Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
michael@0 | 1 | // Copyright (c) 2009 The Chromium Authors. All rights reserved. |
michael@0 | 2 | // Use of this source code is governed by a BSD-style license that can be |
michael@0 | 3 | // found in the LICENSE file. |
michael@0 | 4 | |
michael@0 | 5 | #include "base/message_pump_win.h" |
michael@0 | 6 | |
michael@0 | 7 | #include <math.h> |
michael@0 | 8 | |
michael@0 | 9 | #include "base/message_loop.h" |
michael@0 | 10 | #include "base/histogram.h" |
michael@0 | 11 | #include "base/win_util.h" |
michael@0 | 12 | |
michael@0 | 13 | using base::Time; |
michael@0 | 14 | |
michael@0 | 15 | namespace base { |
michael@0 | 16 | |
michael@0 | 17 | static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow"; |
michael@0 | 18 | |
michael@0 | 19 | // Message sent to get an additional time slice for pumping (processing) another |
michael@0 | 20 | // task (a series of such messages creates a continuous task pump). |
michael@0 | 21 | static const int kMsgHaveWork = WM_USER + 1; |
michael@0 | 22 | |
michael@0 | 23 | //----------------------------------------------------------------------------- |
michael@0 | 24 | // MessagePumpWin public: |
michael@0 | 25 | |
michael@0 | 26 | void MessagePumpWin::AddObserver(Observer* observer) { |
michael@0 | 27 | observers_.AddObserver(observer); |
michael@0 | 28 | } |
michael@0 | 29 | |
michael@0 | 30 | void MessagePumpWin::RemoveObserver(Observer* observer) { |
michael@0 | 31 | observers_.RemoveObserver(observer); |
michael@0 | 32 | } |
michael@0 | 33 | |
michael@0 | 34 | void MessagePumpWin::WillProcessMessage(const MSG& msg) { |
michael@0 | 35 | FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg)); |
michael@0 | 36 | } |
michael@0 | 37 | |
michael@0 | 38 | void MessagePumpWin::DidProcessMessage(const MSG& msg) { |
michael@0 | 39 | FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg)); |
michael@0 | 40 | } |
michael@0 | 41 | |
michael@0 | 42 | void MessagePumpWin::RunWithDispatcher( |
michael@0 | 43 | Delegate* delegate, Dispatcher* dispatcher) { |
michael@0 | 44 | RunState s; |
michael@0 | 45 | s.delegate = delegate; |
michael@0 | 46 | s.dispatcher = dispatcher; |
michael@0 | 47 | s.should_quit = false; |
michael@0 | 48 | s.run_depth = state_ ? state_->run_depth + 1 : 1; |
michael@0 | 49 | |
michael@0 | 50 | RunState* previous_state = state_; |
michael@0 | 51 | state_ = &s; |
michael@0 | 52 | |
michael@0 | 53 | DoRunLoop(); |
michael@0 | 54 | |
michael@0 | 55 | state_ = previous_state; |
michael@0 | 56 | } |
michael@0 | 57 | |
michael@0 | 58 | void MessagePumpWin::Quit() { |
michael@0 | 59 | DCHECK(state_); |
michael@0 | 60 | state_->should_quit = true; |
michael@0 | 61 | } |
michael@0 | 62 | |
michael@0 | 63 | //----------------------------------------------------------------------------- |
michael@0 | 64 | // MessagePumpWin protected: |
michael@0 | 65 | |
michael@0 | 66 | int MessagePumpWin::GetCurrentDelay() const { |
michael@0 | 67 | if (delayed_work_time_.is_null()) |
michael@0 | 68 | return -1; |
michael@0 | 69 | |
michael@0 | 70 | // Be careful here. TimeDelta has a precision of microseconds, but we want a |
michael@0 | 71 | // value in milliseconds. If there are 5.5ms left, should the delay be 5 or |
michael@0 | 72 | // 6? It should be 6 to avoid executing delayed work too early. |
michael@0 | 73 | double timeout = |
michael@0 | 74 | ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); |
michael@0 | 75 | |
michael@0 | 76 | // If this value is negative, then we need to run delayed work soon. |
michael@0 | 77 | int delay = static_cast<int>(timeout); |
michael@0 | 78 | if (delay < 0) |
michael@0 | 79 | delay = 0; |
