1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/ipc/chromium/src/base/message_pump_win.cc Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,574 @@ 1.4 +// Copyright (c) 2009 The Chromium Authors. All rights reserved. 1.5 +// Use of this source code is governed by a BSD-style license that can be 1.6 +// found in the LICENSE file. 1.7 + 1.8 +#include "base/message_pump_win.h" 1.9 + 1.10 +#include <math.h> 1.11 + 1.12 +#include "base/message_loop.h" 1.13 +#include "base/histogram.h" 1.14 +#include "base/win_util.h" 1.15 + 1.16 +using base::Time; 1.17 + 1.18 +namespace base { 1.19 + 1.20 +static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow"; 1.21 + 1.22 +// Message sent to get an additional time slice for pumping (processing) another 1.23 +// task (a series of such messages creates a continuous task pump). 1.24 +static const int kMsgHaveWork = WM_USER + 1; 1.25 + 1.26 +//----------------------------------------------------------------------------- 1.27 +// MessagePumpWin public: 1.28 + 1.29 +void MessagePumpWin::AddObserver(Observer* observer) { 1.30 + observers_.AddObserver(observer); 1.31 +} 1.32 + 1.33 +void MessagePumpWin::RemoveObserver(Observer* observer) { 1.34 + observers_.RemoveObserver(observer); 1.35 +} 1.36 + 1.37 +void MessagePumpWin::WillProcessMessage(const MSG& msg) { 1.38 + FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg)); 1.39 +} 1.40 + 1.41 +void MessagePumpWin::DidProcessMessage(const MSG& msg) { 1.42 + FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg)); 1.43 +} 1.44 + 1.45 +void MessagePumpWin::RunWithDispatcher( 1.46 + Delegate* delegate, Dispatcher* dispatcher) { 1.47 + RunState s; 1.48 + s.delegate = delegate; 1.49 + s.dispatcher = dispatcher; 1.50 + s.should_quit = false; 1.51 + s.run_depth = state_ ? state_->run_depth + 1 : 1; 1.52 + 1.53 + RunState* previous_state = state_; 1.54 + state_ = &s; 1.55 + 1.56 + DoRunLoop(); 1.57 + 1.58 + state_ = previous_state; 1.59 +} 1.60 + 1.61 +void MessagePumpWin::Quit() { 1.62 + DCHECK(state_); 1.63 + state_->should_quit = true; 1.64 +} 1.65 + 1.66 +//----------------------------------------------------------------------------- 1.67 +// MessagePumpWin protected: 1.68 + 1.69 +int MessagePumpWin::GetCurrentDelay() const { 1.70 + if (delayed_work_time_.is_null()) 1.71 + return -1; 1.72 + 1.73 + // Be careful here. TimeDelta has a precision of microseconds, but we want a 1.74 + // value in milliseconds. If there are 5.5ms left, should the delay be 5 or 1.75 + // 6? It should be 6 to avoid executing delayed work too early. 1.76 + double timeout = 1.77 + ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); 1.78 + 1.79 + // If this value is negative, then we need to run delayed work soon. 1.80 + int delay = static_cast<int>(timeout); 1.81 + if (delay < 0) 1.82 + delay = 0; 1.83 + 1.84 + return delay; 1.85 +} 1.86 + 1.87 +//----------------------------------------------------------------------------- 1.88 +// MessagePumpForUI public: 1.89 + 1.90 +MessagePumpForUI::MessagePumpForUI() { 1.91 + InitMessageWnd(); 1.92 +} 1.93 + 1.94 +MessagePumpForUI::~MessagePumpForUI() { 1.95 + DestroyWindow(message_hwnd_); 1.96 + UnregisterClass(kWndClass, GetModuleHandle(NULL)); 1.97 +} 1.98 + 1.99 +void MessagePumpForUI::ScheduleWork() { 1.100 + if (InterlockedExchange(&have_work_, 1)) 1.101 + return; // Someone else continued the pumping. 1.102 + 1.103 + // Make sure the MessagePump does some work for us. 1.104 + PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0); 1.105 + 1.106 + // In order to wake up any cross-process COM calls which may currently be 1.107 + // pending on the main thread, we also have to post a UI message. 