
  2198             parsePosition.setIndex(startIdx);
  2199             return;
  2203     // Handle infinity
  2204     if (status[fgStatusInfinite]) {
  2205         double inf = uprv_getInfinity();
  2206         result.setDouble(digits->isPositive() ? inf : -inf);
  2207         // TODO:  set the dl to infinity, and let it fall into the code below.
  2210     else {
  2212         if (fMultiplier != NULL) {
  2213             UErrorCode ec = U_ZERO_ERROR;
  2214             digits->div(*fMultiplier, ec);
  2217         if (fScale != 0) {
  2218             DigitList ten;
  2219             ten.set((int32_t)10);
  2220             if (fScale > 0) {
  2221                 for (int32_t i = fScale; i > 0; i--) {
  2222                     UErrorCode ec = U_ZERO_ERROR;
  2223                     digits->div(ten,ec);
  2225             } else {
  2226                 for (int32_t i = fScale; i < 0; i++) {
  2227                     UErrorCode ec = U_ZERO_ERROR;
  2228                     digits->mult(ten,ec);
  2233         // Negative zero special case:
  2234         //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
  2235         //    if not parsing integerOnly, leave as -0, which a double can represent.
  2236         if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
  2237             digits->setPositive(TRUE);
  2239         result.adoptDigitList(digits);
  2245 UBool
  2246 DecimalFormat::parseForCurrency(const UnicodeString& text,
  2247                                 ParsePosition& parsePosition,
  2248                                 DigitList& digits,
  2249                                 UBool* status,
  2250                                 UChar* currency) const {
  2251     int origPos = parsePosition.getIndex();
  2252     int maxPosIndex = origPos;
  2253     int maxErrorPos = -1;
  2254     // First, parse against current pattern.
  2255     // Since current pattern could be set by applyPattern(),
  2256     // it could be an arbitrary pattern, and it may not be the one
  2257     // defined in current locale.
  2258     UBool tmpStatus[fgStatusLength];
  2259     ParsePosition tmpPos(origPos);
  2260     DigitList tmpDigitList;
  2261     UBool found;
  2262     if (fStyle == UNUM_CURRENCY_PLURAL) {
  2263         found = subparse(text,
  2264                          fNegPrefixPattern, fNegSuffixPattern,
  2265                          fPosPrefixPattern, fPosSuffixPattern,
  2266                          TRUE, UCURR_LONG_NAME,
  2267                          tmpPos, tmpDigitList, tmpStatus, currency);
  2268     } else {
  2269         found = subparse(text,
  2270                          fNegPrefixPattern, fNegSuffixPattern,
  2271                          fPosPrefixPattern, fPosSuffixPattern,
  2272                          TRUE, UCURR_SYMBOL_NAME,
  2273                          tmpPos, tmpDigitList, tmpStatus, currency);
  2275     if (found) {
  2276         if (tmpPos.getIndex() > maxPosIndex) {
  2277             maxPosIndex = tmpPos.getIndex();
  2278             for (int32_t i = 0; i < fgStatusLength; ++i) {
  2279                 status[i] = tmpStatus[i];
  2281             digits = tmpDigitList;
  2283     } else {
  2284         maxErrorPos = tmpPos.getErrorIndex();
  2286     // Then, parse against affix patterns.
  2287     // Those are currency patterns and currency plural patterns.
  2288     int32_t pos = -1;
  2289     const UHashElement* element = NULL;
  2290     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
  2291         const UHashTok valueTok = element->value;
  2292         const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
  2293         UBool tmpStatus[fgStatusLength];
  2294         ParsePosition tmpPos(origPos);
  2295         DigitList tmpDigitList;
  2297 #ifdef FMT_DEBUG
  2298         debug("trying affix for currency..");
  2299         affixPtn->dump();
  2300 #endif
  2302         UBool result = subparse(text,
  2303                                 &affixPtn->negPrefixPatternForCurrency,
  2304                                 &affixPtn->negSuffixPatternForCurrency,
  2305                                 &affixPtn->posPrefixPatternForCurrency,
  2306                                 &affixPtn->posSuffixPatternForCurrency,
  2307                                 TRUE, affixPtn->patternType,
  2308                                 tmpPos, tmpDigitList, tmpStatus, currency);
  2309         if (result) {
  2310             found = true;
  2311             if (tmpPos.getIndex() > maxPosIndex) {
  2312                 maxPosIndex = tmpPos.getIndex();
  2313                 for (int32_t i = 0; i < fgStatusLength; ++i) {
  2314                     status[i] = tmpStatus[i];
  2316                 digits = tmpDigitList;
  2318         } else {
  2319             maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
  2320                           tmpPos.getErrorIndex() : maxErrorPos;
  2323     // Finally, parse against simple affix to find the match.
  2324     // For example, in TestMonster suite,
  2325     // if the to-be-parsed text is "-\u00A40,00".
  2326     // complexAffixCompare will not find match,
  2327     // since there is no ISO code matches "\u00A4",
  2328     // and the parse stops at "\u00A4".
  2329     // We will just use simple affix comparison (look for exact match)
  2330     // to pass it.
  2331     //
  2332     // TODO: We should parse against simple affix first when
  2333     // output currency is not requested. After the complex currency
  2334     // parsing implementation was introduced, the default currency
  2335     // instance parsing slowed down because of the new code flow.
  2336     // I filed #10312 - Yoshito
  2337     UBool tmpStatus_2[fgStatusLength];
  2338     ParsePosition tmpPos_2(origPos);
  2339     DigitList tmpDigitList_2;
  2341     // Disable complex currency parsing and try it again.
  2342     UBool result = subparse(text,
  2343                             &fNegativePrefix, &fNegativeSuffix,
  2344                             &fPositivePrefix, &fPositiveSuffix,
  2345                             FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
  2346                             tmpPos_2, tmpDigitList_2, tmpStatus_2,
  2347                             currency);
  2348     if (result) {
  2349         if (tmpPos_2.getIndex() > maxPosIndex) {
  2350             maxPosIndex = tmpPos_2.getIndex();
  2351             for (int32_t i = 0; i < fgStatusLength; ++i) {
  2352                 status[i] = tmpStatus_2[i];
  2354             digits = tmpDigitList_2;
  2356         found = true;
  2357     } else {
  2358             maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
  2359                           tmpPos_2.getErrorIndex() : maxErrorPos;
  2362     if (!found) {
  2363         //parsePosition.setIndex(origPos);
  2364         parsePosition.setErrorIndex(maxErrorPos);
  2365     } else {
  2366         parsePosition.setIndex(maxPosIndex);
  2367         parsePosition.setErrorIndex(-1);
  2369     return found;
  2373 /**
  2374  * Parse the given text into a number.  The text is parsed beginning at
  2375  * parsePosition, until an unparseable character is seen.
  2376  * @param text the string to parse.
  2377  * @param negPrefix negative prefix.
  2378  * @param negSuffix negative suffix.
  2379  * @param posPrefix positive prefix.
  2380  * @param posSuffix positive suffix.
  2381  * @param complexCurrencyParsing whether it is complex currency parsing or not.
  2382  * @param type the currency type to parse against, LONG_NAME only or not.
  2383  * @param parsePosition The position at which to being parsing.  Upon
  2384  * return, the first unparsed character.
  2385  * @param digits the DigitList to set to the parsed value.
  2386  * @param status output param containing boolean status flags indicating
  2387  * whether the value was infinite and whether it was positive.
  2388  * @param currency return value for parsed currency, for generic
  2389  * currency parsing mode, or NULL for normal parsing. In generic
  2390  * currency parsing mode, any currency is parsed, not just the
  2391  * currency that this formatter is set to.
  2392  */
  2393 UBool DecimalFormat::subparse(const UnicodeString& text,
  2394                               const UnicodeString* negPrefix,
  2395                               const UnicodeString* negSuffix,
  2396                               const UnicodeString* posPrefix,
  2397                               const UnicodeString* posSuffix,
  2398                               UBool complexCurrencyParsing,
  2399                               int8_t type,
  2400                               ParsePosition& parsePosition,
  2401                               DigitList& digits, UBool* status,
  2402                               UChar* currency) const
  2404     //  The parsing process builds up the number as char string, in the neutral format that
  2405     //  will be acceptable to the decNumber library, then at the end passes that string
  2406     //  off for conversion to a decNumber.
  2407     UErrorCode err = U_ZERO_ERROR;
  2408     CharString parsedNum;
  2409     digits.setToZero();
  2411     int32_t position = parsePosition.getIndex();
  2412     int32_t oldStart = position;
  2413     int32_t textLength = text.length(); // One less pointer to follow
  2414     UBool strictParse = !isLenient();
  2415     UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
  2416     const UnicodeString *groupingString = &getConstSymbol(fCurrencySignCount == fgCurrencySignCountZero ?
  2417         DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
  2418     UChar32 groupingChar = groupingString->char32At(0);
  2419     int32_t groupingStringLength = groupingString->length();
  2420     int32_t groupingCharLength   = U16_LENGTH(groupingChar);
  2421     UBool   groupingUsed = isGroupingUsed();
  2422 #ifdef FMT_DEBUG
  2423     UChar dbgbuf[300];
  2424     UnicodeString s(dbgbuf,0,300);;
  2425     s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
  2426 #define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "="));  if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
  2427     DBGAPPD(negPrefix);
  2428     DBGAPPD(negSuffix);
  2429     DBGAPPD(posPrefix);
  2430     DBGAPPD(posSuffix);
  2431     debugout(s);
  2432     printf("currencyParsing=%d, fFormatWidth=%d, isParseIntegerOnly=%c text.length=%d negPrefLen=%d\n", currencyParsing, fFormatWidth, (isParseIntegerOnly())?'Y':'N', text.length(),  negPrefix!=NULL?negPrefix->length():-1);
  2433 #endif
  2435     UBool fastParseOk = false; /* TRUE iff fast parse is OK */
  2436     // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
  2437     const DecimalFormatInternal &data = internalData(fReserved);
  2438     if((data.fFastParseStatus==kFastpathYES) &&
  2439        fCurrencySignCount == fgCurrencySignCountZero &&
  2440        //       (negPrefix!=NULL&&negPrefix->isEmpty()) ||
  2441        text.length()>0 &&
  2442        text.length()<32 &&
  2443        (posPrefix==NULL||posPrefix->isEmpty()) &&
  2444        (posSuffix==NULL||posSuffix->isEmpty()) &&
  2445        //            (negPrefix==NULL||negPrefix->isEmpty()) &&
  2446        //            (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
  2447        TRUE) {  // optimized path
  2448       int j=position;
  2449       int l=text.length();
  2450       int digitCount=0;
  2451       UChar32 ch = text.char32At(j);
  2452       const UnicodeString *decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
  2453       UChar32 decimalChar = 0;
  2454       UBool intOnly = FALSE;
  2455       UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
  2457       int32_t decimalCount = decimalString->countChar32(0,3);
  2458       if(isParseIntegerOnly()) {
  2459         decimalChar = 0; // not allowed
  2460         intOnly = TRUE; // Don't look for decimals.
  2461       } else if(decimalCount==1) {
  2462         decimalChar = decimalString->char32At(0); // Look for this decimal
  2463       } else if(decimalCount==0) {
  2464         decimalChar=0; // NO decimal set
  2465       } else {
  2466         j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
  2469 #ifdef FMT_DEBUG
  2470       printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
  2471         decimalChar, groupingChar, ch,
  2472         (intOnly)?'y':'n',
  2473         (strictParse)?'y':'n');
  2474 #endif
  2475       if(ch==0x002D) { // '-'
  2476         j=l+1;//=break - negative number.
  2478         /*
  2479           parsedNum.append('-',err); 
  2480           j+=U16_LENGTH(ch);
  2481           if(j<l) ch = text.char32At(j);
  2482         */
  2483       } else {
  2484         parsedNum.append('+',err);
  2486       while(j<l) {
  2487         int32_t digit = ch - zero;
  2488         if(digit >=0 && digit <= 9) {
  2489           parsedNum.append((char)(digit + '0'), err);
  2490           if((digitCount>0) || digit!=0 || j==(l-1)) {
  2491             digitCount++;
  2493         } else if(ch == 0) { // break out
  2494           digitCount=-1;
  2495           break;
  2496         } else if(ch == decimalChar) {
  2497           parsedNum.append((char)('.'), err);
  2498           decimalChar=0; // no more decimals.
  2499           // fastParseHadDecimal=TRUE;
  2500         } else if(ch == lookForGroup) {
  2501           // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
  2502         } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
  2503           // parsing integer only and can fall through
  2504         } else {
  2505           digitCount=-1; // fail - fall through to slow parse
  2506           break;
  2508         j+=U16_LENGTH(ch);
  2509         ch = text.char32At(j); // for next  
  2511       if(
  2512          ((j==l)||intOnly) // end OR only parsing integer
  2513          && (digitCount>0)) { // and have at least one digit
  2514 #ifdef FMT_DEBUG
  2515         printf("PP -> %d, good = [%s]  digitcount=%d, fGroupingSize=%d fGroupingSize2=%d!\n", j, parsedNum.data(), digitCount, fGroupingSize, fGroupingSize2);
  2516 #endif
  2517         fastParseOk=true; // Fast parse OK!
  2519 #ifdef SKIP_OPT
  2520         debug("SKIP_OPT");
  2521         /* for testing, try it the slow way. also */
  2522         fastParseOk=false;
  2523         parsedNum.clear();
  2524 #else
  2525         parsePosition.setIndex(position=j);
  2526         status[fgStatusInfinite]=false;
  2527 #endif
  2528       } else {
  2529         // was not OK. reset, retry
  2530 #ifdef FMT_DEBUG
  2531         printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
  2532 #endif
  2533         parsedNum.clear();
  2535     } else {
  2536 #ifdef FMT_DEBUG
  2537       printf("Could not fastpath parse. ");
  2538       printf("fFormatWidth=%d ", fFormatWidth);
  2539       printf("text.length()=%d ", text.length());
  2540       printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
  2542       printf("\n");
  2543 #endif
  2546   if(!fastParseOk 
  2547 #if UCONFIG_HAVE_PARSEALLINPUT
  2548      && fParseAllInput!=UNUM_YES
  2549 #endif
  2552     // Match padding before prefix
  2553     if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
  2554         position = skipPadding(text, position);
  2557     // Match positive and negative prefixes; prefer longest match.
  2558     int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
  2559     int32_t negMatch = compareAffix(text, position, TRUE,  TRUE, negPrefix, complexCurrencyParsing, type, currency);
  2560     if (posMatch >= 0 && negMatch >= 0) {
  2561         if (posMatch > negMatch) {
  2562             negMatch = -1;
  2563         } else if (negMatch > posMatch) {
  2564             posMatch = -1;
  2567     if (posMatch >= 0) {
  2568         position += posMatch;
  2569         parsedNum.append('+', err);
  2570     } else if (negMatch >= 0) {
  2571         position += negMatch;
  2572         parsedNum.append('-', err);
  2573     } else if (strictParse){
  2574         parsePosition.setErrorIndex(position);
  2575         return FALSE;
  2576     } else {
  2577         // Temporary set positive. This might be changed after checking suffix
  2578         parsedNum.append('+', err);
  2581     // Match padding before prefix
  2582     if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
  2583         position = skipPadding(text, position);
  2586     if (! strictParse) {
  2587         position = skipUWhiteSpace(text, position);
  2590     // process digits or Inf, find decimal position
  2591     const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
  2592     int32_t infLen = (text.compare(position, inf->length(), *inf)
  2593         ? 0 : inf->length());
  2594     position += infLen; // infLen is non-zero when it does equal to infinity
  2595     status[fgStatusInfinite] = infLen != 0;
  2597     if (infLen != 0) {
  2598         parsedNum.append("Infinity", err);
  2599     } else {
  2600         // We now have a string of digits, possibly with grouping symbols,
  2601         // and decimal points.  We want to process these into a DigitList.
  2602         // We don't want to put a bunch of leading zeros into the DigitList
  2603         // though, so we keep track of the location of the decimal point,
  2604         // put only significant digits into the DigitList, and adjust the
  2605         // exponent as needed.