michael@0 | 80 | |
michael@0 | 81 | return delay; |
michael@0 | 82 | } |
michael@0 | 83 | |
michael@0 | 84 | //----------------------------------------------------------------------------- |
michael@0 | 85 | // MessagePumpForUI public: |
michael@0 | 86 | |
michael@0 | 87 | MessagePumpForUI::MessagePumpForUI() { |
michael@0 | 88 | InitMessageWnd(); |
michael@0 | 89 | } |
michael@0 | 90 | |
michael@0 | 91 | MessagePumpForUI::~MessagePumpForUI() { |
michael@0 | 92 | DestroyWindow(message_hwnd_); |
michael@0 | 93 | UnregisterClass(kWndClass, GetModuleHandle(NULL)); |
michael@0 | 94 | } |
michael@0 | 95 | |
michael@0 | 96 | void MessagePumpForUI::ScheduleWork() { |
michael@0 | 97 | if (InterlockedExchange(&have_work_, 1)) |
michael@0 | 98 | return; // Someone else continued the pumping. |
michael@0 | 99 | |
michael@0 | 100 | // Make sure the MessagePump does some work for us. |
michael@0 | 101 | PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0); |
michael@0 | 102 | |
michael@0 | 103 | // In order to wake up any cross-process COM calls which may currently be |
michael@0 | 104 | // pending on the main thread, we also have to post a UI message. |
michael@0 | 105 | PostMessage(message_hwnd_, WM_NULL, 0, 0); |
michael@0 | 106 | } |
michael@0 | 107 | |
michael@0 | 108 | void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { |
michael@0 | 109 | // |
michael@0 | 110 | // We would *like* to provide high resolution timers. Windows timers using |
michael@0 | 111 | // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup |
michael@0 | 112 | // mechanism because the application can enter modal windows loops where it |
michael@0 | 113 | // is not running our MessageLoop; the only way to have our timers fire in |
michael@0 | 114 | // these cases is to post messages there. |
michael@0 | 115 | // |
michael@0 | 116 | // To provide sub-10ms timers, we process timers directly from our run loop. |
michael@0 | 117 | // For the common case, timers will be processed there as the run loop does |
michael@0 | 118 | // its normal work. However, we *also* set the system timer so that WM_TIMER |
michael@0 | 119 | // events fire. This mops up the case of timers not being able to work in |
michael@0 | 120 | // modal message loops. It is possible for the SetTimer to pop and have no |
michael@0 | 121 | // pending timers, because they could have already been processed by the |
michael@0 | 122 | // run loop itself. |
michael@0 | 123 | // |
michael@0 | 124 | // We use a single SetTimer corresponding to the timer that will expire |
michael@0 | 125 | // soonest. As new timers are created and destroyed, we update SetTimer. |
michael@0 | 126 | // Getting a spurrious SetTimer event firing is benign, as we'll just be |
michael@0 | 127 | // processing an empty timer queue. |
michael@0 | 128 | // |
michael@0 | 129 | delayed_work_time_ = delayed_work_time; |
michael@0 | 130 | |
michael@0 | 131 | int delay_msec = GetCurrentDelay(); |
michael@0 | 132 | DCHECK(delay_msec >= 0); |
michael@0 | 133 | if (delay_msec < USER_TIMER_MINIMUM) |
michael@0 | 134 | delay_msec = USER_TIMER_MINIMUM; |
michael@0 | 135 | |
michael@0 | 136 | // Create a WM_TIMER event that will wake us up to check for any pending |
michael@0 | 137 | // timers (in case we are running within a nested, external sub-pump). |
michael@0 | 138 | SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL); |
michael@0 | 139 | } |
michael@0 | 140 | |
michael@0 | 141 | void MessagePumpForUI::PumpOutPendingPaintMessages() { |
michael@0 | 142 | // If we are being called outside of the context of Run, then don't try to do |
michael@0 | 143 | // any work. |
michael@0 | 144 | if (!state_) |
michael@0 | 145 | return; |