1.108 + PostMessage(message_hwnd_, WM_NULL, 0, 0); 1.109 +} 1.110 + 1.111 +void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { 1.112 + // 1.113 + // We would *like* to provide high resolution timers. Windows timers using 1.114 + // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup 1.115 + // mechanism because the application can enter modal windows loops where it 1.116 + // is not running our MessageLoop; the only way to have our timers fire in 1.117 + // these cases is to post messages there. 1.118 + // 1.119 + // To provide sub-10ms timers, we process timers directly from our run loop. 1.120 + // For the common case, timers will be processed there as the run loop does 1.121 + // its normal work. However, we *also* set the system timer so that WM_TIMER 1.122 + // events fire. This mops up the case of timers not being able to work in 1.123 + // modal message loops. It is possible for the SetTimer to pop and have no 1.124 + // pending timers, because they could have already been processed by the 1.125 + // run loop itself. 1.126 + // 1.127 + // We use a single SetTimer corresponding to the timer that will expire 1.128 + // soonest. As new timers are created and destroyed, we update SetTimer. 1.129 + // Getting a spurrious SetTimer event firing is benign, as we'll just be 1.130 + // processing an empty timer queue. 1.131 + // 1.132 + delayed_work_time_ = delayed_work_time; 1.133 + 1.134 + int delay_msec = GetCurrentDelay(); 1.135 + DCHECK(delay_msec >= 0); 1.136 + if (delay_msec < USER_TIMER_MINIMUM) 1.137 + delay_msec = USER_TIMER_MINIMUM; 1.138 + 1.139 + // Create a WM_TIMER event that will wake us up to check for any pending 1.140 + // timers (in case we are running within a nested, external sub-pump). 1.141 + SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL); 1.142 +} 1.143 + 1.144 +void MessagePumpForUI::PumpOutPendingPaintMessages() { 1.145 + // If we are being called outside of the context of Run, then don't try to do 1.146 + // any work. 1.147 + if (!state_) 1.148 + return; 1.149 + 1.150 + // Create a mini-message-pump to force immediate processing of only Windows 1.151 + // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking 1.152 + // to get the job done. Actual common max is 4 peeks, but we'll be a little 1.153 + // safe here. 1.154 + const int kMaxPeekCount = 20; 1.155 + bool win2k = win_util::GetWinVersion() <= win_util::WINVERSION_2000; 1.156 + int peek_count; 1.157 + for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { 1.158 + MSG msg; 1.159 + if (win2k) { 1.160 + if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE)) 1.161 + break; 1.162 + } else { 1.163 + if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) 1.164 + break; 1.165 + } 1.166 + ProcessMessageHelper(msg); 1.167 + if (state_->should_quit) // Handle WM_QUIT. 1.168 + break; 1.169 + } 1.170 + // Histogram what was really being used, to help to adjust kMaxPeekCount. 1.171 + DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count); 1.172 +} 1.173 + 1.174 +//----------------------------------------------------------------------------- 1.175 +// MessagePumpForUI private: 1.176 + 1.177 +// static 1.178 +LRESULT CALLBACK MessagePumpForUI::WndProcThunk( 1.179 + HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { 1.180 + switch (message) { 1.181 + case kMsgHaveWork: 1.182 + reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage(); 1.183 + break; 1.184 + case WM_TIMER: 1.185 + reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage(); 1.186 + break; 1.187 + } 1.188 + return DefWindowProc(hwnd, message, wparam, lparam); 1.189 +} 1.190 + 1.191 +void MessagePumpForUI::DoRunLoop() { 1.192 + // IF this was just a simple PeekMessage() loop (servicing all possible work 1.193 + // queues), then Windows would try to achieve the following order according 1.194 + // to MSDN documentation about PeekMessage with no filter): 1.195 + // * Sent messages 1.196 + // * Posted messages 1.197 + // * Sent messages (again) 1.198 + // * WM_PAINT messages 1.199 + // * WM_TIMER messages 1.200 + // 1.201 + // Summary: none of the above classes is starved, and sent messages has twice 1.202 + // the chance of being processed (i.e., reduced service time). 