  2608         UBool strictFail = FALSE; // did we exit with a strict parse failure?
  2609         int32_t lastGroup = -1; // where did we last see a grouping separator?
  2610         int32_t digitStart = position;
  2611         int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
  2613         const UnicodeString *decimalString;
  2614         if (fCurrencySignCount != fgCurrencySignCountZero) {
  2615             decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
  2616         } else {
  2617             decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
  2619         UChar32 decimalChar = decimalString->char32At(0);
  2620         int32_t decimalStringLength = decimalString->length();
  2621         int32_t decimalCharLength   = U16_LENGTH(decimalChar);
  2623         UBool sawDecimal = FALSE;
  2624         UChar32 sawDecimalChar = 0xFFFF;
  2625         UBool sawGrouping = FALSE;
  2626         UChar32 sawGroupingChar = 0xFFFF;
  2627         UBool sawDigit = FALSE;
  2628         int32_t backup = -1;
  2629         int32_t digit;
  2631         // equivalent grouping and decimal support
  2632         const UnicodeSet *decimalSet = NULL;
  2633         const UnicodeSet *groupingSet = NULL;
  2635         if (decimalCharLength == decimalStringLength) {
  2636             decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
  2639         if (groupingCharLength == groupingStringLength) {
  2640             if (strictParse) {
  2641                 groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
  2642             } else {
  2643                 groupingSet = fStaticSets->fDefaultGroupingSeparators;
  2647         // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
  2648         // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
  2649         // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
  2651         // We have to track digitCount ourselves, because digits.fCount will
  2652         // pin when the maximum allowable digits is reached.
  2653         int32_t digitCount = 0;
  2654         int32_t integerDigitCount = 0;
  2656         for (; position < textLength; )
  2658             UChar32 ch = text.char32At(position);
  2660             /* We recognize all digit ranges, not only the Latin digit range
  2661              * '0'..'9'.  We do so by using the Character.digit() method,
  2662              * which converts a valid Unicode digit to the range 0..9.
  2664              * The character 'ch' may be a digit.  If so, place its value
  2665              * from 0 to 9 in 'digit'.  First try using the locale digit,
  2666              * which may or MAY NOT be a standard Unicode digit range.  If
  2667              * this fails, try using the standard Unicode digit ranges by
  2668              * calling Character.digit().  If this also fails, digit will 
  2669              * have a value outside the range 0..9.
  2670              */
  2671             digit = ch - zero;
  2672             if (digit < 0 || digit > 9)
  2674                 digit = u_charDigitValue(ch);
  2677             // As a last resort, look through the localized digits if the zero digit
  2678             // is not a "standard" Unicode digit.
  2679             if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
  2680                 digit = 0;
  2681                 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
  2682                     break;
  2684                 for (digit = 1 ; digit < 10 ; digit++ ) {
  2685                     if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
  2686                         break;
  2691             if (digit >= 0 && digit <= 9)
  2693                 if (strictParse && backup != -1) {
  2694                     // comma followed by digit, so group before comma is a
  2695                     // secondary group.  If there was a group separator
  2696                     // before that, the group must == the secondary group
  2697                     // length, else it can be <= the the secondary group
  2698                     // length.
  2699                     if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
  2700                         (lastGroup == -1 && position - digitStart - 1 > gs2)) {
  2701                         strictFail = TRUE;
  2702                         break;
  2705                     lastGroup = backup;
  2708                 // Cancel out backup setting (see grouping handler below)
  2709                 backup = -1;
  2710                 sawDigit = TRUE;
  2712                 // Note: this will append leading zeros
  2713                 parsedNum.append((char)(digit + '0'), err);
  2715                 // count any digit that's not a leading zero
  2716                 if (digit > 0 || digitCount > 0 || sawDecimal) {
  2717                     digitCount += 1;
  2719                     // count any integer digit that's not a leading zero
  2720                     if (! sawDecimal) {
  2721                         integerDigitCount += 1;
  2725                 position += U16_LENGTH(ch);
  2727             else if (groupingStringLength > 0 && 
  2728                 matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet, 
  2729                             decimalChar, decimalSet,
  2730                             ch) && groupingUsed)
  2732                 if (sawDecimal) {
  2733                     break;
  2736                 if (strictParse) {
  2737                     if ((!sawDigit || backup != -1)) {
  2738                         // leading group, or two group separators in a row
  2739                         strictFail = TRUE;
  2740                         break;
  2744                 // Ignore grouping characters, if we are using them, but require
  2745                 // that they be followed by a digit.  Otherwise we backup and
  2746                 // reprocess them.
  2747                 backup = position;
  2748                 position += groupingStringLength;
  2749                 sawGrouping=TRUE;
  2750                 // Once we see a grouping character, we only accept that grouping character from then on.
  2751                 sawGroupingChar=ch;
  2753             else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
  2755                 if (strictParse) {
  2756                     if (backup != -1 ||
  2757                         (lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
  2758                         strictFail = TRUE;
  2759                         break;
  2763                 // If we're only parsing integers, or if we ALREADY saw the
  2764                 // decimal, then don't parse this one.
  2765                 if (isParseIntegerOnly() || sawDecimal) {
  2766                     break;
  2769                 parsedNum.append('.', err);
  2770                 position += decimalStringLength;
  2771                 sawDecimal = TRUE;
  2772                 // Once we see a decimal character, we only accept that decimal character from then on.
  2773                 sawDecimalChar=ch;
  2774                 // decimalSet is considered to consist of (ch,ch)
  2776             else {
  2778                 if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
  2779                    isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
  2780                     const UnicodeString *tmp;
  2781                     tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
  2782                     // TODO: CASE
  2783                     if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT))    // error code is set below if !sawDigit 
  2785                         // Parse sign, if present
  2786                         int32_t pos = position + tmp->length();
  2787                         char exponentSign = '+';
  2789                         if (pos < textLength)
  2791                             tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  2792                             if (!text.compare(pos, tmp->length(), *tmp))
  2794                                 pos += tmp->length();
  2796                             else {
  2797                                 tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  2798                                 if (!text.compare(pos, tmp->length(), *tmp))
  2800                                     exponentSign = '-';
  2801                                     pos += tmp->length();
  2806                         UBool sawExponentDigit = FALSE;
  2807                         while (pos < textLength) {
  2808                             ch = text[(int32_t)pos];
  2809                             digit = ch - zero;
  2811                             if (digit < 0 || digit > 9) {
  2812                                 digit = u_charDigitValue(ch);
  2814                             if (0 <= digit && digit <= 9) {
  2815                                 if (!sawExponentDigit) {
  2816                                     parsedNum.append('E', err);
  2817                                     parsedNum.append(exponentSign, err);
  2818                                     sawExponentDigit = TRUE;
  2820                                 ++pos;
  2821                                 parsedNum.append((char)(digit + '0'), err);
  2822                             } else {
  2823                                 break;
  2827                         if (sawExponentDigit) {
  2828                             position = pos; // Advance past the exponent
  2831                         break; // Whether we fail or succeed, we exit this loop
  2832                     } else {
  2833                         break;
  2835                 } else { // not parsing exponent
  2836                     break;
  2841         if (backup != -1)
  2843             position = backup;
  2846         if (strictParse && !sawDecimal) {
  2847             if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
  2848                 strictFail = TRUE;
  2852         if (strictFail) {
  2853             // only set with strictParse and a grouping separator error
  2855             parsePosition.setIndex(oldStart);
  2856             parsePosition.setErrorIndex(position);
  2857             debug("strictFail!");
  2858             return FALSE;
  2861         // If there was no decimal point we have an integer
  2863         // If none of the text string was recognized.  For example, parse
  2864         // "x" with pattern "#0.00" (return index and error index both 0)
  2865         // parse "$" with pattern "$#0.00". (return index 0 and error index
  2866         // 1).
  2867         if (!sawDigit && digitCount == 0) {
  2868 #ifdef FMT_DEBUG
  2869             debug("none of text rec");
  2870             printf("position=%d\n",position);
  2871 #endif
  2872             parsePosition.setIndex(oldStart);
  2873             parsePosition.setErrorIndex(oldStart);
  2874             return FALSE;
  2878     // Match padding before suffix
  2879     if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
  2880         position = skipPadding(text, position);
  2883     int32_t posSuffixMatch = -1, negSuffixMatch = -1;
  2885     // Match positive and negative suffixes; prefer longest match.
  2886     if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
  2887         posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
  2889     if (negMatch >= 0) {
  2890         negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
  2892     if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
  2893         if (posSuffixMatch > negSuffixMatch) {
  2894             negSuffixMatch = -1;
  2895         } else if (negSuffixMatch > posSuffixMatch) {
  2896             posSuffixMatch = -1;
  2900     // Fail if neither or both
  2901     if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
  2902         parsePosition.setErrorIndex(position);
  2903         debug("neither or both");
  2904         return FALSE;
  2907     position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
  2909     // Match padding before suffix
  2910     if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
  2911         position = skipPadding(text, position);
  2914     parsePosition.setIndex(position);
  2916     parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
  2917 #ifdef FMT_DEBUG
  2918 printf("PP -> %d, SLOW = [%s]!    pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
  2919 #endif
  2920   } /* end SLOW parse */
  2921   if(parsePosition.getIndex() == oldStart)
  2923 #ifdef FMT_DEBUG
  2924       printf(" PP didnt move, err\n");
  2925 #endif
  2926         parsePosition.setErrorIndex(position);
  2927         return FALSE;
  2929 #if UCONFIG_HAVE_PARSEALLINPUT
  2930   else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
  2932 #ifdef FMT_DEBUG
  2933       printf(" PP didnt consume all (UNUM_YES), err\n");
  2934 #endif
  2935         parsePosition.setErrorIndex(position);
  2936         return FALSE;
  2938 #endif
  2939     // uint32_t bits = (fastParseOk?kFastpathOk:0) |
  2940     //   (fastParseHadDecimal?0:kNoDecimal);
  2941     //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
  2942     digits.set(parsedNum.toStringPiece(),
  2943                err,
  2944                0//bits
  2945                );
  2947     if (U_FAILURE(err)) {
  2948 #ifdef FMT_DEBUG
  2949       printf(" err setting %s\n", u_errorName(err));
  2950 #endif
  2951         parsePosition.setErrorIndex(position);
  2952         return FALSE;
  2954     return TRUE;
  2957 /**
  2958  * Starting at position, advance past a run of pad characters, if any.
  2959  * Return the index of the first character after position that is not a pad
  2960  * character.  Result is >= position.
  2961  */
  2962 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
  2963     int32_t padLen = U16_LENGTH(fPad);
  2964     while (position < text.length() &&
  2965            text.char32At(position) == fPad) {
  2966         position += padLen;
  2968     return position;
  2971 /**
  2972  * Return the length matched by the given affix, or -1 if none.
  2973  * Runs of white space in the affix, match runs of white space in
  2974  * the input.  Pattern white space and input white space are
  2975  * determined differently; see code.
  2976  * @param text input text
  2977  * @param pos offset into input at which to begin matching
  2978  * @param isNegative
  2979  * @param isPrefix
  2980  * @param affixPat affix pattern used for currency affix comparison.
  2981  * @param complexCurrencyParsing whether it is currency parsing or not
  2982  * @param type the currency type to parse against, LONG_NAME only or not.
  2983  * @param currency return value for parsed currency, for generic
  2984  * currency parsing mode, or null for normal parsing. In generic
  2985  * currency parsing mode, any currency is parsed, not just the
  2986  * currency that this formatter is set to.
  2987  * @return length of input that matches, or -1 if match failure
  2988  */
  2989 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
  2990                                     int32_t pos,
  2991                                     UBool isNegative,
  2992                                     UBool isPrefix,
  2993                                     const UnicodeString* affixPat,
  2994                                     UBool complexCurrencyParsing,
  2995                                     int8_t type,
  2996                                     UChar* currency) const
  2998     const UnicodeString *patternToCompare;
  2999     if (fCurrencyChoice != NULL || currency != NULL ||
  3000         (fCurrencySignCount != fgCurrencySignCountZero && complexCurrencyParsing)) {
  3002         if (affixPat != NULL) {
  3003             return compareComplexAffix(*affixPat, text, pos, type, currency);
  3007     if (isNegative) {
  3008         if (isPrefix) {
  3009             patternToCompare = &fNegativePrefix;
  3011         else {
  3012             patternToCompare = &fNegativeSuffix;
  3015     else {
  3016         if (isPrefix) {
  3017             patternToCompare = &fPositivePrefix;
  3019         else {
  3020             patternToCompare = &fPositiveSuffix;
  3023     return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
  3026 UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
  3027     if (lhs == rhs) {
  3028         return TRUE;
  3030     U_ASSERT(fStaticSets != NULL); // should already be loaded
  3031     const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
  3032     const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
  3033     return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
  3034         (plusSigns->contains(lhs) && plusSigns->contains(rhs));
  3037 // check for LRM 0x200E, RLM 0x200F, ALM 0x061C
  3038 #define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
  3040 #define TRIM_BUFLEN 32
  3041 UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
  3042     UChar trimBuf[TRIM_BUFLEN];
  3043     int32_t affixLen = affix.length();
  3044     int32_t affixPos, trimLen = 0;
  3046     for (affixPos = 0; affixPos < affixLen; affixPos++) {
  3047         UChar c = affix.charAt(affixPos);
  3048         if (!IS_BIDI_MARK(c)) {
  3049         	if (trimLen < TRIM_BUFLEN) {
  3050         		trimBuf[trimLen++] = c;
  3051         	} else {
  3052         		trimLen = 0;
  3053         		break;
  3057     return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
  3060 /**
  3061  * Return the length matched by the given affix, or -1 if none.
  3062  * Runs of white space in the affix, match runs of white space in
  3063  * the input.  Pattern white space and input white space are
  3064  * determined differently; see code.
  3065  * @param affix pattern string, taken as a literal
  3066  * @param input input text
  3067  * @param pos offset into input at which to begin matching
  3068  * @return length of input that matches, or -1 if match failure
  3069  */
  3070 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
  3071                                           const UnicodeString& input,
  3072                                           int32_t pos,
  3073                                           UBool lenient) const {
  3074     int32_t start = pos;
  3075     UnicodeString trimmedAffix;
  3076     // For more efficiency we should keep lazily-created trimmed affixes around in
  3077     // instance variables instead of trimming each time they are used (the next step)
  3078     trimMarksFromAffix(affix, trimmedAffix);
  3079     UChar32 affixChar = trimmedAffix.char32At(0);
  3080     int32_t affixLength = trimmedAffix.length();
  3081     int32_t inputLength = input.length();
  3082     int32_t affixCharLength = U16_LENGTH(affixChar);
  3083     UnicodeSet *affixSet;
  3084     UErrorCode status = U_ZERO_ERROR;
  3086     U_ASSERT(fStaticSets != NULL); // should already be loaded
  3088     if (U_FAILURE(status)) {
  3089         return -1;
  3091     if (!lenient) {
  3092         affixSet = fStaticSets->fStrictDashEquivalents;
  3094         // If the trimmedAffix is exactly one character long and that character
  3095         // is in the dash set and the very next input character is also
  3096         // in the dash set, return a match.
  3097         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
  3098             UChar32 ic = input.char32At(pos);
  3099             if (affixSet->contains(ic)) {
  3100                 pos += U16_LENGTH(ic);
  3101                 pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
  3102                 return pos - start;
  3106         for (int32_t i = 0; i < affixLength; ) {
  3107             UChar32 c = trimmedAffix.char32At(i);
  3108             int32_t len = U16_LENGTH(c);
  3109             if (PatternProps::isWhiteSpace(c)) {
  3110                 // We may have a pattern like: \u200F \u0020
  3111                 //        and input text like: \u200F \u0020
  3112                 // Note that U+200F and U+0020 are Pattern_White_Space but only
  3113                 // U+0020 is UWhiteSpace.  So we have to first do a direct
  3114                 // match of the run of Pattern_White_Space in the pattern,
  3115                 // then match any extra characters.