michael@0 | 146 | |
michael@0 | 147 | // Create a mini-message-pump to force immediate processing of only Windows |
michael@0 | 148 | // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking |
michael@0 | 149 | // to get the job done. Actual common max is 4 peeks, but we'll be a little |
michael@0 | 150 | // safe here. |
michael@0 | 151 | const int kMaxPeekCount = 20; |
michael@0 | 152 | bool win2k = win_util::GetWinVersion() <= win_util::WINVERSION_2000; |
michael@0 | 153 | int peek_count; |
michael@0 | 154 | for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { |
michael@0 | 155 | MSG msg; |
michael@0 | 156 | if (win2k) { |
michael@0 | 157 | if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE)) |
michael@0 | 158 | break; |
michael@0 | 159 | } else { |
michael@0 | 160 | if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) |
michael@0 | 161 | break; |
michael@0 | 162 | } |
michael@0 | 163 | ProcessMessageHelper(msg); |
michael@0 | 164 | if (state_->should_quit) // Handle WM_QUIT. |
michael@0 | 165 | break; |
michael@0 | 166 | } |
michael@0 | 167 | // Histogram what was really being used, to help to adjust kMaxPeekCount. |
michael@0 | 168 | DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count); |
michael@0 | 169 | } |
michael@0 | 170 | |
michael@0 | 171 | //----------------------------------------------------------------------------- |
michael@0 | 172 | // MessagePumpForUI private: |
michael@0 | 173 | |
michael@0 | 174 | // static |
michael@0 | 175 | LRESULT CALLBACK MessagePumpForUI::WndProcThunk( |
michael@0 | 176 | HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { |
michael@0 | 177 | switch (message) { |
michael@0 | 178 | case kMsgHaveWork: |
michael@0 | 179 | reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage(); |
michael@0 | 180 | break; |
michael@0 | 181 | case WM_TIMER: |
michael@0 | 182 | reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage(); |
michael@0 | 183 | break; |
michael@0 | 184 | } |
michael@0 | 185 | return DefWindowProc(hwnd, message, wparam, lparam); |
michael@0 | 186 | } |
michael@0 | 187 | |
michael@0 | 188 | void MessagePumpForUI::DoRunLoop() { |
michael@0 | 189 | // IF this was just a simple PeekMessage() loop (servicing all possible work |
michael@0 | 190 | // queues), then Windows would try to achieve the following order according |
michael@0 | 191 | // to MSDN documentation about PeekMessage with no filter): |
michael@0 | 192 | // * Sent messages |
michael@0 | 193 | // * Posted messages |
michael@0 | 194 | // * Sent messages (again) |
michael@0 | 195 | // * WM_PAINT messages |
michael@0 | 196 | // * WM_TIMER messages |
michael@0 | 197 | // |
michael@0 | 198 | // Summary: none of the above classes is starved, and sent messages has twice |
michael@0 | 199 | // the chance of being processed (i.e., reduced service time). |
michael@0 | 200 | |
michael@0 | 201 | for (;;) { |
michael@0 | 202 | // If we do any work, we may create more messages etc., and more work may |
michael@0 | 203 | // possibly be waiting in another task group. When we (for example) |
michael@0 | 204 | // ProcessNextWindowsMessage(), there is a good chance there are still more |
michael@0 | 205 | // messages waiting. On the other hand, when any of these methods return |
michael@0 | 206 | // having done no work, then it is pretty unlikely that calling them again |
michael@0 | 207 | // quickly will find any work to do. Finally, if they all say they had no |
michael@0 | 208 | // work, then it is a good time to consider sleeping (waiting) for more |
michael@0 | 209 | // work. |
michael@0 | 210 | |
michael@0 | 211 | bool more_work_is_plausible = ProcessNextWindowsMessage(); |
michael@0 | 212 | if (state_->should_quit) |