1.203 + 1.204 + for (;;) { 1.205 + // If we do any work, we may create more messages etc., and more work may 1.206 + // possibly be waiting in another task group. When we (for example) 1.207 + // ProcessNextWindowsMessage(), there is a good chance there are still more 1.208 + // messages waiting. On the other hand, when any of these methods return 1.209 + // having done no work, then it is pretty unlikely that calling them again 1.210 + // quickly will find any work to do. Finally, if they all say they had no 1.211 + // work, then it is a good time to consider sleeping (waiting) for more 1.212 + // work. 1.213 + 1.214 + bool more_work_is_plausible = ProcessNextWindowsMessage(); 1.215 + if (state_->should_quit) 1.216 + break; 1.217 + 1.218 + more_work_is_plausible |= state_->delegate->DoWork(); 1.219 + if (state_->should_quit) 1.220 + break; 1.221 + 1.222 + more_work_is_plausible |= 1.223 + state_->delegate->DoDelayedWork(&delayed_work_time_); 1.224 + // If we did not process any delayed work, then we can assume that our 1.225 + // existing WM_TIMER if any will fire when delayed work should run. We 1.226 + // don't want to disturb that timer if it is already in flight. However, 1.227 + // if we did do all remaining delayed work, then lets kill the WM_TIMER. 1.228 + if (more_work_is_plausible && delayed_work_time_.is_null()) 1.229 + KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); 1.230 + if (state_->should_quit) 1.231 + break; 1.232 + 1.233 + if (more_work_is_plausible) 1.234 + continue; 1.235 + 1.236 + more_work_is_plausible = state_->delegate->DoIdleWork(); 1.237 + if (state_->should_quit) 1.238 + break; 1.239 + 1.240 + if (more_work_is_plausible) 1.241 + continue; 1.242 + 1.243 + WaitForWork(); // Wait (sleep) until we have work to do again. 1.244 + } 1.245 +} 1.246 + 1.247 +void MessagePumpForUI::InitMessageWnd() { 1.248 + HINSTANCE hinst = GetModuleHandle(NULL); 1.249 + 1.250 + WNDCLASSEX wc = {0}; 1.251 + wc.cbSize = sizeof(wc); 1.252 + wc.lpfnWndProc = WndProcThunk; 1.253 + wc.hInstance = hinst; 1.254 + wc.lpszClassName = kWndClass; 1.255 + RegisterClassEx(&wc); 1.256 + 1.257 + message_hwnd_ = 1.258 + CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0); 1.259 + DCHECK(message_hwnd_); 1.260 +} 1.261 + 1.262 +void MessagePumpForUI::WaitForWork() { 1.263 + // Wait until a message is available, up to the time needed by the timer 1.264 + // manager to fire the next set of timers. 1.265 + int delay = GetCurrentDelay(); 1.266 + if (delay < 0) // Negative value means no timers waiting. 1.267 + delay = INFINITE; 1.268 + 1.269 + DWORD result; 1.270 + result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT, 1.271 + MWMO_INPUTAVAILABLE); 1.272 + 1.273 + if (WAIT_OBJECT_0 == result) { 1.274 + // A WM_* message is available. 1.275 + // If a parent child relationship exists between windows across threads 1.276 + // then their thread inputs are implicitly attached. 1.277 + // This causes the MsgWaitForMultipleObjectsEx API to return indicating 1.278 + // that messages are ready for processing (specifically mouse messages 1.279 + // intended for the child window. Occurs if the child window has capture) 1.280 + // The subsequent PeekMessages call fails to return any messages thus 1.281 + // causing us to enter a tight loop at times. 1.282 + // The WaitMessage call below is a workaround to give the child window 1.283 + // sometime to process its input messages. 