  3116                 UBool literalMatch = FALSE;
  3117                 while (pos < inputLength) {
  3118                     UChar32 ic = input.char32At(pos);
  3119                     if (ic == c) {
  3120                         literalMatch = TRUE;
  3121                         i += len;
  3122                         pos += len;
  3123                         if (i == affixLength) {
  3124                             break;
  3126                         c = trimmedAffix.char32At(i);
  3127                         len = U16_LENGTH(c);
  3128                         if (!PatternProps::isWhiteSpace(c)) {
  3129                             break;
  3131                     } else if (IS_BIDI_MARK(ic)) {
  3132                         pos ++; // just skip over this input text
  3133                     } else {
  3134                         break;
  3138                 // Advance over run in pattern
  3139                 i = skipPatternWhiteSpace(trimmedAffix, i);
  3141                 // Advance over run in input text
  3142                 // Must see at least one white space char in input,
  3143                 // unless we've already matched some characters literally.
  3144                 int32_t s = pos;
  3145                 pos = skipUWhiteSpace(input, pos);
  3146                 if (pos == s && !literalMatch) {
  3147                     return -1;
  3150                 // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
  3151                 // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
  3152                 // is also in the trimmedAffix.
  3153                 i = skipUWhiteSpace(trimmedAffix, i);
  3154             } else {
  3155                 UBool match = FALSE;
  3156                 while (pos < inputLength) {
  3157                     UChar32 ic = input.char32At(pos);
  3158                     if (!match && ic == c) {
  3159                         i += len;
  3160                         pos += len;
  3161                         match = TRUE;
  3162                     } else if (IS_BIDI_MARK(ic)) {
  3163                         pos++; // just skip over this input text
  3164                     } else {
  3165                         break;
  3168                 if (!match) {
  3169                     return -1;
  3173     } else {
  3174         UBool match = FALSE;
  3176         affixSet = fStaticSets->fDashEquivalents;
  3178         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
  3179             pos = skipUWhiteSpaceAndMarks(input, pos);
  3180             UChar32 ic = input.char32At(pos);
  3182             if (affixSet->contains(ic)) {
  3183                 pos += U16_LENGTH(ic);
  3184                 pos = skipBidiMarks(input, pos);
  3185                 return pos - start;
  3189         for (int32_t i = 0; i < affixLength; )
  3191             //i = skipRuleWhiteSpace(trimmedAffix, i);
  3192             i = skipUWhiteSpace(trimmedAffix, i);
  3193             pos = skipUWhiteSpaceAndMarks(input, pos);
  3195             if (i >= affixLength || pos >= inputLength) {
  3196                 break;
  3199             UChar32 c = trimmedAffix.char32At(i);
  3200             UChar32 ic = input.char32At(pos);
  3202             if (!equalWithSignCompatibility(ic, c)) {
  3203                 return -1;
  3206             match = TRUE;
  3207             i += U16_LENGTH(c);
  3208             pos += U16_LENGTH(ic);
  3209             pos = skipBidiMarks(input, pos);
  3212         if (affixLength > 0 && ! match) {
  3213             return -1;
  3216     return pos - start;
  3219 /**
  3220  * Skip over a run of zero or more Pattern_White_Space characters at
  3221  * pos in text.
  3222  */
  3223 int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
  3224     const UChar* s = text.getBuffer();
  3225     return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
  3228 /**
  3229  * Skip over a run of zero or more isUWhiteSpace() characters at pos
  3230  * in text.
  3231  */
  3232 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
  3233     while (pos < text.length()) {
  3234         UChar32 c = text.char32At(pos);
  3235         if (!u_isUWhiteSpace(c)) {
  3236             break;
  3238         pos += U16_LENGTH(c);
  3240     return pos;
  3243 /**
  3244  * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
  3245  * in text.
  3246  */
  3247 int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
  3248     while (pos < text.length()) {
  3249         UChar32 c = text.char32At(pos);
  3250         if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
  3251             break;
  3253         pos += U16_LENGTH(c);
  3255     return pos;
  3258 /**
  3259  * Skip over a run of zero or more bidi marks at pos in text.
  3260  */
  3261 int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
  3262     while (pos < text.length()) {
  3263         UChar c = text.charAt(pos);
  3264         if (!IS_BIDI_MARK(c)) {
  3265             break;
  3267         pos++;
  3269     return pos;
  3272 /**
  3273  * Return the length matched by the given affix, or -1 if none.
  3274  * @param affixPat pattern string
  3275  * @param input input text
  3276  * @param pos offset into input at which to begin matching
  3277  * @param type the currency type to parse against, LONG_NAME only or not.
  3278  * @param currency return value for parsed currency, for generic
  3279  * currency parsing mode, or null for normal parsing. In generic
  3280  * currency parsing mode, any currency is parsed, not just the
  3281  * currency that this formatter is set to.
  3282  * @return length of input that matches, or -1 if match failure
  3283  */
  3284 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
  3285                                            const UnicodeString& text,
  3286                                            int32_t pos,
  3287                                            int8_t type,
  3288                                            UChar* currency) const
  3290     int32_t start = pos;
  3291     U_ASSERT(currency != NULL ||
  3292              (fCurrencyChoice != NULL && *getCurrency() != 0) ||
  3293              fCurrencySignCount != fgCurrencySignCountZero);
  3295     for (int32_t i=0;
  3296          i<affixPat.length() && pos >= 0; ) {
  3297         UChar32 c = affixPat.char32At(i);
  3298         i += U16_LENGTH(c);
  3300         if (c == kQuote) {
  3301             U_ASSERT(i <= affixPat.length());
  3302             c = affixPat.char32At(i);
  3303             i += U16_LENGTH(c);
  3305             const UnicodeString* affix = NULL;
  3307             switch (c) {
  3308             case kCurrencySign: {
  3309                 // since the currency names in choice format is saved
  3310                 // the same way as other currency names,
  3311                 // do not need to do currency choice parsing here.
  3312                 // the general currency parsing parse against all names,
  3313                 // including names in choice format.
  3314                 UBool intl = i<affixPat.length() &&
  3315                     affixPat.char32At(i) == kCurrencySign;
  3316                 if (intl) {
  3317                     ++i;
  3319                 UBool plural = i<affixPat.length() &&
  3320                     affixPat.char32At(i) == kCurrencySign;
  3321                 if (plural) {
  3322                     ++i;
  3323                     intl = FALSE;
  3325                 // Parse generic currency -- anything for which we
  3326                 // have a display name, or any 3-letter ISO code.
  3327                 // Try to parse display name for our locale; first
  3328                 // determine our locale.
  3329                 const char* loc = fCurrencyPluralInfo->getLocale().getName();
  3330                 ParsePosition ppos(pos);
  3331                 UChar curr[4];
  3332                 UErrorCode ec = U_ZERO_ERROR;
  3333                 // Delegate parse of display name => ISO code to Currency
  3334                 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
  3336                 // If parse succeeds, populate currency[0]
  3337                 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
  3338                     if (currency) {
  3339                         u_strcpy(currency, curr);
  3340                     } else {
  3341                         // The formatter is currency-style but the client has not requested
  3342                         // the value of the parsed currency. In this case, if that value does
  3343                         // not match the formatter's current value, then the parse fails.
  3344                         UChar effectiveCurr[4];
  3345                         getEffectiveCurrency(effectiveCurr, ec);
  3346                         if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
  3347                         	pos = -1;
  3348                         	continue;
  3351                     pos = ppos.getIndex();
  3352                 } else if (!isLenient()){
  3353                     pos = -1;
  3355                 continue;
  3357             case kPatternPercent:
  3358                 affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
  3359                 break;
  3360             case kPatternPerMill:
  3361                 affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
  3362                 break;
  3363             case kPatternPlus:
  3364                 affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  3365                 break;
  3366             case kPatternMinus:
  3367                 affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  3368                 break;
  3369             default:
  3370                 // fall through to affix!=0 test, which will fail
  3371                 break;
  3374             if (affix != NULL) {
  3375                 pos = match(text, pos, *affix);
  3376                 continue;
  3380         pos = match(text, pos, c);
  3381         if (PatternProps::isWhiteSpace(c)) {
  3382             i = skipPatternWhiteSpace(affixPat, i);
  3385     return pos - start;
  3388 /**
  3389  * Match a single character at text[pos] and return the index of the
  3390  * next character upon success.  Return -1 on failure.  If
  3391  * ch is a Pattern_White_Space then match a run of white space in text.
  3392  */
  3393 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
  3394     if (PatternProps::isWhiteSpace(ch)) {
  3395         // Advance over run of white space in input text
  3396         // Must see at least one white space char in input
  3397         int32_t s = pos;
  3398         pos = skipPatternWhiteSpace(text, pos);
  3399         if (pos == s) {
  3400             return -1;
  3402         return pos;
  3404     return (pos >= 0 && text.char32At(pos) == ch) ?
  3405         (pos + U16_LENGTH(ch)) : -1;
  3408 /**
  3409  * Match a string at text[pos] and return the index of the next
  3410  * character upon success.  Return -1 on failure.  Match a run of
  3411  * white space in str with a run of white space in text.
  3412  */
  3413 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
  3414     for (int32_t i=0; i<str.length() && pos >= 0; ) {
  3415         UChar32 ch = str.char32At(i);
  3416         i += U16_LENGTH(ch);
  3417         if (PatternProps::isWhiteSpace(ch)) {
  3418             i = skipPatternWhiteSpace(str, i);
  3420         pos = match(text, pos, ch);
  3422     return pos;
  3425 UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
  3426                          UnicodeSet *sset, UChar32 schar)
  3428     if (sset != NULL) {
  3429         return sset->contains(schar);
  3432     return text.compare(position, length, symbol) == 0;
  3435 UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
  3436                             UBool sawDecimal,  UChar32 sawDecimalChar,
  3437                              const UnicodeSet *sset, UChar32 schar) {
  3438    if(sawDecimal) {
  3439        return schar==sawDecimalChar;
  3440    } else if(schar==symbolChar) {
  3441        return TRUE;
  3442    } else if(sset!=NULL) {
  3443         return sset->contains(schar);
  3444    } else {
  3445        return FALSE;
  3449 UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
  3450                             UBool sawGrouping, UChar32 sawGroupingChar,
  3451                              const UnicodeSet *sset,
  3452                              UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
  3453                              UChar32 schar) {
  3454     if(sawGrouping) {
  3455         return schar==sawGroupingChar;  // previously found
  3456     } else if(schar==groupingChar) {
  3457         return TRUE; // char from symbols
  3458     } else if(sset!=NULL) {
  3459         return sset->contains(schar) &&  // in groupingSet but...
  3460            ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
  3461     } else {
  3462         return FALSE;
  3468 //------------------------------------------------------------------------------
  3469 // Gets the pointer to the localized decimal format symbols
  3471 const DecimalFormatSymbols*
  3472 DecimalFormat::getDecimalFormatSymbols() const
  3474     return fSymbols;
  3477 //------------------------------------------------------------------------------
  3478 // De-owning the current localized symbols and adopt the new symbols.
  3480 void
  3481 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
  3483     if (symbolsToAdopt == NULL) {
  3484         return; // do not allow caller to set fSymbols to NULL
  3487     UBool sameSymbols = FALSE;
  3488     if (fSymbols != NULL) {
  3489         sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
  3490             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
  3491             getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
  3492             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
  3493         delete fSymbols;
  3496     fSymbols = symbolsToAdopt;
  3497     if (!sameSymbols) {
  3498         // If the currency symbols are the same, there is no need to recalculate.
  3499         setCurrencyForSymbols();
  3501     expandAffixes(NULL);
  3502 #if UCONFIG_FORMAT_FASTPATHS_49
  3503     handleChanged();
  3504 #endif
  3506 //------------------------------------------------------------------------------
  3507 // Setting the symbols is equlivalent to adopting a newly created localized
  3508 // symbols.
  3510 void
  3511 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
  3513     adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
  3514 #if UCONFIG_FORMAT_FASTPATHS_49
  3515     handleChanged();
  3516 #endif
  3520 const CurrencyPluralInfo*
  3521 DecimalFormat::getCurrencyPluralInfo(void) const
  3523     return fCurrencyPluralInfo;
  3527 void
  3528 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
  3530     if (toAdopt != NULL) {
  3531         delete fCurrencyPluralInfo;
  3532         fCurrencyPluralInfo = toAdopt;
  3533         // re-set currency affix patterns and currency affixes.
  3534         if (fCurrencySignCount != fgCurrencySignCountZero) {
  3535             UErrorCode status = U_ZERO_ERROR;
  3536             if (fAffixPatternsForCurrency) {
  3537                 deleteHashForAffixPattern();
  3539             setupCurrencyAffixPatterns(status);
  3540             if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
  3541                 // only setup the affixes of the plural pattern.
  3542                 setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
  3546 #if UCONFIG_FORMAT_FASTPATHS_49
  3547     handleChanged();
  3548 #endif
  3551 void
  3552 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
  3554     adoptCurrencyPluralInfo(info.clone());
  3555 #if UCONFIG_FORMAT_FASTPATHS_49
  3556     handleChanged();
  3557 #endif
  3561 /**
  3562  * Update the currency object to match the symbols.  This method
  3563  * is used only when the caller has passed in a symbols object
  3564  * that may not be the default object for its locale.
  3565  */
  3566 void
  3567 DecimalFormat::setCurrencyForSymbols() {
  3568     /*Bug 4212072
  3569       Update the affix strings accroding to symbols in order to keep
  3570       the affix strings up to date.
  3571       [Richard/GCL]
  3572     */
  3574     // With the introduction of the Currency object, the currency
  3575     // symbols in the DFS object are ignored.  For backward
  3576     // compatibility, we check any explicitly set DFS object.  If it
  3577     // is a default symbols object for its locale, we change the
  3578     // currency object to one for that locale.  If it is custom,
  3579     // we set the currency to null.
  3580     UErrorCode ec = U_ZERO_ERROR;
  3581     const UChar* c = NULL;
  3582     const char* loc = fSymbols->getLocale().getName();
  3583     UChar intlCurrencySymbol[4];
  3584     ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
  3585     UnicodeString currencySymbol;
  3587     uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
  3588     if (U_SUCCESS(ec)
  3589         && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
  3590         && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
  3592         // Trap an error in mapping locale to currency.  If we can't
  3593         // map, then don't fail and set the currency to "".
  3594         c = intlCurrencySymbol;
  3596     ec = U_ZERO_ERROR; // reset local error code!
  3597     setCurrencyInternally(c, ec);
  3598 #if UCONFIG_FORMAT_FASTPATHS_49
  3599     handleChanged();
  3600 #endif
  3604 //------------------------------------------------------------------------------
  3605 // Gets the positive prefix of the number pattern.
  3607 UnicodeString&
  3608 DecimalFormat::getPositivePrefix(UnicodeString& result) const
  3610     result = fPositivePrefix;
  3611     return result;
  3614 //------------------------------------------------------------------------------
  3615 // Sets the positive prefix of the number pattern.
  3617 void
  3618 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
  3620     fPositivePrefix = newValue;
  3621     delete fPosPrefixPattern;
  3622     fPosPrefixPattern = 0;
  3623 #if UCONFIG_FORMAT_FASTPATHS_49
  3624     handleChanged();
  3625 #endif
  3628 //------------------------------------------------------------------------------
  3629 // Gets the negative prefix  of the number pattern.
  3631 UnicodeString&
  3632 DecimalFormat::getNegativePrefix(UnicodeString& result) const
  3634     result = fNegativePrefix;
  3635     return result;
  3638 //------------------------------------------------------------------------------
  3639 // Gets the negative prefix  of the number pattern.
  3641 void
  3642 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
  3644     fNegativePrefix = newValue;
  3645     delete fNegPrefixPattern;
  3646     fNegPrefixPattern = 0;
  3647 #if UCONFIG_FORMAT_FASTPATHS_49
  3648     handleChanged();
  3649 #endif
  3652 //------------------------------------------------------------------------------
  3653 // Gets the positive suffix of the number pattern.
  3655 UnicodeString&
  3656 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
  3658     result = fPositiveSuffix;
  3659     return result;
  3662 //------------------------------------------------------------------------------
  3663 // Sets the positive suffix of the number pattern.