michael@0 | 213 | break; |
michael@0 | 214 | |
michael@0 | 215 | more_work_is_plausible |= state_->delegate->DoWork(); |
michael@0 | 216 | if (state_->should_quit) |
michael@0 | 217 | break; |
michael@0 | 218 | |
michael@0 | 219 | more_work_is_plausible |= |
michael@0 | 220 | state_->delegate->DoDelayedWork(&delayed_work_time_); |
michael@0 | 221 | // If we did not process any delayed work, then we can assume that our |
michael@0 | 222 | // existing WM_TIMER if any will fire when delayed work should run. We |
michael@0 | 223 | // don't want to disturb that timer if it is already in flight. However, |
michael@0 | 224 | // if we did do all remaining delayed work, then lets kill the WM_TIMER. |
michael@0 | 225 | if (more_work_is_plausible && delayed_work_time_.is_null()) |
michael@0 | 226 | KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); |
michael@0 | 227 | if (state_->should_quit) |
michael@0 | 228 | break; |
michael@0 | 229 | |
michael@0 | 230 | if (more_work_is_plausible) |
michael@0 | 231 | continue; |
michael@0 | 232 | |
michael@0 | 233 | more_work_is_plausible = state_->delegate->DoIdleWork(); |
michael@0 | 234 | if (state_->should_quit) |
michael@0 | 235 | break; |
michael@0 | 236 | |
michael@0 | 237 | if (more_work_is_plausible) |
michael@0 | 238 | continue; |
michael@0 | 239 | |
michael@0 | 240 | WaitForWork(); // Wait (sleep) until we have work to do again. |
michael@0 | 241 | } |
michael@0 | 242 | } |
michael@0 | 243 | |
michael@0 | 244 | void MessagePumpForUI::InitMessageWnd() { |
michael@0 | 245 | HINSTANCE hinst = GetModuleHandle(NULL); |
michael@0 | 246 | |
michael@0 | 247 | WNDCLASSEX wc = {0}; |
michael@0 | 248 | wc.cbSize = sizeof(wc); |
michael@0 | 249 | wc.lpfnWndProc = WndProcThunk; |
michael@0 | 250 | wc.hInstance = hinst; |
michael@0 | 251 | wc.lpszClassName = kWndClass; |
michael@0 | 252 | RegisterClassEx(&wc); |
michael@0 | 253 | |
michael@0 | 254 | message_hwnd_ = |
michael@0 | 255 | CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0); |
michael@0 | 256 | DCHECK(message_hwnd_); |
michael@0 | 257 | } |
michael@0 | 258 | |
michael@0 | 259 | void MessagePumpForUI::WaitForWork() { |
michael@0 | 260 | // Wait until a message is available, up to the time needed by the timer |
michael@0 | 261 | // manager to fire the next set of timers. |
michael@0 | 262 | int delay = GetCurrentDelay(); |
michael@0 | 263 | if (delay < 0) // Negative value means no timers waiting. |
michael@0 | 264 | delay = INFINITE; |
michael@0 | 265 | |
michael@0 | 266 | DWORD result; |
michael@0 | 267 | result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT, |
michael@0 | 268 | MWMO_INPUTAVAILABLE); |
michael@0 | 269 | |
michael@0 | 270 | if (WAIT_OBJECT_0 == result) { |
michael@0 | 271 | // A WM_* message is available. |
michael@0 | 272 | // If a parent child relationship exists between windows across threads |
michael@0 | 273 | // then their thread inputs are implicitly attached. |
michael@0 | 274 | // This causes the MsgWaitForMultipleObjectsEx API to return indicating |
michael@0 | 275 | // that messages are ready for processing (specifically mouse messages |
michael@0 | 276 | // intended for the child window. Occurs if the child window has capture) |
michael@0 | 277 | // The subsequent PeekMessages call fails to return any messages thus |
michael@0 | 278 | // causing us to enter a tight loop at times. |
michael@0 | 279 | // The WaitMessage call below is a workaround to give the child window |
michael@0 | 280 | // sometime to process its input messages. |
michael@0 | 281 | MSG msg = {0}; |
michael@0 | 282 | DWORD queue_status = GetQueueStatus(QS_MOUSE); |
michael@0 | 283 | if (HIWORD(queue_status) & QS_MOUSE && |