1.284 + MSG msg = {0}; 1.285 + DWORD queue_status = GetQueueStatus(QS_MOUSE); 1.286 + if (HIWORD(queue_status) & QS_MOUSE && 1.287 + !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { 1.288 + WaitMessage(); 1.289 + } 1.290 + return; 1.291 + } 1.292 + 1.293 + DCHECK_NE(WAIT_FAILED, result) << GetLastError(); 1.294 +} 1.295 + 1.296 +void MessagePumpForUI::HandleWorkMessage() { 1.297 + // If we are being called outside of the context of Run, then don't try to do 1.298 + // any work. This could correspond to a MessageBox call or something of that 1.299 + // sort. 1.300 + if (!state_) { 1.301 + // Since we handled a kMsgHaveWork message, we must still update this flag. 1.302 + InterlockedExchange(&have_work_, 0); 1.303 + return; 1.304 + } 1.305 + 1.306 + // Let whatever would have run had we not been putting messages in the queue 1.307 + // run now. This is an attempt to make our dummy message not starve other 1.308 + // messages that may be in the Windows message queue. 1.309 + ProcessPumpReplacementMessage(); 1.310 + 1.311 + // Now give the delegate a chance to do some work. He'll let us know if he 1.312 + // needs to do more work. 1.313 + if (state_->delegate->DoWork()) 1.314 + ScheduleWork(); 1.315 +} 1.316 + 1.317 +void MessagePumpForUI::HandleTimerMessage() { 1.318 + KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); 1.319 + 1.320 + // If we are being called outside of the context of Run, then don't do 1.321 + // anything. This could correspond to a MessageBox call or something of 1.322 + // that sort. 1.323 + if (!state_) 1.324 + return; 1.325 + 1.326 + state_->delegate->DoDelayedWork(&delayed_work_time_); 1.327 + if (!delayed_work_time_.is_null()) { 1.328 + // A bit gratuitous to set delayed_work_time_ again, but oh well. 1.329 + ScheduleDelayedWork(delayed_work_time_); 1.330 + } 1.331 +} 1.332 + 1.333 +bool MessagePumpForUI::ProcessNextWindowsMessage() { 1.334 + // If there are sent messages in the queue then PeekMessage internally 1.335 + // dispatches the message and returns false. We return true in this 1.336 + // case to ensure that the message loop peeks again instead of calling 1.337 + // MsgWaitForMultipleObjectsEx again. 1.338 + bool sent_messages_in_queue = false; 1.339 + DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); 1.340 + if (HIWORD(queue_status) & QS_SENDMESSAGE) 1.341 + sent_messages_in_queue = true; 1.342 + 1.343 + MSG msg; 1.344 + if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) 1.345 + return ProcessMessageHelper(msg); 1.346 + 1.347 + return sent_messages_in_queue; 1.348 +} 1.349 + 1.350 +bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { 1.351 + if (WM_QUIT == msg.message) { 1.352 + // Repost the QUIT message so that it will be retrieved by the primary 1.353 + // GetMessage() loop. 1.354 + state_->should_quit = true; 1.355 + PostQuitMessage(static_cast<int>(msg.wParam)); 1.356 + return false; 1.357 + } 1.358 + 1.359 + // While running our main message pump, we discard kMsgHaveWork messages. 1.360 + if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) 1.361 + return ProcessPumpReplacementMessage(); 1.362 + 1.363 + WillProcessMessage(msg); 1.364 + 1.365 + if (state_->dispatcher) { 1.366 + if (!state_->dispatcher->Dispatch(msg)) 1.367 + state_->should_quit = true; 1.368 + } else { 1.369 + TranslateMessage(&msg); 1.370 + DispatchMessage(&msg); 1.371 + } 1.372 + 1.373 + DidProcessMessage(msg); 1.374 + return true; 1.375 +} 1.376 + 1.377 +bool MessagePumpForUI::ProcessPumpReplacementMessage() { 1.378 + // When we encounter a kMsgHaveWork message, this method is called to peek 1.379 + // and process a replacement message, such as a WM_PAINT or WM_TIMER. The 1.380 + // goal is to make the kMsgHaveWork as non-intrusive as possible, even though 1.381 + // a continuous stream of such messages are posted. This method carefully 1.382 + // peeks a message while there is no chance for a kMsgHaveWork to be pending, 1.383 + // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to 1.384 + // possibly be posted), and finally dispatches that peeked replacement. Note 1.385 + // that the re-post of kMsgHaveWork may be asynchronous to this thread!! 