  3665 void
  3666 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
  3668     fPositiveSuffix = newValue;
  3669     delete fPosSuffixPattern;
  3670     fPosSuffixPattern = 0;
  3671 #if UCONFIG_FORMAT_FASTPATHS_49
  3672     handleChanged();
  3673 #endif
  3676 //------------------------------------------------------------------------------
  3677 // Gets the negative suffix of the number pattern.
  3679 UnicodeString&
  3680 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
  3682     result = fNegativeSuffix;
  3683     return result;
  3686 //------------------------------------------------------------------------------
  3687 // Sets the negative suffix of the number pattern.
  3689 void
  3690 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
  3692     fNegativeSuffix = newValue;
  3693     delete fNegSuffixPattern;
  3694     fNegSuffixPattern = 0;
  3695 #if UCONFIG_FORMAT_FASTPATHS_49
  3696     handleChanged();
  3697 #endif
  3700 //------------------------------------------------------------------------------
  3701 // Gets the multiplier of the number pattern.
  3702 //   Multipliers are stored as decimal numbers (DigitLists) because that
  3703 //      is the most convenient for muliplying or dividing the numbers to be formatted.
  3704 //   A NULL multiplier implies one, and the scaling operations are skipped.
  3706 int32_t 
  3707 DecimalFormat::getMultiplier() const
  3709     if (fMultiplier == NULL) {
  3710         return 1;
  3711     } else {
  3712         return fMultiplier->getLong();
  3716 //------------------------------------------------------------------------------
  3717 // Sets the multiplier of the number pattern.
  3718 void
  3719 DecimalFormat::setMultiplier(int32_t newValue)
  3721 //  if (newValue == 0) {
  3722 //      throw new IllegalArgumentException("Bad multiplier: " + newValue);
  3723 //  }
  3724     if (newValue == 0) {
  3725         newValue = 1;     // one being the benign default value for a multiplier.
  3727     if (newValue == 1) {
  3728         delete fMultiplier;
  3729         fMultiplier = NULL;
  3730     } else {
  3731         if (fMultiplier == NULL) {
  3732             fMultiplier = new DigitList;
  3734         if (fMultiplier != NULL) {
  3735             fMultiplier->set(newValue);
  3738 #if UCONFIG_FORMAT_FASTPATHS_49
  3739     handleChanged();
  3740 #endif
  3743 /**
  3744  * Get the rounding increment.
  3745  * @return A positive rounding increment, or 0.0 if rounding
  3746  * is not in effect.
  3747  * @see #setRoundingIncrement
  3748  * @see #getRoundingMode
  3749  * @see #setRoundingMode
  3750  */
  3751 double DecimalFormat::getRoundingIncrement() const {
  3752     if (fRoundingIncrement == NULL) {
  3753         return 0.0;
  3754     } else {
  3755         return fRoundingIncrement->getDouble();
  3759 /**
  3760  * Set the rounding increment.  This method also controls whether
  3761  * rounding is enabled.
  3762  * @param newValue A positive rounding increment, or 0.0 to disable rounding.
  3763  * Negative increments are equivalent to 0.0.
  3764  * @see #getRoundingIncrement
  3765  * @see #getRoundingMode
  3766  * @see #setRoundingMode
  3767  */
  3768 void DecimalFormat::setRoundingIncrement(double newValue) {
  3769     if (newValue > 0.0) {
  3770         if (fRoundingIncrement == NULL) {
  3771             fRoundingIncrement = new DigitList();
  3773         if (fRoundingIncrement != NULL) {
  3774             fRoundingIncrement->set(newValue);
  3775             return;
  3778     // These statements are executed if newValue is less than 0.0
  3779     // or fRoundingIncrement could not be created.
  3780     delete fRoundingIncrement;
  3781     fRoundingIncrement = NULL;
  3782 #if UCONFIG_FORMAT_FASTPATHS_49
  3783     handleChanged();
  3784 #endif
  3787 /**
  3788  * Get the rounding mode.
  3789  * @return A rounding mode
  3790  * @see #setRoundingIncrement
  3791  * @see #getRoundingIncrement
  3792  * @see #setRoundingMode
  3793  */
  3794 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
  3795     return fRoundingMode;
  3798 /**
  3799  * Set the rounding mode.  This has no effect unless the rounding
  3800  * increment is greater than zero.
  3801  * @param roundingMode A rounding mode
  3802  * @see #setRoundingIncrement
  3803  * @see #getRoundingIncrement
  3804  * @see #getRoundingMode
  3805  */
  3806 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
  3807     fRoundingMode = roundingMode;
  3808 #if UCONFIG_FORMAT_FASTPATHS_49
  3809     handleChanged();
  3810 #endif
  3813 /**
  3814  * Get the width to which the output of <code>format()</code> is padded.
  3815  * @return the format width, or zero if no padding is in effect
  3816  * @see #setFormatWidth
  3817  * @see #getPadCharacter
  3818  * @see #setPadCharacter
  3819  * @see #getPadPosition
  3820  * @see #setPadPosition
  3821  */
  3822 int32_t DecimalFormat::getFormatWidth() const {
  3823     return fFormatWidth;
  3826 /**
  3827  * Set the width to which the output of <code>format()</code> is padded.
  3828  * This method also controls whether padding is enabled.
  3829  * @param width the width to which to pad the result of
  3830  * <code>format()</code>, or zero to disable padding.  A negative
  3831  * width is equivalent to 0.
  3832  * @see #getFormatWidth
  3833  * @see #getPadCharacter
  3834  * @see #setPadCharacter
  3835  * @see #getPadPosition
  3836  * @see #setPadPosition
  3837  */
  3838 void DecimalFormat::setFormatWidth(int32_t width) {
  3839     fFormatWidth = (width > 0) ? width : 0;
  3840 #if UCONFIG_FORMAT_FASTPATHS_49
  3841     handleChanged();
  3842 #endif
  3845 UnicodeString DecimalFormat::getPadCharacterString() const {
  3846     return UnicodeString(fPad);
  3849 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
  3850     if (padChar.length() > 0) {
  3851         fPad = padChar.char32At(0);
  3853     else {
  3854         fPad = kDefaultPad;
  3856 #if UCONFIG_FORMAT_FASTPATHS_49
  3857     handleChanged();
  3858 #endif
  3861 /**
  3862  * Get the position at which padding will take place.  This is the location
  3863  * at which padding will be inserted if the result of <code>format()</code>
  3864  * is shorter than the format width.
  3865  * @return the pad position, one of <code>kPadBeforePrefix</code>,
  3866  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
  3867  * <code>kPadAfterSuffix</code>.
  3868  * @see #setFormatWidth
  3869  * @see #getFormatWidth
  3870  * @see #setPadCharacter
  3871  * @see #getPadCharacter
  3872  * @see #setPadPosition
  3873  * @see #kPadBeforePrefix
  3874  * @see #kPadAfterPrefix
  3875  * @see #kPadBeforeSuffix
  3876  * @see #kPadAfterSuffix
  3877  */
  3878 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
  3879     return fPadPosition;
  3882 /**
  3883  * <strong><font face=helvetica color=red>NEW</font></strong>
  3884  * Set the position at which padding will take place.  This is the location
  3885  * at which padding will be inserted if the result of <code>format()</code>
  3886  * is shorter than the format width.  This has no effect unless padding is
  3887  * enabled.
  3888  * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
  3889  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
  3890  * <code>kPadAfterSuffix</code>.
  3891  * @see #setFormatWidth
  3892  * @see #getFormatWidth
  3893  * @see #setPadCharacter
  3894  * @see #getPadCharacter
  3895  * @see #getPadPosition
  3896  * @see #kPadBeforePrefix
  3897  * @see #kPadAfterPrefix
  3898  * @see #kPadBeforeSuffix
  3899  * @see #kPadAfterSuffix
  3900  */
  3901 void DecimalFormat::setPadPosition(EPadPosition padPos) {
  3902     fPadPosition = padPos;
  3903 #if UCONFIG_FORMAT_FASTPATHS_49
  3904     handleChanged();
  3905 #endif
  3908 /**
  3909  * Return whether or not scientific notation is used.
  3910  * @return TRUE if this object formats and parses scientific notation
  3911  * @see #setScientificNotation
  3912  * @see #getMinimumExponentDigits
  3913  * @see #setMinimumExponentDigits
  3914  * @see #isExponentSignAlwaysShown
  3915  * @see #setExponentSignAlwaysShown
  3916  */
  3917 UBool DecimalFormat::isScientificNotation() const {
  3918     return fUseExponentialNotation;
  3921 /**
  3922  * Set whether or not scientific notation is used.
  3923  * @param useScientific TRUE if this object formats and parses scientific
  3924  * notation
  3925  * @see #isScientificNotation
  3926  * @see #getMinimumExponentDigits
  3927  * @see #setMinimumExponentDigits
  3928  * @see #isExponentSignAlwaysShown
  3929  * @see #setExponentSignAlwaysShown
  3930  */
  3931 void DecimalFormat::setScientificNotation(UBool useScientific) {
  3932     fUseExponentialNotation = useScientific;
  3933 #if UCONFIG_FORMAT_FASTPATHS_49
  3934     handleChanged();
  3935 #endif
  3938 /**
  3939  * Return the minimum exponent digits that will be shown.
  3940  * @return the minimum exponent digits that will be shown
  3941  * @see #setScientificNotation
  3942  * @see #isScientificNotation
  3943  * @see #setMinimumExponentDigits
  3944  * @see #isExponentSignAlwaysShown
  3945  * @see #setExponentSignAlwaysShown
  3946  */
  3947 int8_t DecimalFormat::getMinimumExponentDigits() const {
  3948     return fMinExponentDigits;
  3951 /**
  3952  * Set the minimum exponent digits that will be shown.  This has no
  3953  * effect unless scientific notation is in use.
  3954  * @param minExpDig a value >= 1 indicating the fewest exponent digits
  3955  * that will be shown.  Values less than 1 will be treated as 1.
  3956  * @see #setScientificNotation
  3957  * @see #isScientificNotation
  3958  * @see #getMinimumExponentDigits
  3959  * @see #isExponentSignAlwaysShown
  3960  * @see #setExponentSignAlwaysShown
  3961  */
  3962 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
  3963     fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
  3964 #if UCONFIG_FORMAT_FASTPATHS_49
  3965     handleChanged();
  3966 #endif
  3969 /**
  3970  * Return whether the exponent sign is always shown.
  3971  * @return TRUE if the exponent is always prefixed with either the
  3972  * localized minus sign or the localized plus sign, false if only negative
  3973  * exponents are prefixed with the localized minus sign.
  3974  * @see #setScientificNotation
  3975  * @see #isScientificNotation
  3976  * @see #setMinimumExponentDigits
  3977  * @see #getMinimumExponentDigits
  3978  * @see #setExponentSignAlwaysShown
  3979  */
  3980 UBool DecimalFormat::isExponentSignAlwaysShown() const {
  3981     return fExponentSignAlwaysShown;
  3984 /**
  3985  * Set whether the exponent sign is always shown.  This has no effect
  3986  * unless scientific notation is in use.
  3987  * @param expSignAlways TRUE if the exponent is always prefixed with either
  3988  * the localized minus sign or the localized plus sign, false if only
  3989  * negative exponents are prefixed with the localized minus sign.
  3990  * @see #setScientificNotation
  3991  * @see #isScientificNotation
  3992  * @see #setMinimumExponentDigits
  3993  * @see #getMinimumExponentDigits
  3994  * @see #isExponentSignAlwaysShown
  3995  */
  3996 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
  3997     fExponentSignAlwaysShown = expSignAlways;
  3998 #if UCONFIG_FORMAT_FASTPATHS_49
  3999     handleChanged();
  4000 #endif
  4003 //------------------------------------------------------------------------------
  4004 // Gets the grouping size of the number pattern.  For example, thousand or 10
  4005 // thousand groupings.
  4007 int32_t
  4008 DecimalFormat::getGroupingSize() const
  4010     return fGroupingSize;
  4013 //------------------------------------------------------------------------------
  4014 // Gets the grouping size of the number pattern.
  4016 void
  4017 DecimalFormat::setGroupingSize(int32_t newValue)
  4019     fGroupingSize = newValue;
  4020 #if UCONFIG_FORMAT_FASTPATHS_49
  4021     handleChanged();
  4022 #endif
  4025 //------------------------------------------------------------------------------
  4027 int32_t
  4028 DecimalFormat::getSecondaryGroupingSize() const
  4030     return fGroupingSize2;
  4033 //------------------------------------------------------------------------------
  4035 void
  4036 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
  4038     fGroupingSize2 = newValue;
  4039 #if UCONFIG_FORMAT_FASTPATHS_49
  4040     handleChanged();
  4041 #endif
  4044 //------------------------------------------------------------------------------
  4045 // Checks if to show the decimal separator.
  4047 UBool
  4048 DecimalFormat::isDecimalSeparatorAlwaysShown() const
  4050     return fDecimalSeparatorAlwaysShown;
  4053 //------------------------------------------------------------------------------
  4054 // Sets to always show the decimal separator.
  4056 void
  4057 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
  4059     fDecimalSeparatorAlwaysShown = newValue;
  4060 #if UCONFIG_FORMAT_FASTPATHS_49
  4061     handleChanged();
  4062 #endif
  4065 //------------------------------------------------------------------------------
  4066 // Emits the pattern of this DecimalFormat instance.
  4068 UnicodeString&
  4069 DecimalFormat::toPattern(UnicodeString& result) const
  4071     return toPattern(result, FALSE);
  4074 //------------------------------------------------------------------------------
  4075 // Emits the localized pattern this DecimalFormat instance.
  4077 UnicodeString&
  4078 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
  4080     return toPattern(result, TRUE);
  4083 //------------------------------------------------------------------------------
  4084 /**
  4085  * Expand the affix pattern strings into the expanded affix strings.  If any
  4086  * affix pattern string is null, do not expand it.  This method should be
  4087  * called any time the symbols or the affix patterns change in order to keep
  4088  * the expanded affix strings up to date.
  4089  * This method also will be called before formatting if format currency
  4090  * plural names, since the plural name is not a static one, it is
  4091  * based on the currency plural count, the affix will be known only
  4092  * after the currency plural count is know.
  4093  * In which case, the parameter
  4094  * 'pluralCount' will be a non-null currency plural count.
  4095  * In all other cases, the 'pluralCount' is null, which means it is not needed.
  4096  */
  4097 void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
  4098     FieldPositionHandler none;
  4099     if (fPosPrefixPattern != 0) {
  4100       expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
  4102     if (fPosSuffixPattern != 0) {
  4103       expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
  4105     if (fNegPrefixPattern != 0) {
  4106       expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
  4108     if (fNegSuffixPattern != 0) {
  4109       expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
  4111 #ifdef FMT_DEBUG
  4112     UnicodeString s;
  4113     s.append(UnicodeString("["))
  4114       .append(DEREFSTR(fPosPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fPosSuffixPattern))
  4115       .append((UnicodeString)";") .append(DEREFSTR(fNegPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fNegSuffixPattern))
  4116         .append((UnicodeString)"]->[")
  4117         .append(fPositivePrefix).append((UnicodeString)"|").append(fPositiveSuffix)
  4118         .append((UnicodeString)";") .append(fNegativePrefix).append((UnicodeString)"|").append(fNegativeSuffix)
  4119         .append((UnicodeString)"]\n");
  4120     debugout(s);
  4121 #endif
  4124 /**
  4125  * Expand an affix pattern into an affix string.  All characters in the
  4126  * pattern are literal unless prefixed by kQuote.  The following characters
  4127  * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
  4128  * PATTERN_MINUS, and kCurrencySign.  If kCurrencySign is doubled (kQuote +
  4129  * kCurrencySign + kCurrencySign), it is interpreted as an international
  4130  * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
  4131  * currency plural long names, such as "US Dollars".
  4132  * Any other character after a kQuote represents itself.
  4133  * kQuote must be followed by another character; kQuote may not occur by
  4134  * itself at the end of the pattern.