michael@0 | 284 | !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { |
michael@0 | 285 | WaitMessage(); |
michael@0 | 286 | } |
michael@0 | 287 | return; |
michael@0 | 288 | } |
michael@0 | 289 | |
michael@0 | 290 | DCHECK_NE(WAIT_FAILED, result) << GetLastError(); |
michael@0 | 291 | } |
michael@0 | 292 | |
michael@0 | 293 | void MessagePumpForUI::HandleWorkMessage() { |
michael@0 | 294 | // If we are being called outside of the context of Run, then don't try to do |
michael@0 | 295 | // any work. This could correspond to a MessageBox call or something of that |
michael@0 | 296 | // sort. |
michael@0 | 297 | if (!state_) { |
michael@0 | 298 | // Since we handled a kMsgHaveWork message, we must still update this flag. |
michael@0 | 299 | InterlockedExchange(&have_work_, 0); |
michael@0 | 300 | return; |
michael@0 | 301 | } |
michael@0 | 302 | |
michael@0 | 303 | // Let whatever would have run had we not been putting messages in the queue |
michael@0 | 304 | // run now. This is an attempt to make our dummy message not starve other |
michael@0 | 305 | // messages that may be in the Windows message queue. |
michael@0 | 306 | ProcessPumpReplacementMessage(); |
michael@0 | 307 | |
michael@0 | 308 | // Now give the delegate a chance to do some work. He'll let us know if he |
michael@0 | 309 | // needs to do more work. |
michael@0 | 310 | if (state_->delegate->DoWork()) |
michael@0 | 311 | ScheduleWork(); |
michael@0 | 312 | } |
michael@0 | 313 | |
michael@0 | 314 | void MessagePumpForUI::HandleTimerMessage() { |
michael@0 | 315 | KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); |
michael@0 | 316 | |
michael@0 | 317 | // If we are being called outside of the context of Run, then don't do |
michael@0 | 318 | // anything. This could correspond to a MessageBox call or something of |
michael@0 | 319 | // that sort. |
michael@0 | 320 | if (!state_) |
michael@0 | 321 | return; |
michael@0 | 322 | |
michael@0 | 323 | state_->delegate->DoDelayedWork(&delayed_work_time_); |
michael@0 | 324 | if (!delayed_work_time_.is_null()) { |
michael@0 | 325 | // A bit gratuitous to set delayed_work_time_ again, but oh well. |
michael@0 | 326 | ScheduleDelayedWork(delayed_work_time_); |
michael@0 | 327 | } |
michael@0 | 328 | } |
michael@0 | 329 | |
michael@0 | 330 | bool MessagePumpForUI::ProcessNextWindowsMessage() { |
michael@0 | 331 | // If there are sent messages in the queue then PeekMessage internally |
michael@0 | 332 | // dispatches the message and returns false. We return true in this |
michael@0 | 333 | // case to ensure that the message loop peeks again instead of calling |
michael@0 | 334 | // MsgWaitForMultipleObjectsEx again. |
michael@0 | 335 | bool sent_messages_in_queue = false; |
michael@0 | 336 | DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); |
michael@0 | 337 | if (HIWORD(queue_status) & QS_SENDMESSAGE) |
michael@0 | 338 | sent_messages_in_queue = true; |
michael@0 | 339 | |
michael@0 | 340 | MSG msg; |
michael@0 | 341 | if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) |
michael@0 | 342 | return ProcessMessageHelper(msg); |
michael@0 | 343 | |
michael@0 | 344 | return sent_messages_in_queue; |
michael@0 | 345 | } |
michael@0 | 346 | |
michael@0 | 347 | bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { |
michael@0 | 348 | if (WM_QUIT == msg.message) { |
michael@0 | 349 | // Repost the QUIT message so that it will be retrieved by the primary |
michael@0 | 350 | // GetMessage() loop. |
michael@0 | 351 | state_->should_quit = true; |
michael@0 | 352 | PostQuitMessage(static_cast<int>(msg.wParam)); |
michael@0 | 353 | return false; |
michael@0 | 354 | } |
michael@0 | 355 | |