1.386 + 1.387 + MSG msg; 1.388 + bool have_message = false; 1.389 + if (MessageLoop::current()->os_modal_loop()) { 1.390 + // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. 1.391 + have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || 1.392 + PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); 1.393 + } else { 1.394 + have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); 1.395 + 1.396 + if (have_message && msg.message == WM_NULL) 1.397 + have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); 1.398 + } 1.399 + 1.400 + DCHECK(!have_message || kMsgHaveWork != msg.message || 1.401 + msg.hwnd != message_hwnd_); 1.402 + 1.403 + // Since we discarded a kMsgHaveWork message, we must update the flag. 1.404 + int old_have_work = InterlockedExchange(&have_work_, 0); 1.405 + DCHECK(old_have_work); 1.406 + 1.407 + // We don't need a special time slice if we didn't have_message to process. 1.408 + if (!have_message) 1.409 + return false; 1.410 + 1.411 + // Guarantee we'll get another time slice in the case where we go into native 1.412 + // windows code. This ScheduleWork() may hurt performance a tiny bit when 1.413 + // tasks appear very infrequently, but when the event queue is busy, the 1.414 + // kMsgHaveWork events get (percentage wise) rarer and rarer. 1.415 + ScheduleWork(); 1.416 + return ProcessMessageHelper(msg); 1.417 +} 1.418 + 1.419 +//----------------------------------------------------------------------------- 1.420 +// MessagePumpForIO public: 1.421 + 1.422 +MessagePumpForIO::MessagePumpForIO() { 1.423 + port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 1)); 1.424 + DCHECK(port_.IsValid()); 1.425 +} 1.426 + 1.427 +void MessagePumpForIO::ScheduleWork() { 1.428 + if (InterlockedExchange(&have_work_, 1)) 1.429 + return; // Someone else continued the pumping. 1.430 + 1.431 + // Make sure the MessagePump does some work for us. 1.432 + BOOL ret = PostQueuedCompletionStatus(port_, 0, 1.433 + reinterpret_cast<ULONG_PTR>(this), 1.434 + reinterpret_cast<OVERLAPPED*>(this)); 1.435 + DCHECK(ret); 1.436 +} 1.437 + 1.438 +void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { 1.439 + // We know that we can't be blocked right now since this method can only be 1.440 + // called on the same thread as Run, so we only need to update our record of 1.441 + // how long to sleep when we do sleep. 1.442 + delayed_work_time_ = delayed_work_time; 1.443 +} 1.444 + 1.445 +void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, 1.446 + IOHandler* handler) { 1.447 + ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler); 1.448 + HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1); 1.449 + DCHECK(port == port_.Get()); 1.450 +} 1.451 + 1.452 +//----------------------------------------------------------------------------- 1.453 +// MessagePumpForIO private: 1.454 + 1.455 +void MessagePumpForIO::DoRunLoop() { 1.456 + for (;;) { 1.457 + // If we do any work, we may create more messages etc., and more work may 1.458 + // possibly be waiting in another task group. When we (for example) 1.459 + // WaitForIOCompletion(), there is a good chance there are still more 1.460 + // messages waiting. On the other hand, when any of these methods return 1.461 + // having done no work, then it is pretty unlikely that calling them 1.462 + // again quickly will find any work to do. Finally, if they all say they 1.463 + // had no work, then