  4136  * This method is used in two distinct ways.  First, it is used to expand
  4137  * the stored affix patterns into actual affixes.  For this usage, doFormat
  4138  * must be false.  Second, it is used to expand the stored affix patterns
  4139  * given a specific number (doFormat == true), for those rare cases in
  4140  * which a currency format references a ChoiceFormat (e.g., en_IN display
  4141  * name for INR).  The number itself is taken from digitList.
  4143  * When used in the first way, this method has a side effect: It sets
  4144  * currencyChoice to a ChoiceFormat object, if the currency's display name
  4145  * in this locale is a ChoiceFormat pattern (very rare).  It only does this
  4146  * if currencyChoice is null to start with.
  4148  * @param pattern the non-null, fPossibly empty pattern
  4149  * @param affix string to receive the expanded equivalent of pattern.
  4150  * Previous contents are deleted.
  4151  * @param doFormat if false, then the pattern will be expanded, and if a
  4152  * currency symbol is encountered that expands to a ChoiceFormat, the
  4153  * currencyChoice member variable will be initialized if it is null.  If
  4154  * doFormat is true, then it is assumed that the currencyChoice has been
  4155  * created, and it will be used to format the value in digitList.
  4156  * @param pluralCount the plural count. It is only used for currency
  4157  *                    plural format. In which case, it is the plural
  4158  *                    count of the currency amount. For example,
  4159  *                    in en_US, it is the singular "one", or the plural
  4160  *                    "other". For all other cases, it is null, and
  4161  *                    is not being used.
  4162  */
  4163 void DecimalFormat::expandAffix(const UnicodeString& pattern,
  4164                                 UnicodeString& affix,
  4165                                 double number,
  4166                                 FieldPositionHandler& handler,
  4167                                 UBool doFormat,
  4168                                 const UnicodeString* pluralCount) const {
  4169     affix.remove();
  4170     for (int i=0; i<pattern.length(); ) {
  4171         UChar32 c = pattern.char32At(i);
  4172         i += U16_LENGTH(c);
  4173         if (c == kQuote) {
  4174             c = pattern.char32At(i);
  4175             i += U16_LENGTH(c);
  4176             int beginIdx = affix.length();
  4177             switch (c) {
  4178             case kCurrencySign: {
  4179                 // As of ICU 2.2 we use the currency object, and
  4180                 // ignore the currency symbols in the DFS, unless
  4181                 // we have a null currency object.  This occurs if
  4182                 // resurrecting a pre-2.2 object or if the user
  4183                 // sets a custom DFS.
  4184                 UBool intl = i<pattern.length() &&
  4185                     pattern.char32At(i) == kCurrencySign;
  4186                 UBool plural = FALSE;
  4187                 if (intl) {
  4188                     ++i;
  4189                     plural = i<pattern.length() &&
  4190                         pattern.char32At(i) == kCurrencySign;
  4191                     if (plural) {
  4192                         intl = FALSE;
  4193                         ++i;
  4196                 const UChar* currencyUChars = getCurrency();
  4197                 if (currencyUChars[0] != 0) {
  4198                     UErrorCode ec = U_ZERO_ERROR;
  4199                     if (plural && pluralCount != NULL) {
  4200                         // plural name is only needed when pluralCount != null,
  4201                         // which means when formatting currency plural names.
  4202                         // For other cases, pluralCount == null,
  4203                         // and plural names are not needed.
  4204                         int32_t len;
  4205                         CharString pluralCountChar;
  4206                         pluralCountChar.appendInvariantChars(*pluralCount, ec);
  4207                         UBool isChoiceFormat;
  4208                         const UChar* s = ucurr_getPluralName(currencyUChars,
  4209                             fSymbols != NULL ? fSymbols->getLocale().getName() :
  4210                             Locale::getDefault().getName(), &isChoiceFormat,
  4211                             pluralCountChar.data(), &len, &ec);
  4212                         affix += UnicodeString(s, len);
  4213                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  4214                     } else if(intl) {
  4215                         affix.append(currencyUChars, -1);
  4216                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  4217                     } else {
  4218                         int32_t len;
  4219                         UBool isChoiceFormat;
  4220                         // If fSymbols is NULL, use default locale
  4221                         const UChar* s = ucurr_getName(currencyUChars,
  4222                             fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
  4223                             UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
  4224                         if (isChoiceFormat) {
  4225                             // Two modes here: If doFormat is false, we set up
  4226                             // currencyChoice.  If doFormat is true, we use the
  4227                             // previously created currencyChoice to format the
  4228                             // value in digitList.
  4229                             if (!doFormat) {
  4230                                 // If the currency is handled by a ChoiceFormat,
  4231                                 // then we're not going to use the expanded
  4232                                 // patterns.  Instantiate the ChoiceFormat and
  4233                                 // return.
  4234                                 if (fCurrencyChoice == NULL) {
  4235                                     // TODO Replace double-check with proper thread-safe code
  4236                                     ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
  4237                                     if (U_SUCCESS(ec)) {
  4238                                         umtx_lock(NULL);
  4239                                         if (fCurrencyChoice == NULL) {
  4240                                             // Cast away const
  4241                                             ((DecimalFormat*)this)->fCurrencyChoice = fmt;
  4242                                             fmt = NULL;
  4244                                         umtx_unlock(NULL);
  4245                                         delete fmt;
  4248                                 // We could almost return null or "" here, since the
  4249                                 // expanded affixes are almost not used at all
  4250                                 // in this situation.  However, one method --
  4251                                 // toPattern() -- still does use the expanded
  4252                                 // affixes, in order to set up a padding
  4253                                 // pattern.  We use the CURRENCY_SIGN as a
  4254                                 // placeholder.
  4255                                 affix.append(kCurrencySign);
  4256                             } else {
  4257                                 if (fCurrencyChoice != NULL) {
  4258                                     FieldPosition pos(0); // ignored
  4259                                     if (number < 0) {
  4260                                         number = -number;
  4262                                     fCurrencyChoice->format(number, affix, pos);
  4263                                 } else {
  4264                                     // We only arrive here if the currency choice
  4265                                     // format in the locale data is INVALID.
  4266                                     affix.append(currencyUChars, -1);
  4267                                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  4270                             continue;
  4272                         affix += UnicodeString(s, len);
  4273                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  4275                 } else {
  4276                     if(intl) {
  4277                         affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
  4278                     } else {
  4279                         affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
  4281                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
  4283                 break;
  4285             case kPatternPercent:
  4286                 affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
  4287                 handler.addAttribute(kPercentField, beginIdx, affix.length());
  4288                 break;
  4289             case kPatternPerMill:
  4290                 affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
  4291                 handler.addAttribute(kPermillField, beginIdx, affix.length());
  4292                 break;
  4293             case kPatternPlus:
  4294                 affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  4295                 handler.addAttribute(kSignField, beginIdx, affix.length());
  4296                 break;
  4297             case kPatternMinus:
  4298                 affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  4299                 handler.addAttribute(kSignField, beginIdx, affix.length());
  4300                 break;
  4301             default:
  4302                 affix.append(c);
  4303                 break;
  4306         else {
  4307             affix.append(c);
  4312 /**
  4313  * Append an affix to the given StringBuffer.
  4314  * @param buf buffer to append to
  4315  * @param isNegative
  4316  * @param isPrefix
  4317  */
  4318 int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
  4319                                    FieldPositionHandler& handler,
  4320                                    UBool isNegative, UBool isPrefix) const {
  4321     // plural format precedes choice format
  4322     if (fCurrencyChoice != 0 &&
  4323         fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
  4324         const UnicodeString* affixPat;
  4325         if (isPrefix) {
  4326             affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
  4327         } else {
  4328             affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
  4330         if (affixPat) {
  4331             UnicodeString affixBuf;
  4332             expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
  4333             buf.append(affixBuf);
  4334             return affixBuf.length();
  4336         // else someone called a function that reset the pattern.
  4339     const UnicodeString* affix;
  4340     if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
  4341         // TODO: get an accurate count of visible fraction digits.
  4342         UnicodeString pluralCount;
  4343         int32_t minFractionDigits = this->getMinimumFractionDigits();
  4344         if (minFractionDigits > 0) {
  4345             FixedDecimal ni(number, this->getMinimumFractionDigits());
  4346             pluralCount = fCurrencyPluralInfo->getPluralRules()->select(ni);
  4347         } else {
  4348             pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
  4350         AffixesForCurrency* oneSet;
  4351         if (fStyle == UNUM_CURRENCY_PLURAL) {
  4352             oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
  4353         } else {
  4354             oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
  4356         if (isPrefix) {
  4357             affix = isNegative ? &oneSet->negPrefixForCurrency :
  4358                                  &oneSet->posPrefixForCurrency;
  4359         } else {
  4360             affix = isNegative ? &oneSet->negSuffixForCurrency :
  4361                                  &oneSet->posSuffixForCurrency;
  4363     } else {
  4364         if (isPrefix) {
  4365             affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
  4366         } else {
  4367             affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
  4371     int32_t begin = (int) buf.length();
  4373     buf.append(*affix);
  4375     if (handler.isRecording()) {
  4376       int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
  4377       if (offset > -1) {
  4378         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
  4379         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
  4382       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
  4383       if (offset > -1) {
  4384         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
  4385         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
  4388       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
  4389       if (offset > -1) {
  4390         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  4391         handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
  4394       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
  4395       if (offset > -1) {
  4396         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
  4397         handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
  4400       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
  4401       if (offset > -1) {
  4402         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
  4403         handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
  4406     return affix->length();
  4409 /**
  4410  * Appends an affix pattern to the given StringBuffer, quoting special
  4411  * characters as needed.  Uses the internal affix pattern, if that exists,
  4412  * or the literal affix, if the internal affix pattern is null.  The
  4413  * appended string will generate the same affix pattern (or literal affix)
  4414  * when passed to toPattern().
  4416  * @param appendTo the affix string is appended to this
  4417  * @param affixPattern a pattern such as fPosPrefixPattern; may be null
  4418  * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
  4419  * Ignored unless affixPattern is null.  If affixPattern is null, then
  4420  * expAffix is appended as a literal affix.
  4421  * @param localized true if the appended pattern should contain localized
  4422  * pattern characters; otherwise, non-localized pattern chars are appended
  4423  */
  4424 void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
  4425                                        const UnicodeString* affixPattern,
  4426                                        const UnicodeString& expAffix,
  4427                                        UBool localized) const {
  4428     if (affixPattern == 0) {
  4429         appendAffixPattern(appendTo, expAffix, localized);
  4430     } else {
  4431         int i;
  4432         for (int pos=0; pos<affixPattern->length(); pos=i) {
  4433             i = affixPattern->indexOf(kQuote, pos);
  4434             if (i < 0) {
  4435                 UnicodeString s;
  4436                 affixPattern->extractBetween(pos, affixPattern->length(), s);
  4437                 appendAffixPattern(appendTo, s, localized);
  4438                 break;
  4440             if (i > pos) {
  4441                 UnicodeString s;
  4442                 affixPattern->extractBetween(pos, i, s);
  4443                 appendAffixPattern(appendTo, s, localized);
  4445             UChar32 c = affixPattern->char32At(++i);
  4446             ++i;
  4447             if (c == kQuote) {
  4448                 appendTo.append(c).append(c);
  4449                 // Fall through and append another kQuote below
  4450             } else if (c == kCurrencySign &&
  4451                        i<affixPattern->length() &&
  4452                        affixPattern->char32At(i) == kCurrencySign) {
  4453                 ++i;
  4454                 appendTo.append(c).append(c);
  4455             } else if (localized) {
  4456                 switch (c) {
  4457                 case kPatternPercent:
  4458                     appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
  4459                     break;
  4460                 case kPatternPerMill:
  4461                     appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
  4462                     break;
  4463                 case kPatternPlus:
  4464                     appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  4465                     break;
  4466                 case kPatternMinus:
  4467                     appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
  4468                     break;
  4469                 default:
  4470                     appendTo.append(c);
  4472             } else {
  4473                 appendTo.append(c);
  4479 /**
  4480  * Append an affix to the given StringBuffer, using quotes if
  4481  * there are special characters.  Single quotes themselves must be
  4482  * escaped in either case.
  4483  */
  4484 void
  4485 DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
  4486                                   const UnicodeString& affix,
  4487                                   UBool localized) const {
  4488     UBool needQuote;
  4489     if(localized) {
  4490         needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
  4491             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
  4492             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
  4493             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
  4494             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
  4495             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
  4496             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
  4497             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
  4498             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
  4499             || affix.indexOf(kCurrencySign) >= 0;
  4501     else {
  4502         needQuote = affix.indexOf(kPatternZeroDigit) >= 0
  4503             || affix.indexOf(kPatternGroupingSeparator) >= 0
  4504             || affix.indexOf(kPatternDecimalSeparator) >= 0
  4505             || affix.indexOf(kPatternPercent) >= 0
  4506             || affix.indexOf(kPatternPerMill) >= 0
  4507             || affix.indexOf(kPatternDigit) >= 0
  4508             || affix.indexOf(kPatternSeparator) >= 0
  4509             || affix.indexOf(kPatternExponent) >= 0
  4510             || affix.indexOf(kPatternPlus) >= 0
  4511             || affix.indexOf(kPatternMinus) >= 0
  4512             || affix.indexOf(kCurrencySign) >= 0;
  4514     if (needQuote)
  4515         appendTo += (UChar)0x0027 /*'\''*/;
  4516     if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
  4517         appendTo += affix;
  4518     else {
  4519         for (int32_t j = 0; j < affix.length(); ) {
  4520             UChar32 c = affix.char32At(j);
  4521             j += U16_LENGTH(c);
  4522             appendTo += c;
  4523             if (c == 0x0027 /*'\''*/)
  4524                 appendTo += c;
  4527     if (needQuote)
  4528         appendTo += (UChar)0x0027 /*'\''*/;
  4531 //------------------------------------------------------------------------------
  4533 UnicodeString&
  4534 DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
  4536     if (fStyle == UNUM_CURRENCY_PLURAL) {
  4537         // the prefix or suffix pattern might not be defined yet,
  4538         // so they can not be synthesized,
  4539         // instead, get them directly.
  4540         // but it might not be the actual pattern used in formatting.
  4541         // the actual pattern used in formatting depends on the
  4542         // formatted number's plural count.