michael@0 | 356 | // While running our main message pump, we discard kMsgHaveWork messages. |
michael@0 | 357 | if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) |
michael@0 | 358 | return ProcessPumpReplacementMessage(); |
michael@0 | 359 | |
michael@0 | 360 | WillProcessMessage(msg); |
michael@0 | 361 | |
michael@0 | 362 | if (state_->dispatcher) { |
michael@0 | 363 | if (!state_->dispatcher->Dispatch(msg)) |
michael@0 | 364 | state_->should_quit = true; |
michael@0 | 365 | } else { |
michael@0 | 366 | TranslateMessage(&msg); |
michael@0 | 367 | DispatchMessage(&msg); |
michael@0 | 368 | } |
michael@0 | 369 | |
michael@0 | 370 | DidProcessMessage(msg); |
michael@0 | 371 | return true; |
michael@0 | 372 | } |
michael@0 | 373 | |
michael@0 | 374 | bool MessagePumpForUI::ProcessPumpReplacementMessage() { |
michael@0 | 375 | // When we encounter a kMsgHaveWork message, this method is called to peek |
michael@0 | 376 | // and process a replacement message, such as a WM_PAINT or WM_TIMER. The |
michael@0 | 377 | // goal is to make the kMsgHaveWork as non-intrusive as possible, even though |
michael@0 | 378 | // a continuous stream of such messages are posted. This method carefully |
michael@0 | 379 | // peeks a message while there is no chance for a kMsgHaveWork to be pending, |
michael@0 | 380 | // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to |
michael@0 | 381 | // possibly be posted), and finally dispatches that peeked replacement. Note |
michael@0 | 382 | // that the re-post of kMsgHaveWork may be asynchronous to this thread!! |
michael@0 | 383 | |
michael@0 | 384 | MSG msg; |
michael@0 | 385 | bool have_message = false; |
michael@0 | 386 | if (MessageLoop::current()->os_modal_loop()) { |
michael@0 | 387 | // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. |
michael@0 | 388 | have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || |
michael@0 | 389 | PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); |
michael@0 | 390 | } else { |
michael@0 | 391 | have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); |
michael@0 | 392 | |
michael@0 | 393 | if (have_message && msg.message == WM_NULL) |
michael@0 | 394 | have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); |
michael@0 | 395 | } |
michael@0 | 396 | |
michael@0 | 397 | DCHECK(!have_message || kMsgHaveWork != msg.message || |
michael@0 | 398 | msg.hwnd != message_hwnd_); |
michael@0 | 399 | |
michael@0 | 400 | // Since we discarded a kMsgHaveWork message, we must update the flag. |
michael@0 | 401 | int old_have_work = InterlockedExchange(&have_work_, 0); |
michael@0 | 402 | DCHECK(old_have_work); |
michael@0 | 403 | |
michael@0 | 404 | // We don't need a special time slice if we didn't have_message to process. |
michael@0 | 405 | if (!have_message) |
michael@0 | 406 | return false; |
michael@0 | 407 | |
michael@0 | 408 | // Guarantee we'll get another time slice in the case where we go into native |
michael@0 | 409 | // windows code. This ScheduleWork() may hurt performance a tiny bit when |
michael@0 | 410 | // tasks appear very infrequently, but when the event queue is busy, the |
michael@0 | 411 | // kMsgHaveWork events get (percentage wise) rarer and rarer. |
michael@0 | 412 | ScheduleWork(); |
michael@0 | 413 | return ProcessMessageHelper(msg); |
michael@0 | 414 | } |
michael@0 | 415 | |
michael@0 | 416 | //----------------------------------------------------------------------------- |
michael@0 | 417 | // MessagePumpForIO public: |
michael@0 | 418 | |
michael@0 | 419 | MessagePumpForIO::MessagePumpForIO() { |
michael@0 | 420 | port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 1)); |
michael@0 | 421 | DCHECK(port_.IsValid()); |