it is a good time to consider sleeping (waiting) for 1.464 + // more work. 1.465 + 1.466 + bool more_work_is_plausible = state_->delegate->DoWork(); 1.467 + if (state_->should_quit) 1.468 + break; 1.469 + 1.470 + more_work_is_plausible |= WaitForIOCompletion(0, NULL); 1.471 + if (state_->should_quit) 1.472 + break; 1.473 + 1.474 + more_work_is_plausible |= 1.475 + state_->delegate->DoDelayedWork(&delayed_work_time_); 1.476 + if (state_->should_quit) 1.477 + break; 1.478 + 1.479 + if (more_work_is_plausible) 1.480 + continue; 1.481 + 1.482 + more_work_is_plausible = state_->delegate->DoIdleWork(); 1.483 + if (state_->should_quit) 1.484 + break; 1.485 + 1.486 + if (more_work_is_plausible) 1.487 + continue; 1.488 + 1.489 + WaitForWork(); // Wait (sleep) until we have work to do again. 1.490 + } 1.491 +} 1.492 + 1.493 +// Wait until IO completes, up to the time needed by the timer manager to fire 1.494 +// the next set of timers. 1.495 +void MessagePumpForIO::WaitForWork() { 1.496 + // We do not support nested IO message loops. This is to avoid messy 1.497 + // recursion problems. 1.498 + DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!"; 1.499 + 1.500 + int timeout = GetCurrentDelay(); 1.501 + if (timeout < 0) // Negative value means no timers waiting. 1.502 + timeout = INFINITE; 1.503 + 1.504 + WaitForIOCompletion(timeout, NULL); 1.505 +} 1.506 + 1.507 +bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { 1.508 + IOItem item; 1.509 + if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { 1.510 + // We have to ask the system for another IO completion. 1.511 + if (!GetIOItem(timeout, &item)) 1.512 + return false; 1.513 + 1.514 + if (ProcessInternalIOItem(item)) 1.515 + return true; 1.516 + } 1.517 + 1.518 + if (item.context->handler) { 1.519 + if (filter && item.handler != filter) { 1.520 + // Save this item for later 1.521 + completed_io_.push_back(item); 1.522 + } else { 1.523 + DCHECK(item.context->handler == item.handler); 1.524 + item.handler->OnIOCompleted(item.context, item.bytes_transfered, 1.525 + item.error); 1.526 + } 1.527 + } else { 1.528 + // The handler must be gone by now, just cleanup the mess. 1.529 + delete item.context; 1.530 + } 1.531 + return true; 1.532 +} 1.533 + 1.534 +// Asks the OS for another IO completion result. 1.535 +bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { 1.536 + memset(item, 0, sizeof(*item)); 1.537 + ULONG_PTR key = 0; 1.538 + OVERLAPPED* overlapped = NULL; 1.539 + if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, 1.540 + &overlapped, timeout)) { 1.541 + if (!overlapped) 1.542 + return false; // Nothing in the queue. 1.543 + item->error = GetLastError(); 1.544 + item->bytes_transfered = 0; 1.545 + } 1.546 + 1.547 + item->handler = reinterpret_cast<IOHandler*>(key); 1.548 + item->context = reinterpret_cast<IOContext*>(overlapped); 1.549 + return true; 1.550 +} 1.551 + 1.552 +bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { 1.553 + if (this == reinterpret_cast<MessagePumpForIO*>(item.context) && 1.554 + this == reinterpret_cast<MessagePumpForIO*>(item.handler)) { 1.555 + // This is our internal completion. 1.556 + DCHECK(!item.bytes_transfered); 1.557 + InterlockedExchange(&have_work_, 0); 1.558 + return true; 1.559 + } 1.560 + return false; 1.561 +} 1.562 + 1.563 +// Returns a completion item that was previously received. 1.564 +bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { 1.565 + DCHECK(!completed_io_.empty()); 1.566 + for (std::list<IOItem>::iterator it = completed_io_.begin(); 1.567 + it != completed_io_.end(); ++it) { 1.568 + if (!filter || it->handler == filter) { 1.569 + *item = *it; 1.570 + completed_io_.erase(it); 1.571 + return true; 1.572 + } 1.573 + } 1.574 + return false; 1.575 +} 1.576 + 1.577 +} // namespace base