  4543         result = fFormatPattern;
  4544         return result;
  4546     result.remove();
  4547     UChar32 zero, sigDigit = kPatternSignificantDigit;
  4548     UnicodeString digit, group;
  4549     int32_t i;
  4550     int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
  4551     UnicodeString roundingDigits;
  4552     int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
  4553     UnicodeString padSpec;
  4554     UBool useSigDig = areSignificantDigitsUsed();
  4556     if (localized) {
  4557         digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
  4558         group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
  4559         zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
  4560         if (useSigDig) {
  4561             sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
  4564     else {
  4565         digit.append((UChar)kPatternDigit);
  4566         group.append((UChar)kPatternGroupingSeparator);
  4567         zero = (UChar32)kPatternZeroDigit;
  4569     if (fFormatWidth > 0) {
  4570         if (localized) {
  4571             padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
  4573         else {
  4574             padSpec.append((UChar)kPatternPadEscape);
  4576         padSpec.append(fPad);
  4578     if (fRoundingIncrement != NULL) {
  4579         for(i=0; i<fRoundingIncrement->getCount(); ++i) {
  4580           roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
  4582         roundingDecimalPos = fRoundingIncrement->getDecimalAt();
  4584     for (int32_t part=0; part<2; ++part) {
  4585         if (padPos == kPadBeforePrefix) {
  4586             result.append(padSpec);
  4588         appendAffixPattern(result,
  4589                     (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
  4590                     (part==0 ? fPositivePrefix : fNegativePrefix),
  4591                     localized);
  4592         if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
  4593             result.append(padSpec);
  4595         int32_t sub0Start = result.length();
  4596         int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
  4597         if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
  4598             g += fGroupingSize2;
  4600         int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
  4601         if (useSigDig) {
  4602             minDig = getMinimumSignificantDigits();
  4603             maxDig = maxSigDig = getMaximumSignificantDigits();
  4604         } else {
  4605             minDig = getMinimumIntegerDigits();
  4606             maxDig = getMaximumIntegerDigits();
  4608         if (fUseExponentialNotation) {
  4609             if (maxDig > kMaxScientificIntegerDigits) {
  4610                 maxDig = 1;
  4612         } else if (useSigDig) {
  4613             maxDig = _max(maxDig, g+1);
  4614         } else {
  4615             maxDig = _max(_max(g, getMinimumIntegerDigits()),
  4616                           roundingDecimalPos) + 1;
  4618         for (i = maxDig; i > 0; --i) {
  4619             if (!fUseExponentialNotation && i<maxDig &&
  4620                 isGroupingPosition(i)) {
  4621                 result.append(group);
  4623             if (useSigDig) {
  4624                 //  #@,@###   (maxSigDig == 5, minSigDig == 2)
  4625                 //  65 4321   (1-based pos, count from the right)
  4626                 // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
  4627                 // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
  4628                 if (maxSigDig >= i && i > (maxSigDig - minDig)) {
  4629                     result.append(sigDigit);
  4630                 } else {
  4631                     result.append(digit);
  4633             } else {
  4634                 if (! roundingDigits.isEmpty()) {
  4635                     int32_t pos = roundingDecimalPos - i;
  4636                     if (pos >= 0 && pos < roundingDigits.length()) {
  4637                         result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
  4638                         continue;
  4641                 if (i<=minDig) {
  4642                     result.append(zero);
  4643                 } else {
  4644                     result.append(digit);
  4648         if (!useSigDig) {
  4649             if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
  4650                 if (localized) {
  4651                     result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
  4653                 else {
  4654                     result.append((UChar)kPatternDecimalSeparator);
  4657             int32_t pos = roundingDecimalPos;
  4658             for (i = 0; i < getMaximumFractionDigits(); ++i) {
  4659                 if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
  4660                     if (pos < 0) {
  4661                         result.append(zero);
  4663                     else {
  4664                         result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
  4666                     ++pos;
  4667                     continue;
  4669                 if (i<getMinimumFractionDigits()) {
  4670                     result.append(zero);
  4672                 else {
  4673                     result.append(digit);
  4677         if (fUseExponentialNotation) {
  4678             if (localized) {
  4679                 result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
  4681             else {
  4682                 result.append((UChar)kPatternExponent);
  4684             if (fExponentSignAlwaysShown) {
  4685                 if (localized) {
  4686                     result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
  4688                 else {
  4689                     result.append((UChar)kPatternPlus);
  4692             for (i=0; i<fMinExponentDigits; ++i) {
  4693                 result.append(zero);
  4696         if (! padSpec.isEmpty() && !fUseExponentialNotation) {
  4697             int32_t add = fFormatWidth - result.length() + sub0Start
  4698                 - ((part == 0)
  4699                    ? fPositivePrefix.length() + fPositiveSuffix.length()
  4700                    : fNegativePrefix.length() + fNegativeSuffix.length());
  4701             while (add > 0) {
  4702                 result.insert(sub0Start, digit);
  4703                 ++maxDig;
  4704                 --add;
  4705                 // Only add a grouping separator if we have at least
  4706                 // 2 additional characters to be added, so we don't
  4707                 // end up with ",###".
  4708                 if (add>1 && isGroupingPosition(maxDig)) {
  4709                     result.insert(sub0Start, group);
  4710                     --add;
  4714         if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
  4715             result.append(padSpec);
  4717         if (part == 0) {
  4718             appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
  4719             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
  4720                 result.append(padSpec);
  4722             UBool isDefault = FALSE;
  4723             if ((fNegSuffixPattern == fPosSuffixPattern && // both null
  4724                  fNegativeSuffix == fPositiveSuffix)
  4725                 || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
  4726                     *fNegSuffixPattern == *fPosSuffixPattern))
  4728                 if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
  4730                     int32_t length = fPosPrefixPattern->length();
  4731                     isDefault = fNegPrefixPattern->length() == (length+2) &&
  4732                         (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
  4733                         (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
  4734                         fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
  4736                 if (!isDefault &&
  4737                     fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
  4739                     int32_t length = fPositivePrefix.length();
  4740                     isDefault = fNegativePrefix.length() == (length+1) &&
  4741                         fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
  4742                         fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
  4745             if (isDefault) {
  4746                 break; // Don't output default negative subpattern
  4747             } else {
  4748                 if (localized) {
  4749                     result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
  4751                 else {
  4752                     result.append((UChar)kPatternSeparator);
  4755         } else {
  4756             appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
  4757             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
  4758                 result.append(padSpec);
  4763     return result;
  4766 //------------------------------------------------------------------------------
  4768 void
  4769 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
  4771     UParseError parseError;
  4772     applyPattern(pattern, FALSE, parseError, status);
  4775 //------------------------------------------------------------------------------
  4777 void
  4778 DecimalFormat::applyPattern(const UnicodeString& pattern,
  4779                             UParseError& parseError,
  4780                             UErrorCode& status)
  4782     applyPattern(pattern, FALSE, parseError, status);
  4784 //------------------------------------------------------------------------------
  4786 void
  4787 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
  4789     UParseError parseError;
  4790     applyPattern(pattern, TRUE,parseError,status);
  4793 //------------------------------------------------------------------------------
  4795 void
  4796 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
  4797                                      UParseError& parseError,
  4798                                      UErrorCode& status)
  4800     applyPattern(pattern, TRUE,parseError,status);
  4803 //------------------------------------------------------------------------------
  4805 void
  4806 DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
  4807                                               UBool localized,
  4808                                               UParseError& parseError,
  4809                                               UErrorCode& status)
  4811     if (U_FAILURE(status))
  4813         return;
  4815     // Clear error struct
  4816     parseError.offset = -1;
  4817     parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
  4819     // Set the significant pattern symbols
  4820     UChar32 zeroDigit               = kPatternZeroDigit; // '0'
  4821     UChar32 sigDigit                = kPatternSignificantDigit; // '@'
  4822     UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
  4823     UnicodeString decimalSeparator  ((UChar)kPatternDecimalSeparator);
  4824     UnicodeString percent           ((UChar)kPatternPercent);
  4825     UnicodeString perMill           ((UChar)kPatternPerMill);
  4826     UnicodeString digit             ((UChar)kPatternDigit); // '#'
  4827     UnicodeString separator         ((UChar)kPatternSeparator);
  4828     UnicodeString exponent          ((UChar)kPatternExponent);
  4829     UnicodeString plus              ((UChar)kPatternPlus);
  4830     UnicodeString minus             ((UChar)kPatternMinus);
  4831     UnicodeString padEscape         ((UChar)kPatternPadEscape);
  4832     // Substitute with the localized symbols if necessary
  4833     if (localized) {
  4834         zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
  4835         sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
  4836         groupingSeparator.  remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
  4837         decimalSeparator.   remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
  4838         percent.            remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
  4839         perMill.            remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
  4840         digit.              remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
  4841         separator.          remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
  4842         exponent.           remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
  4843         plus.               remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
  4844         minus.              remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
  4845         padEscape.          remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
  4847     UChar nineDigit = (UChar)(zeroDigit + 9);
  4848     int32_t digitLen = digit.length();
  4849     int32_t groupSepLen = groupingSeparator.length();
  4850     int32_t decimalSepLen = decimalSeparator.length();
  4852     int32_t pos = 0;
  4853     int32_t patLen = pattern.length();
  4854     // Part 0 is the positive pattern.  Part 1, if present, is the negative
  4855     // pattern.
  4856     for (int32_t part=0; part<2 && pos<patLen; ++part) {
  4857         // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
  4858         // 2=suffix, 3=prefix in quote, 4=suffix in quote.  Subpart 0 is
  4859         // between the prefix and suffix, and consists of pattern
  4860         // characters.  In the prefix and suffix, percent, perMill, and
  4861         // currency symbols are recognized and translated.
  4862         int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
  4864         // It's important that we don't change any fields of this object
  4865         // prematurely.  We set the following variables for the multiplier,
  4866         // grouping, etc., and then only change the actual object fields if
  4867         // everything parses correctly.  This also lets us register
  4868         // the data from part 0 and ignore the part 1, except for the
  4869         // prefix and suffix.
  4870         UnicodeString prefix;
  4871         UnicodeString suffix;
  4872         int32_t decimalPos = -1;
  4873         int32_t multiplier = 1;
  4874         int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
  4875         int8_t groupingCount = -1;
  4876         int8_t groupingCount2 = -1;
  4877         int32_t padPos = -1;
  4878         UChar32 padChar = 0;
  4879         int32_t roundingPos = -1;
  4880         DigitList roundingInc;
  4881         int8_t expDigits = -1;
  4882         UBool expSignAlways = FALSE;
  4884         // The affix is either the prefix or the suffix.
  4885         UnicodeString* affix = &prefix;
  4887         int32_t start = pos;
  4888         UBool isPartDone = FALSE;
  4889         UChar32 ch;
  4891         for (; !isPartDone && pos < patLen; ) {
  4892             // Todo: account for surrogate pairs
  4893             ch = pattern.char32At(pos);
  4894             switch (subpart) {
  4895             case 0: // Pattern proper subpart (between prefix & suffix)
  4896                 // Process the digits, decimal, and grouping characters.  We
  4897                 // record five pieces of information.  We expect the digits
  4898                 // to occur in the pattern ####00.00####, and we record the
  4899                 // number of left digits, zero (central) digits, and right
  4900                 // digits.  The position of the last grouping character is
  4901                 // recorded (should be somewhere within the first two blocks
  4902                 // of characters), as is the position of the decimal point,
  4903                 // if any (should be in the zero digits).  If there is no
  4904                 // decimal point, then there should be no right digits.
  4905                 if (pattern.compare(pos, digitLen, digit) == 0) {
  4906                     if (zeroDigitCount > 0 || sigDigitCount > 0) {
  4907                         ++digitRightCount;
  4908                     } else {
  4909                         ++digitLeftCount;
  4911                     if (groupingCount >= 0 && decimalPos < 0) {
  4912                         ++groupingCount;
  4914                     pos += digitLen;
  4915                 } else if ((ch >= zeroDigit && ch <= nineDigit) ||
  4916                            ch == sigDigit) {
  4917                     if (digitRightCount > 0) {
  4918                         // Unexpected '0'
  4919                         debug("Unexpected '0'")
  4920                         status = U_UNEXPECTED_TOKEN;
  4921                         syntaxError(pattern,pos,parseError);
  4922                         return;
  4924                     if (ch == sigDigit) {
  4925                         ++sigDigitCount;
  4926                     } else {
  4927                         if (ch != zeroDigit && roundingPos < 0) {
  4928                             roundingPos = digitLeftCount + zeroDigitCount;
  4930                         if (roundingPos >= 0) {
  4931                             roundingInc.append((char)(ch - zeroDigit + '0'));
  4933                         ++zeroDigitCount;
  4935                     if (groupingCount >= 0 && decimalPos < 0) {
  4936                         ++groupingCount;
  4938                     pos += U16_LENGTH(ch);
  4939                 } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
  4940                     if (decimalPos >= 0) {
  4941                         // Grouping separator after decimal
  4942                         debug("Grouping separator after decimal")
  4943                         status = U_UNEXPECTED_TOKEN;
  4944                         syntaxError(pattern,pos,parseError);
  4945                         return;
  4947                     groupingCount2 = groupingCount;
  4948                     groupingCount = 0;
  4949                     pos += groupSepLen;
  4950                 } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
  4951                     if (decimalPos >= 0) {
  4952                         // Multiple decimal separators
  4953                         debug("Multiple decimal separators")
  4954                         status = U_MULTIPLE_DECIMAL_SEPARATORS;
  4955                         syntaxError(pattern,pos,parseError);
  4956                         return;
  4958                     // Intentionally incorporate the digitRightCount,
  4959                     // even though it is illegal for this to be > 0
  4960                     // at this point.  We check pattern syntax below.
  4961                     decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
  4962                     pos += decimalSepLen;
  4963                 } else {
  4964                     if (pattern.compare(pos, exponent.length(), exponent) == 0) {
  4965                         if (expDigits >= 0) {
  4966                             // Multiple exponential symbols
  4967                             debug("Multiple exponential symbols")
  4968                             status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
  4969                             syntaxError(pattern,pos,parseError);
  4970                             return;
  4972                         if (groupingCount >= 0) {
  4973                             // Grouping separator in exponential pattern
  4974                             debug("Grouping separator in exponential pattern")
  4975                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
  4976                             syntaxError(pattern,pos,parseError);
  4977                             return;
  4979                         pos += exponent.length();
  4980                         // Check for positive prefix
  4981                         if (pos < patLen
  4982                             && pattern.compare(pos, plus.length(), plus) == 0) {
  4983                             expSignAlways = TRUE;
  4984                             pos += plus.length();
  4986                         // Use lookahead to parse out the exponential part of the
  4987                         // pattern, then jump into suffix subpart.
  4988                         expDigits = 0;
  4989                         while (pos < patLen &&
  4990                                pattern.char32At(pos) == zeroDigit) {
  4991                             ++expDigits;
  4992                             pos += U16_LENGTH(zeroDigit);
  4995                         // 1. Require at least one mantissa pattern digit
  4996                         // 2. Disallow "#+ @" in mantissa
  4997                         // 3. Require at least one exponent pattern digit
  4998                         if (((digitLeftCount + zeroDigitCount) < 1 &&
  4999                              (sigDigitCount + digitRightCount) < 1) ||
  5000                             (sigDigitCount > 0 && digitLeftCount > 0) ||
  5001                             expDigits < 1) {
  5002                             // Malformed exponential pattern
  5003                             debug("Malformed exponential pattern")
  5004                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
  5005                             syntaxError(pattern,pos,parseError);
  5006                             return;
  5009                     // Transition to suffix subpart
  5010                     subpart = 2; // suffix subpart
  5011                     affix = &suffix;
  5012                     sub0Limit = pos;
  5013                     continue;
  5015                 break;
  5016             case 1: // Prefix subpart
  5017             case 2: // Suffix subpart
  5018                 // Process the prefix / suffix characters
  5019                 // Process unquoted characters seen in prefix or suffix
  5020                 // subpart.
  5022                 // Several syntax characters implicitly begins the
  5023                 // next subpart if we are in the prefix; otherwise
  5024                 // they are illegal if unquoted.
  5025                 if (!pattern.compare(pos, digitLen, digit) ||
  5026                     !pattern.compare(pos, groupSepLen, groupingSeparator) ||
  5027                     !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
  5028                     (ch >= zeroDigit && ch <= nineDigit) ||
  5029                     ch == sigDigit) {
  5030                     if (subpart == 1) { // prefix subpart
  5031                         subpart = 0; // pattern proper subpart
  5032                         sub0Start = pos; // Reprocess this character
  5033                         continue;
  5034                     } else {
  5035                         status = U_UNQUOTED_SPECIAL;
  5036                         syntaxError(pattern,pos,parseError);
  5037                         return;
  5039                 } else if (ch == kCurrencySign) {
  5040                     affix->append(kQuote); // Encode currency
  5041                     // Use lookahead to determine if the currency sign is
  5042                     // doubled or not.
  5043                     U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
  5044                     if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
  5045                         affix->append(kCurrencySign);
  5046                         ++pos; // Skip over the doubled character
  5047                         if ((pos+1) < pattern.length() &&
  5048                             pattern[pos+1] == kCurrencySign) {
  5049                             affix->append(kCurrencySign);
  5050                             ++pos; // Skip over the doubled character
  5051                             fCurrencySignCount = fgCurrencySignCountInPluralFormat;
  5052                         } else {
  5053                             fCurrencySignCount = fgCurrencySignCountInISOFormat;
  5055                     } else {
  5056                         fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
  5058                     // Fall through to append(ch)
  5059                 } else if (ch == kQuote) {
  5060                     // A quote outside quotes indicates either the opening
  5061                     // quote or two quotes, which is a quote literal.  That is,
  5062                     // we have the first quote in 'do' or o''clock.