michael@0 | 422 | } |
michael@0 | 423 | |
michael@0 | 424 | void MessagePumpForIO::ScheduleWork() { |
michael@0 | 425 | if (InterlockedExchange(&have_work_, 1)) |
michael@0 | 426 | return; // Someone else continued the pumping. |
michael@0 | 427 | |
michael@0 | 428 | // Make sure the MessagePump does some work for us. |
michael@0 | 429 | BOOL ret = PostQueuedCompletionStatus(port_, 0, |
michael@0 | 430 | reinterpret_cast<ULONG_PTR>(this), |
michael@0 | 431 | reinterpret_cast<OVERLAPPED*>(this)); |
michael@0 | 432 | DCHECK(ret); |
michael@0 | 433 | } |
michael@0 | 434 | |
michael@0 | 435 | void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { |
michael@0 | 436 | // We know that we can't be blocked right now since this method can only be |
michael@0 | 437 | // called on the same thread as Run, so we only need to update our record of |
michael@0 | 438 | // how long to sleep when we do sleep. |
michael@0 | 439 | delayed_work_time_ = delayed_work_time; |
michael@0 | 440 | } |
michael@0 | 441 | |
michael@0 | 442 | void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, |
michael@0 | 443 | IOHandler* handler) { |
michael@0 | 444 | ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler); |
michael@0 | 445 | HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1); |
michael@0 | 446 | DCHECK(port == port_.Get()); |
michael@0 | 447 | } |
michael@0 | 448 | |
michael@0 | 449 | //----------------------------------------------------------------------------- |
michael@0 | 450 | // MessagePumpForIO private: |
michael@0 | 451 | |
michael@0 | 452 | void MessagePumpForIO::DoRunLoop() { |
michael@0 | 453 | for (;;) { |
michael@0 | 454 | // If we do any work, we may create more messages etc., and more work may |
michael@0 | 455 | // possibly be waiting in another task group. When we (for example) |
michael@0 | 456 | // WaitForIOCompletion(), there is a good chance there are still more |
michael@0 | 457 | // messages waiting. On the other hand, when any of these methods return |
michael@0 | 458 | // having done no work, then it is pretty unlikely that calling them |
michael@0 | 459 | // again quickly will find any work to do. Finally, if they all say they |
michael@0 | 460 | // had no work, then it is a good time to consider sleeping (waiting) for |
michael@0 | 461 | // more work. |
michael@0 | 462 | |
michael@0 | 463 | bool more_work_is_plausible = state_->delegate->DoWork(); |
michael@0 | 464 | if (state_->should_quit) |
michael@0 | 465 | break; |
michael@0 | 466 | |
michael@0 | 467 | more_work_is_plausible |= WaitForIOCompletion(0, NULL); |
michael@0 | 468 | if (state_->should_quit) |
michael@0 | 469 | break; |
michael@0 | 470 | |
michael@0 | 471 | more_work_is_plausible |= |
michael@0 | 472 | state_->delegate->DoDelayedWork(&delayed_work_time_); |
michael@0 | 473 | if (state_->should_quit) |
michael@0 | 474 | break; |
michael@0 | 475 | |
michael@0 | 476 | if (more_work_is_plausible) |
michael@0 | 477 | continue; |
michael@0 | 478 | |
michael@0 | 479 | more_work_is_plausible = state_->delegate->DoIdleWork(); |
michael@0 | 480 | if (state_->should_quit) |
michael@0 | 481 | break; |
michael@0 | 482 | |
michael@0 | 483 | if (more_work_is_plausible) |
michael@0 | 484 | continue; |
michael@0 | 485 | |
michael@0 | 486 | WaitForWork(); // Wait (sleep) until we have work to do again. |
michael@0 | 487 | } |
michael@0 | 488 | } |
michael@0 | 489 | |
michael@0 | 490 | // Wait until IO completes, up to the time needed by the timer manager to fire |
michael@0 | 491 | // the next set of timers. |
michael@0 | 492 | void MessagePumpForIO::WaitForWork() { |
michael@0 | 493 | // We do not support nested IO message loops. This is to avoid messy |
michael@0 | 494 | // recursion problems. |
michael@0 | 495 | DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!"; |
michael@0 | 496 | |
michael@0 | 497 | int timeout = GetCurrentDelay(); |
michael@0 | 498 | if (timeout < 0) // Negative value means no timers waiting. |
michael@0 | 499 | timeout = INFINITE; |
michael@0 | 500 | |
michael@0 | 501 | WaitForIOCompletion(timeout, NULL); |
michael@0 | 502 | } |
michael@0 | 503 | |
michael@0 | 504 | bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { |
michael@0 | 505 | IOItem item; |
michael@0 | 506 | if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { |
michael@0 | 507 | // We have to ask the system for another IO completion. |
michael@0 | 508 | if (!GetIOItem(timeout, &item)) |
michael@0 | 509 | return false; |
michael@0 | 510 | |
michael@0 | 511 | if (ProcessInternalIOItem(item)) |
michael@0 | 512 | return true; |
michael@0 | 513 | } |
michael@0 | 514 | |
michael@0 | 515 | if (item.context->handler) { |
michael@0 | 516 | if (filter && item.handler != filter) { |
michael@0 | 517 | // Save this item for later |
michael@0 | 518 | completed_io_.push_back(item); |
michael@0 | 519 | } else { |
michael@0 | 520 | DCHECK(item.context->handler == item.handler); |
michael@0 | 521 | item.handler->OnIOCompleted(item.context, item.bytes_transfered, |
michael@0 | 522 | item.error); |
michael@0 | 523 | } |
michael@0 | 524 | } else { |
michael@0 | 525 | // The handler must be gone by now, just cleanup the mess. |
michael@0 | 526 | delete item.context; |
michael@0 | 527 | } |
michael@0 | 528 | return true; |
michael@0 | 529 | } |
michael@0 | 530 | |
michael@0 | 531 | // Asks the OS for another IO completion result. |
michael@0 | 532 | bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { |
michael@0 | 533 | memset(item, 0, sizeof(*item)); |
michael@0 | 534 | ULONG_PTR key = 0; |
michael@0 | 535 | OVERLAPPED* overlapped = NULL; |
michael@0 | 536 | if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, |
michael@0 | 537 | &overlapped, timeout)) { |
michael@0 | 538 | if (!overlapped) |
michael@0 | 539 | return false; // Nothing in the queue. |
michael@0 | 540 | item->error = GetLastError(); |
michael@0 | 541 | item->bytes_transfered = 0; |
michael@0 | 542 | } |
michael@0 | 543 | |
michael@0 | 544 | item->handler = reinterpret_cast<IOHandler*>(key); |
michael@0 | 545 | item->context = reinterpret_cast<IOContext*>(overlapped); |
michael@0 | 546 | return true; |
michael@0 | 547 | } |
michael@0 | 548 | |
michael@0 | 549 | bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { |
michael@0 | 550 | if (this == reinterpret_cast<MessagePumpForIO*>(item.context) && |
michael@0 | 551 | this == reinterpret_cast<MessagePumpForIO*>(item.handler)) { |
michael@0 | 552 | // This is our internal completion. |
michael@0 | 553 | DCHECK(!item.bytes_transfered); |
michael@0 | 554 | InterlockedExchange(&have_work_, 0); |
michael@0 | 555 | return true; |
michael@0 | 556 | } |
michael@0 | 557 | return false; |
michael@0 | 558 | } |
michael@0 | 559 | |
michael@0 | 560 | // Returns a completion item that was previously received. |
michael@0 | 561 | bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { |
michael@0 | 562 | DCHECK(!completed_io_.empty()); |
michael@0 | 563 | for (std::list<IOItem>::iterator it = completed_io_.begin(); |
michael@0 | 564 | it != completed_io_.end(); ++it) { |
michael@0 | 565 | if (!filter || it->handler == filter) { |
michael@0 | 566 | *item = *it; |
michael@0 | 567 | completed_io_.erase(it); |
michael@0 | 568 | return true; |
michael@0 | 569 | } |
michael@0 | 570 | } |
michael@0 | 571 | return false; |
michael@0 | 572 | } |
michael@0 | 573 | |
michael@0 | 574 | } // namespace base |