  5063                     U_ASSERT(U16_LENGTH(kQuote) == 1);
  5064                     ++pos;
  5065                     if (pos < pattern.length() && pattern[pos] == kQuote) {
  5066                         affix->append(kQuote); // Encode quote
  5067                         // Fall through to append(ch)
  5068                     } else {
  5069                         subpart += 2; // open quote
  5070                         continue;
  5072                 } else if (pattern.compare(pos, separator.length(), separator) == 0) {
  5073                     // Don't allow separators in the prefix, and don't allow
  5074                     // separators in the second pattern (part == 1).
  5075                     if (subpart == 1 || part == 1) {
  5076                         // Unexpected separator
  5077                         debug("Unexpected separator")
  5078                         status = U_UNEXPECTED_TOKEN;
  5079                         syntaxError(pattern,pos,parseError);
  5080                         return;
  5082                     sub2Limit = pos;
  5083                     isPartDone = TRUE; // Go to next part
  5084                     pos += separator.length();
  5085                     break;
  5086                 } else if (pattern.compare(pos, percent.length(), percent) == 0) {
  5087                     // Next handle characters which are appended directly.
  5088                     if (multiplier != 1) {
  5089                         // Too many percent/perMill characters
  5090                         debug("Too many percent characters")
  5091                         status = U_MULTIPLE_PERCENT_SYMBOLS;
  5092                         syntaxError(pattern,pos,parseError);
  5093                         return;
  5095                     affix->append(kQuote); // Encode percent/perMill
  5096                     affix->append(kPatternPercent); // Use unlocalized pattern char
  5097                     multiplier = 100;
  5098                     pos += percent.length();
  5099                     break;
  5100                 } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
  5101                     // Next handle characters which are appended directly.
  5102                     if (multiplier != 1) {
  5103                         // Too many percent/perMill characters
  5104                         debug("Too many perMill characters")
  5105                         status = U_MULTIPLE_PERMILL_SYMBOLS;
  5106                         syntaxError(pattern,pos,parseError);
  5107                         return;
  5109                     affix->append(kQuote); // Encode percent/perMill
  5110                     affix->append(kPatternPerMill); // Use unlocalized pattern char
  5111                     multiplier = 1000;
  5112                     pos += perMill.length();
  5113                     break;
  5114                 } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
  5115                     if (padPos >= 0 ||               // Multiple pad specifiers
  5116                         (pos+1) == pattern.length()) { // Nothing after padEscape
  5117                         debug("Multiple pad specifiers")
  5118                         status = U_MULTIPLE_PAD_SPECIFIERS;
  5119                         syntaxError(pattern,pos,parseError);
  5120                         return;
  5122                     padPos = pos;
  5123                     pos += padEscape.length();
  5124                     padChar = pattern.char32At(pos);
  5125                     pos += U16_LENGTH(padChar);
  5126                     break;
  5127                 } else if (pattern.compare(pos, minus.length(), minus) == 0) {
  5128                     affix->append(kQuote); // Encode minus
  5129                     affix->append(kPatternMinus);
  5130                     pos += minus.length();
  5131                     break;
  5132                 } else if (pattern.compare(pos, plus.length(), plus) == 0) {
  5133                     affix->append(kQuote); // Encode plus
  5134                     affix->append(kPatternPlus);
  5135                     pos += plus.length();
  5136                     break;
  5138                 // Unquoted, non-special characters fall through to here, as
  5139                 // well as other code which needs to append something to the
  5140                 // affix.
  5141                 affix->append(ch);
  5142                 pos += U16_LENGTH(ch);
  5143                 break;
  5144             case 3: // Prefix subpart, in quote
  5145             case 4: // Suffix subpart, in quote
  5146                 // A quote within quotes indicates either the closing
  5147                 // quote or two quotes, which is a quote literal.  That is,
  5148                 // we have the second quote in 'do' or 'don''t'.
  5149                 if (ch == kQuote) {
  5150                     ++pos;
  5151                     if (pos < pattern.length() && pattern[pos] == kQuote) {
  5152                         affix->append(kQuote); // Encode quote
  5153                         // Fall through to append(ch)
  5154                     } else {
  5155                         subpart -= 2; // close quote
  5156                         continue;
  5159                 affix->append(ch);
  5160                 pos += U16_LENGTH(ch);
  5161                 break;
  5165         if (sub0Limit == 0) {
  5166             sub0Limit = pattern.length();
  5169         if (sub2Limit == 0) {
  5170             sub2Limit = pattern.length();
  5173         /* Handle patterns with no '0' pattern character.  These patterns
  5174          * are legal, but must be recodified to make sense.  "##.###" ->
  5175          * "#0.###".  ".###" -> ".0##".
  5177          * We allow patterns of the form "####" to produce a zeroDigitCount
  5178          * of zero (got that?); although this seems like it might make it
  5179          * possible for format() to produce empty strings, format() checks
  5180          * for this condition and outputs a zero digit in this situation.
  5181          * Having a zeroDigitCount of zero yields a minimum integer digits
  5182          * of zero, which allows proper round-trip patterns.  We don't want
  5183          * "#" to become "#0" when toPattern() is called (even though that's
  5184          * what it really is, semantically).
  5185          */
  5186         if (zeroDigitCount == 0 && sigDigitCount == 0 &&
  5187             digitLeftCount > 0 && decimalPos >= 0) {
  5188             // Handle "###.###" and "###." and ".###"
  5189             int n = decimalPos;
  5190             if (n == 0)
  5191                 ++n; // Handle ".###"
  5192             digitRightCount = digitLeftCount - n;
  5193             digitLeftCount = n - 1;
  5194             zeroDigitCount = 1;
  5197         // Do syntax checking on the digits, decimal points, and quotes.
  5198         if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
  5199             (decimalPos >= 0 &&
  5200              (sigDigitCount > 0 ||
  5201               decimalPos < digitLeftCount ||
  5202               decimalPos > (digitLeftCount + zeroDigitCount))) ||
  5203             groupingCount == 0 || groupingCount2 == 0 ||
  5204             (sigDigitCount > 0 && zeroDigitCount > 0) ||
  5205             subpart > 2)
  5206         { // subpart > 2 == unmatched quote
  5207             debug("Syntax error")
  5208             status = U_PATTERN_SYNTAX_ERROR;
  5209             syntaxError(pattern,pos,parseError);
  5210             return;
  5213         // Make sure pad is at legal position before or after affix.
  5214         if (padPos >= 0) {
  5215             if (padPos == start) {
  5216                 padPos = kPadBeforePrefix;
  5217             } else if (padPos+2 == sub0Start) {
  5218                 padPos = kPadAfterPrefix;
  5219             } else if (padPos == sub0Limit) {
  5220                 padPos = kPadBeforeSuffix;
  5221             } else if (padPos+2 == sub2Limit) {
  5222                 padPos = kPadAfterSuffix;
  5223             } else {
  5224                 // Illegal pad position
  5225                 debug("Illegal pad position")
  5226                 status = U_ILLEGAL_PAD_POSITION;
  5227                 syntaxError(pattern,pos,parseError);
  5228                 return;
  5232         if (part == 0) {
  5233             delete fPosPrefixPattern;
  5234             delete fPosSuffixPattern;
  5235             delete fNegPrefixPattern;
  5236             delete fNegSuffixPattern;
  5237             fPosPrefixPattern = new UnicodeString(prefix);
  5238             /* test for NULL */
  5239             if (fPosPrefixPattern == 0) {
  5240                 status = U_MEMORY_ALLOCATION_ERROR;
  5241                 return;
  5243             fPosSuffixPattern = new UnicodeString(suffix);
  5244             /* test for NULL */
  5245             if (fPosSuffixPattern == 0) {
  5246                 status = U_MEMORY_ALLOCATION_ERROR;
  5247                 delete fPosPrefixPattern;
  5248                 return;
  5250             fNegPrefixPattern = 0;
  5251             fNegSuffixPattern = 0;
  5253             fUseExponentialNotation = (expDigits >= 0);
  5254             if (fUseExponentialNotation) {
  5255                 fMinExponentDigits = expDigits;
  5257             fExponentSignAlwaysShown = expSignAlways;
  5258             int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
  5259             // The effectiveDecimalPos is the position the decimal is at or
  5260             // would be at if there is no decimal.  Note that if
  5261             // decimalPos<0, then digitTotalCount == digitLeftCount +
  5262             // zeroDigitCount.
  5263             int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
  5264             UBool isSigDig = (sigDigitCount > 0);
  5265             setSignificantDigitsUsed(isSigDig);
  5266             if (isSigDig) {
  5267                 setMinimumSignificantDigits(sigDigitCount);
  5268                 setMaximumSignificantDigits(sigDigitCount + digitRightCount);
  5269             } else {
  5270                 int32_t minInt = effectiveDecimalPos - digitLeftCount;
  5271                 setMinimumIntegerDigits(minInt);
  5272                 setMaximumIntegerDigits(fUseExponentialNotation
  5273                     ? digitLeftCount + getMinimumIntegerDigits()
  5274                     : NumberFormat::gDefaultMaxIntegerDigits);
  5275                 setMaximumFractionDigits(decimalPos >= 0
  5276                     ? (digitTotalCount - decimalPos) : 0);
  5277                 setMinimumFractionDigits(decimalPos >= 0
  5278                     ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
  5280             setGroupingUsed(groupingCount > 0);
  5281             fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
  5282             fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
  5283                 ? groupingCount2 : 0;
  5284             setMultiplier(multiplier);
  5285             setDecimalSeparatorAlwaysShown(decimalPos == 0
  5286                     || decimalPos == digitTotalCount);
  5287             if (padPos >= 0) {
  5288                 fPadPosition = (EPadPosition) padPos;
  5289                 // To compute the format width, first set up sub0Limit -
  5290                 // sub0Start.  Add in prefix/suffix length later.
  5292                 // fFormatWidth = prefix.length() + suffix.length() +
  5293                 //    sub0Limit - sub0Start;
  5294                 fFormatWidth = sub0Limit - sub0Start;
  5295                 fPad = padChar;
  5296             } else {
  5297                 fFormatWidth = 0;
  5299             if (roundingPos >= 0) {
  5300                 roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
  5301                 if (fRoundingIncrement != NULL) {
  5302                     *fRoundingIncrement = roundingInc;
  5303                 } else {
  5304                     fRoundingIncrement = new DigitList(roundingInc);
  5305                     /* test for NULL */
  5306                     if (fRoundingIncrement == NULL) {
  5307                         status = U_MEMORY_ALLOCATION_ERROR;
  5308                         delete fPosPrefixPattern;
  5309                         delete fPosSuffixPattern;
  5310                         return;
  5313                 fRoundingMode = kRoundHalfEven;
  5314             } else {
  5315                 setRoundingIncrement(0.0);
  5317         } else {
  5318             fNegPrefixPattern = new UnicodeString(prefix);
  5319             /* test for NULL */
  5320             if (fNegPrefixPattern == 0) {
  5321                 status = U_MEMORY_ALLOCATION_ERROR;
  5322                 return;
  5324             fNegSuffixPattern = new UnicodeString(suffix);
  5325             /* test for NULL */
  5326             if (fNegSuffixPattern == 0) {
  5327                 delete fNegPrefixPattern;
  5328                 status = U_MEMORY_ALLOCATION_ERROR;
  5329                 return;
  5334     if (pattern.length() == 0) {
  5335         delete fNegPrefixPattern;
  5336         delete fNegSuffixPattern;
  5337         fNegPrefixPattern = NULL;
  5338         fNegSuffixPattern = NULL;
  5339         if (fPosPrefixPattern != NULL) {
  5340             fPosPrefixPattern->remove();
  5341         } else {
  5342             fPosPrefixPattern = new UnicodeString();
  5343             /* test for NULL */
  5344             if (fPosPrefixPattern == 0) {
  5345                 status = U_MEMORY_ALLOCATION_ERROR;
  5346                 return;
  5349         if (fPosSuffixPattern != NULL) {
  5350             fPosSuffixPattern->remove();
  5351         } else {
  5352             fPosSuffixPattern = new UnicodeString();
  5353             /* test for NULL */
  5354             if (fPosSuffixPattern == 0) {
  5355                 delete fPosPrefixPattern;
  5356                 status = U_MEMORY_ALLOCATION_ERROR;
  5357                 return;
  5361         setMinimumIntegerDigits(0);
  5362         setMaximumIntegerDigits(kDoubleIntegerDigits);
  5363         setMinimumFractionDigits(0);
  5364         setMaximumFractionDigits(kDoubleFractionDigits);
  5366         fUseExponentialNotation = FALSE;
  5367         fCurrencySignCount = fgCurrencySignCountZero;
  5368         setGroupingUsed(FALSE);
  5369         fGroupingSize = 0;
  5370         fGroupingSize2 = 0;
  5371         setMultiplier(1);
  5372         setDecimalSeparatorAlwaysShown(FALSE);
  5373         fFormatWidth = 0;
  5374         setRoundingIncrement(0.0);
  5377     // If there was no negative pattern, or if the negative pattern is
  5378     // identical to the positive pattern, then prepend the minus sign to the
  5379     // positive pattern to form the negative pattern.
  5380     if (fNegPrefixPattern == NULL ||
  5381         (*fNegPrefixPattern == *fPosPrefixPattern
  5382          && *fNegSuffixPattern == *fPosSuffixPattern)) {
  5383         _copy_ptr(&fNegSuffixPattern, fPosSuffixPattern);
  5384         if (fNegPrefixPattern == NULL) {
  5385             fNegPrefixPattern = new UnicodeString();
  5386             /* test for NULL */
  5387             if (fNegPrefixPattern == 0) {
  5388                 status = U_MEMORY_ALLOCATION_ERROR;
  5389                 return;
  5391         } else {
  5392             fNegPrefixPattern->remove();
  5394         fNegPrefixPattern->append(kQuote).append(kPatternMinus)
  5395             .append(*fPosPrefixPattern);
  5397 #ifdef FMT_DEBUG
  5398     UnicodeString s;
  5399     s.append((UnicodeString)"\"").append(pattern).append((UnicodeString)"\"->");
  5400     debugout(s);
  5401 #endif
  5403     // save the pattern
  5404     fFormatPattern = pattern;
  5408 void
  5409 DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
  5410     expandAffixes(pluralCount);
  5411     if (fFormatWidth > 0) {
  5412         // Finish computing format width (see above)
  5413             // TODO: how to handle fFormatWidth,
  5414             // need to save in f(Plural)AffixesForCurrecy?
  5415             fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
  5420 void
  5421 DecimalFormat::applyPattern(const UnicodeString& pattern,
  5422                             UBool localized,
  5423                             UParseError& parseError,
  5424                             UErrorCode& status)
  5426     // do the following re-set first. since they change private data by
  5427     // apply pattern again.
  5428     if (pattern.indexOf(kCurrencySign) != -1) {
  5429         if (fCurrencyPluralInfo == NULL) {
  5430             // initialize currencyPluralInfo if needed
  5431             fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
  5433         if (fAffixPatternsForCurrency == NULL) {
  5434             setupCurrencyAffixPatterns(status);
  5436         if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
  5437             // only setup the affixes of the current pattern.
  5438             setupCurrencyAffixes(pattern, TRUE, FALSE, status);
  5441     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
  5442     expandAffixAdjustWidth(NULL);
  5443 #if UCONFIG_FORMAT_FASTPATHS_49
  5444     handleChanged();
  5445 #endif
  5449 void
  5450 DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
  5451                                       const UnicodeString& pattern,
  5452                                       UBool localized,
  5453                                       UParseError& parseError,
  5454                                       UErrorCode& status) {
  5455     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
  5456     expandAffixAdjustWidth(&pluralCount);
  5457 #if UCONFIG_FORMAT_FASTPATHS_49
  5458     handleChanged();
  5459 #endif
  5463 /**
  5464  * Sets the maximum number of digits allowed in the integer portion of a
  5465  * number. 
  5466  * @see NumberFormat#setMaximumIntegerDigits
  5467  */
  5468 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
  5469     NumberFormat::setMaximumIntegerDigits(_min(newValue, gDefaultMaxIntegerDigits));
  5470 #if UCONFIG_FORMAT_FASTPATHS_49
  5471     handleChanged();
  5472 #endif
  5475 /**
  5476  * Sets the minimum number of digits allowed in the integer portion of a
  5477  * number. This override limits the integer digit count to 309.
  5478  * @see NumberFormat#setMinimumIntegerDigits
  5479  */
  5480 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
  5481     NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
  5482 #if UCONFIG_FORMAT_FASTPATHS_49
  5483     handleChanged();
  5484 #endif
  5487 /**
  5488  * Sets the maximum number of digits allowed in the fraction portion of a
  5489  * number. This override limits the fraction digit count to 340.
  5490  * @see NumberFormat#setMaximumFractionDigits
  5491  */
  5492 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
  5493     NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
  5494 #if UCONFIG_FORMAT_FASTPATHS_49
  5495     handleChanged();
  5496 #endif
  5499 /**
  5500  * Sets the minimum number of digits allowed in the fraction portion of a
  5501  * number. This override limits the fraction digit count to 340.
  5502  * @see NumberFormat#setMinimumFractionDigits
  5503  */
  5504 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
  5505     NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
  5506 #if UCONFIG_FORMAT_FASTPATHS_49
  5507     handleChanged();
  5508 #endif
  5511 int32_t DecimalFormat::getMinimumSignificantDigits() const {
  5512     return fMinSignificantDigits;
  5515 int32_t DecimalFormat::getMaximumSignificantDigits() const {
  5516     return fMaxSignificantDigits;
  5519 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
  5520     if (min < 1) {
  5521         min = 1;
  5523     // pin max sig dig to >= min
  5524     int32_t max = _max(fMaxSignificantDigits, min);
  5525     fMinSignificantDigits = min;
  5526     fMaxSignificantDigits = max;
  5527     fUseSignificantDigits = TRUE;
  5528 #if UCONFIG_FORMAT_FASTPATHS_49
  5529     handleChanged();
  5530 #endif
  5533 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
  5534     if (max < 1) {
  5535         max = 1;
  5537     // pin min sig dig to 1..max
  5538     U_ASSERT(fMinSignificantDigits >= 1);
  5539     int32_t min = _min(fMinSignificantDigits, max);
  5540     fMinSignificantDigits = min;
  5541     fMaxSignificantDigits = max;
  5542     fUseSignificantDigits = TRUE;
  5543 #if UCONFIG_FORMAT_FASTPATHS_49
  5544     handleChanged();
  5545 #endif
  5548 UBool DecimalFormat::areSignificantDigitsUsed() const {
  5549     return fUseSignificantDigits;
  5552 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
  5553     fUseSignificantDigits = useSignificantDigits;
  5554 #if UCONFIG_FORMAT_FASTPATHS_49
  5555     handleChanged();
  5556 #endif
  5559 void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
  5560                                           UErrorCode& ec) {
  5561     // If we are a currency format, then modify our affixes to
  5562     // encode the currency symbol for the given currency in our
  5563     // locale, and adjust the decimal digits and rounding for the
  5564     // given currency.
  5566     // Note: The code is ordered so that this object is *not changed*
  5567     // until we are sure we are going to succeed.
  5569     // NULL or empty currency is *legal* and indicates no currency.
  5570     UBool isCurr = (theCurrency && *theCurrency);
  5572     double rounding = 0.0;
  5573     int32_t frac = 0;
  5574     if (fCurrencySignCount != fgCurrencySignCountZero && isCurr) {
  5575         rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
  5576         frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
  5579     NumberFormat::setCurrency(theCurrency, ec);
  5580     if (U_FAILURE(ec)) return;
  5582     if (fCurrencySignCount != fgCurrencySignCountZero) {
  5583         // NULL or empty currency is *legal* and indicates no currency.
  5584         if (isCurr) {
  5585             setRoundingIncrement(rounding);
  5586             setMinimumFractionDigits(frac);
  5587             setMaximumFractionDigits(frac);
  5589         expandAffixes(NULL);
  5591 #if UCONFIG_FORMAT_FASTPATHS_49
  5592     handleChanged();
  5593 #endif
  5596 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
  5597     // set the currency before compute affixes to get the right currency names
  5598     NumberFormat::setCurrency(theCurrency, ec);
  5599     if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
  5600         UnicodeString savedPtn = fFormatPattern;
  5601         setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
  5602         UParseError parseErr;
  5603         applyPattern(savedPtn, FALSE, parseErr, ec);
  5605     // set the currency after apply pattern to get the correct rounding/fraction
  5606     setCurrencyInternally(theCurrency, ec);
  5607 #if UCONFIG_FORMAT_FASTPATHS_49
  5608     handleChanged();
  5609 #endif
  5612 // Deprecated variant with no UErrorCode parameter
  5613 void DecimalFormat::setCurrency(const UChar* theCurrency) {
  5614     UErrorCode ec = U_ZERO_ERROR;
  5615     setCurrency(theCurrency, ec);
  5616 #if UCONFIG_FORMAT_FASTPATHS_49
  5617     handleChanged();
  5618 #endif
  5621 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
  5622     if (fSymbols == NULL) {
  5623         ec = U_MEMORY_ALLOCATION_ERROR;
  5624         return;
  5626     ec = U_ZERO_ERROR;
  5627     const UChar* c = getCurrency();
  5628     if (*c == 0) {
  5629         const UnicodeString &intl =
  5630             fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
  5631         c = intl.getBuffer(); // ok for intl to go out of scope
  5633     u_strncpy(result, c, 3);
  5634     result[3] = 0;
  5637 /**
  5638  * Return the number of fraction digits to display, or the total
  5639  * number of digits for significant digit formats and exponential
  5640  * formats.
  5641  */
  5642 int32_t
  5643 DecimalFormat::precision() const {
  5644     if (areSignificantDigitsUsed()) {
  5645         return getMaximumSignificantDigits();
  5646     } else if (fUseExponentialNotation) {
  5647         return getMinimumIntegerDigits() + getMaximumFractionDigits();
  5648     } else {
  5649         return getMaximumFractionDigits();
  5654 // TODO: template algorithm
  5655 Hashtable*
  5656 DecimalFormat::initHashForAffix(UErrorCode& status) {
  5657     if ( U_FAILURE(status) ) {
  5658         return NULL;
  5660     Hashtable* hTable;
  5661     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
  5662         status = U_MEMORY_ALLOCATION_ERROR;
  5663         return NULL;
  5665     if ( U_FAILURE(status) ) {
  5666         delete hTable; 
  5667         return NULL;
  5669     hTable->setValueComparator(decimfmtAffixValueComparator);
  5670     return hTable;
  5673 Hashtable*
  5674 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
  5675     if ( U_FAILURE(status) ) {
  5676         return NULL;
  5678     Hashtable* hTable;
  5679     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
  5680         status = U_MEMORY_ALLOCATION_ERROR;
  5681         return NULL;
  5683     if ( U_FAILURE(status) ) {
  5684         delete hTable; 
  5685         return NULL;
  5687     hTable->setValueComparator(decimfmtAffixPatternValueComparator);
  5688     return hTable;
  5691 void
  5692 DecimalFormat::deleteHashForAffix(Hashtable*& table)
  5694     if ( table == NULL ) {
  5695         return;
  5697     int32_t pos = -1;
  5698     const UHashElement* element = NULL;
  5699     while ( (element = table->nextElement(pos)) != NULL ) {
  5700         const UHashTok valueTok = element->value;
  5701         const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
  5702         delete value;
  5704     delete table;
  5705     table = NULL;
  5710 void
  5711 DecimalFormat::deleteHashForAffixPattern()
  5713     if ( fAffixPatternsForCurrency == NULL ) {
  5714         return;
  5716     int32_t pos = -1;
  5717     const UHashElement* element = NULL;
  5718     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
  5719         const UHashTok valueTok = element->value;
  5720         const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
  5721         delete value;
  5723     delete fAffixPatternsForCurrency;
  5724     fAffixPatternsForCurrency = NULL;
  5728 void
  5729 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
  5730                                        Hashtable* target,
  5731                                        UErrorCode& status) {
  5732     if ( U_FAILURE(status) ) {
  5733         return;
  5735     int32_t pos = -1;
  5736     const UHashElement* element = NULL;
  5737     if ( source ) {
  5738         while ( (element = source->nextElement(pos)) != NULL ) {
  5739             const UHashTok keyTok = element->key;
  5740             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
  5741             const UHashTok valueTok = element->value;
  5742             const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
  5743             AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
  5744                 value->negPrefixPatternForCurrency,
  5745                 value->negSuffixPatternForCurrency,
  5746                 value->posPrefixPatternForCurrency,
  5747                 value->posSuffixPatternForCurrency,
  5748                 value->patternType);
  5749             target->put(UnicodeString(*key), copy, status);
  5750             if ( U_FAILURE(status) ) {
  5751                 return;
  5757 DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
  5758                                             int32_t newValue,
  5759                                             UErrorCode &status) {
  5760   if(U_FAILURE(status)) return *this;
  5762   switch(attr) {
  5763   case UNUM_LENIENT_PARSE:
  5764     setLenient(newValue!=0);
  5765     break;
  5767     case UNUM_PARSE_INT_ONLY:
  5768       setParseIntegerOnly(newValue!=0);
  5769       break;
  5771     case UNUM_GROUPING_USED:
  5772       setGroupingUsed(newValue!=0);
  5773       break;
  5775     case UNUM_DECIMAL_ALWAYS_SHOWN:
  5776       setDecimalSeparatorAlwaysShown(newValue!=0);
  5777         break;
  5779     case UNUM_MAX_INTEGER_DIGITS:
  5780       setMaximumIntegerDigits(newValue);
  5781         break;
  5783     case UNUM_MIN_INTEGER_DIGITS:
  5784       setMinimumIntegerDigits(newValue);
  5785         break;
  5787     case UNUM_INTEGER_DIGITS:
  5788       setMinimumIntegerDigits(newValue);
  5789       setMaximumIntegerDigits(newValue);
  5790         break;
  5792     case UNUM_MAX_FRACTION_DIGITS:
  5793       setMaximumFractionDigits(newValue);
  5794         break;
  5796     case UNUM_MIN_FRACTION_DIGITS:
  5797       setMinimumFractionDigits(newValue);
  5798         break;
  5800     case UNUM_FRACTION_DIGITS:
  5801       setMinimumFractionDigits(newValue);
  5802       setMaximumFractionDigits(newValue);
  5803       break;
  5805     case UNUM_SIGNIFICANT_DIGITS_USED:
  5806       setSignificantDigitsUsed(newValue!=0);
  5807         break;
  5809     case UNUM_MAX_SIGNIFICANT_DIGITS:
  5810       setMaximumSignificantDigits(newValue);
  5811         break;
  5813     case UNUM_MIN_SIGNIFICANT_DIGITS:
  5814       setMinimumSignificantDigits(newValue);
  5815         break;
  5817     case UNUM_MULTIPLIER:
  5818       setMultiplier(newValue);    
  5819        break;
  5821     case UNUM_GROUPING_SIZE:
  5822       setGroupingSize(newValue);    
  5823         break;
  5825     case UNUM_ROUNDING_MODE:
  5826       setRoundingMode((DecimalFormat::ERoundingMode)newValue);
  5827         break;
  5829     case UNUM_FORMAT_WIDTH:
  5830       setFormatWidth(newValue);
  5831         break;
  5833     case UNUM_PADDING_POSITION:
  5834         /** The position at which padding will take place. */
  5835       setPadPosition((DecimalFormat::EPadPosition)newValue);
  5836         break;
  5838     case UNUM_SECONDARY_GROUPING_SIZE:
  5839       setSecondaryGroupingSize(newValue);
  5840         break;
  5842 #if UCONFIG_HAVE_PARSEALLINPUT
  5843     case UNUM_PARSE_ALL_INPUT:
  5844       setParseAllInput((UNumberFormatAttributeValue)newValue);
  5845         break;
  5846 #endif
  5848     /* These are stored in fBoolFlags */
  5849     case UNUM_PARSE_NO_EXPONENT:
  5850     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
  5851       if(!fBoolFlags.isValidValue(newValue)) {
  5852           status = U_ILLEGAL_ARGUMENT_ERROR;
  5853       } else {
  5854           fBoolFlags.set(attr, newValue);
  5856       break;
  5858     case UNUM_SCALE:
  5859         fScale = newValue;
  5860         break;
  5862     default:
  5863       status = U_UNSUPPORTED_ERROR;
  5864       break;
  5866   return *this;
  5869 int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr, 
  5870                                      UErrorCode &status ) const {
  5871   if(U_FAILURE(status)) return -1;
  5872   switch(attr) {
  5873     case UNUM_LENIENT_PARSE: 
  5874         return isLenient();
  5876     case UNUM_PARSE_INT_ONLY:
  5877         return isParseIntegerOnly();
  5879     case UNUM_GROUPING_USED:
  5880         return isGroupingUsed();
  5882     case UNUM_DECIMAL_ALWAYS_SHOWN:
  5883         return isDecimalSeparatorAlwaysShown();    
  5885     case UNUM_MAX_INTEGER_DIGITS:
  5886         return getMaximumIntegerDigits();
  5888     case UNUM_MIN_INTEGER_DIGITS:
  5889         return getMinimumIntegerDigits();
  5891     case UNUM_INTEGER_DIGITS:
  5892         // TBD: what should this return?
  5893         return getMinimumIntegerDigits();
  5895     case UNUM_MAX_FRACTION_DIGITS:
  5896         return getMaximumFractionDigits();
  5898     case UNUM_MIN_FRACTION_DIGITS:
  5899         return getMinimumFractionDigits();
  5901     case UNUM_FRACTION_DIGITS:
  5902         // TBD: what should this return?
  5903         return getMinimumFractionDigits();
  5905     case UNUM_SIGNIFICANT_DIGITS_USED:
  5906         return areSignificantDigitsUsed();
  5908     case UNUM_MAX_SIGNIFICANT_DIGITS:
  5909         return getMaximumSignificantDigits();
  5911     case UNUM_MIN_SIGNIFICANT_DIGITS:
  5912         return getMinimumSignificantDigits();
  5914     case UNUM_MULTIPLIER:
  5915         return getMultiplier();    
  5917     case UNUM_GROUPING_SIZE:
  5918         return getGroupingSize();    
  5920     case UNUM_ROUNDING_MODE:
  5921         return getRoundingMode();
  5923     case UNUM_FORMAT_WIDTH:
  5924         return getFormatWidth();
  5926     case UNUM_PADDING_POSITION:
  5927         return getPadPosition();
  5929     case UNUM_SECONDARY_GROUPING_SIZE:
  5930         return getSecondaryGroupingSize();
  5932     /* These are stored in fBoolFlags */
  5933     case UNUM_PARSE_NO_EXPONENT:
  5934     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
  5935       return fBoolFlags.get(attr);
  5937     case UNUM_SCALE:
  5938         return fScale;
  5940     default:
  5941         status = U_UNSUPPORTED_ERROR;
  5942         break;
  5945   return -1; /* undefined */
  5948 #if UCONFIG_HAVE_PARSEALLINPUT
  5949 void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
  5950   fParseAllInput = value;
  5951 #if UCONFIG_FORMAT_FASTPATHS_49
  5952   handleChanged();
  5953 #endif
  5955 #endif
  5957 void
  5958 DecimalFormat::copyHashForAffix(const Hashtable* source,
  5959                                 Hashtable* target,
  5960                                 UErrorCode& status) {
  5961     if ( U_FAILURE(status) ) {
  5962         return;
  5964     int32_t pos = -1;
  5965     const UHashElement* element = NULL;
  5966     if ( source ) {
  5967         while ( (element = source->nextElement(pos)) != NULL ) {
  5968             const UHashTok keyTok = element->key;
  5969             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
  5971             const UHashTok valueTok = element->value;
  5972             const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
  5973             AffixesForCurrency* copy = new AffixesForCurrency(
  5974                 value->negPrefixForCurrency,
  5975                 value->negSuffixForCurrency,
  5976                 value->posPrefixForCurrency,
  5977                 value->posSuffixForCurrency);
  5978             target->put(UnicodeString(*key), copy, status);
  5979             if ( U_FAILURE(status) ) {
  5980                 return;
  5986 U_NAMESPACE_END
  5988 #endif /* #if !UCONFIG_NO_FORMATTING */
  5990 //eof

mercurial