ipc/chromium/src/base/message_pump_win.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/ipc/chromium/src/base/message_pump_win.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,343 @@
     1.4 +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
     1.5 +// Use of this source code is governed by a BSD-style license that can be
     1.6 +// found in the LICENSE file.
     1.7 +
     1.8 +#ifndef BASE_MESSAGE_PUMP_WIN_H_
     1.9 +#define BASE_MESSAGE_PUMP_WIN_H_
    1.10 +
    1.11 +#include <windows.h>
    1.12 +
    1.13 +#include <list>
    1.14 +
    1.15 +#include "base/lock.h"
    1.16 +#include "base/message_pump.h"
    1.17 +#include "base/observer_list.h"
    1.18 +#include "base/scoped_handle.h"
    1.19 +#include "base/time.h"
    1.20 +
    1.21 +namespace base {
    1.22 +
    1.23 +// MessagePumpWin serves as the base for specialized versions of the MessagePump
    1.24 +// for Windows. It provides basic functionality like handling of observers and
    1.25 +// controlling the lifetime of the message pump.
    1.26 +class MessagePumpWin : public MessagePump {
    1.27 + public:
    1.28 +  // An Observer is an object that receives global notifications from the
    1.29 +  // MessageLoop.
    1.30 +  //
    1.31 +  // NOTE: An Observer implementation should be extremely fast!
    1.32 +  //
    1.33 +  class Observer {
    1.34 +   public:
    1.35 +    virtual ~Observer() {}
    1.36 +
    1.37 +    // This method is called before processing a message.
    1.38 +    // The message may be undefined in which case msg.message is 0
    1.39 +    virtual void WillProcessMessage(const MSG& msg) = 0;
    1.40 +
    1.41 +    // This method is called when control returns from processing a UI message.
    1.42 +    // The message may be undefined in which case msg.message is 0
    1.43 +    virtual void DidProcessMessage(const MSG& msg) = 0;
    1.44 +  };
    1.45 +
    1.46 +  // Dispatcher is used during a nested invocation of Run to dispatch events.
    1.47 +  // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
    1.48 +  // dispatch events (or invoke TranslateMessage), rather every message is
    1.49 +  // passed to Dispatcher's Dispatch method for dispatch. It is up to the
    1.50 +  // Dispatcher to dispatch, or not, the event.
    1.51 +  //
    1.52 +  // The nested loop is exited by either posting a quit, or returning false
    1.53 +  // from Dispatch.
    1.54 +  class Dispatcher {
    1.55 +   public:
    1.56 +    virtual ~Dispatcher() {}
    1.57 +    // Dispatches the event. If true is returned processing continues as
    1.58 +    // normal. If false is returned, the nested loop exits immediately.
    1.59 +    virtual bool Dispatch(const MSG& msg) = 0;
    1.60 +  };
    1.61 +
    1.62 +  MessagePumpWin() : have_work_(0), state_(NULL) {}
    1.63 +  virtual ~MessagePumpWin() {}
    1.64 +
    1.65 +  // Add an Observer, which will start receiving notifications immediately.
    1.66 +  void AddObserver(Observer* observer);
    1.67 +
    1.68 +  // Remove an Observer.  It is safe to call this method while an Observer is
    1.69 +  // receiving a notification callback.
    1.70 +  void RemoveObserver(Observer* observer);
    1.71 +
    1.72 +  // Give a chance to code processing additional messages to notify the
    1.73 +  // message loop observers that another message has been processed.
    1.74 +  void WillProcessMessage(const MSG& msg);
    1.75 +  void DidProcessMessage(const MSG& msg);
    1.76 +
    1.77 +  // Like MessagePump::Run, but MSG objects are routed through dispatcher.
    1.78 +  void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
    1.79 +
    1.80 +  // MessagePump methods:
    1.81 +  virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
    1.82 +  virtual void Quit();
    1.83 +
    1.84 + protected:
    1.85 +  struct RunState {
    1.86 +    Delegate* delegate;
    1.87 +    Dispatcher* dispatcher;
    1.88 +
    1.89 +    // Used to flag that the current Run() invocation should return ASAP.
    1.90 +    bool should_quit;
    1.91 +
    1.92 +    // Used to count how many Run() invocations are on the stack.
    1.93 +    int run_depth;
    1.94 +  };
    1.95 +
    1.96 +  virtual void DoRunLoop() = 0;
    1.97 +  int GetCurrentDelay() const;
    1.98 +
    1.99 +  ObserverList<Observer> observers_;
   1.100 +
   1.101 +  // The time at which delayed work should run.
   1.102 +  TimeTicks delayed_work_time_;
   1.103 +
   1.104 +  // A boolean value used to indicate if there is a kMsgDoWork message pending
   1.105 +  // in the Windows Message queue.  There is at most one such message, and it
   1.106 +  // can drive execution of tasks when a native message pump is running.
   1.107 +  LONG have_work_;
   1.108 +
   1.109 +  // State for the current invocation of Run.
   1.110 +  RunState* state_;
   1.111 +};
   1.112 +
   1.113 +//-----------------------------------------------------------------------------
   1.114 +// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
   1.115 +// MessageLoop instantiated with TYPE_UI.
   1.116 +//
   1.117 +// MessagePumpForUI implements a "traditional" Windows message pump. It contains
   1.118 +// a nearly infinite loop that peeks out messages, and then dispatches them.
   1.119 +// Intermixed with those peeks are callouts to DoWork for pending tasks, and
   1.120 +// DoDelayedWork for pending timers. When there are no events to be serviced,
   1.121 +// this pump goes into a wait state. In most cases, this message pump handles
   1.122 +// all processing.
   1.123 +//
   1.124 +// However, when a task, or windows event, invokes on the stack a native dialog
   1.125 +// box or such, that window typically provides a bare bones (native?) message
   1.126 +// pump.  That bare-bones message pump generally supports little more than a
   1.127 +// peek of the Windows message queue, followed by a dispatch of the peeked
   1.128 +// message.  MessageLoop extends that bare-bones message pump to also service
   1.129 +// Tasks, at the cost of some complexity.
   1.130 +//
   1.131 +// The basic structure of the extension (refered to as a sub-pump) is that a
   1.132 +// special message, kMsgHaveWork, is repeatedly injected into the Windows
   1.133 +// Message queue.  Each time the kMsgHaveWork message is peeked, checks are
   1.134 +// made for an extended set of events, including the availability of Tasks to
   1.135 +// run.
   1.136 +//
   1.137 +// After running a task, the special message kMsgHaveWork is again posted to
   1.138 +// the Windows Message queue, ensuring a future time slice for processing a
   1.139 +// future event.  To prevent flooding the Windows Message queue, care is taken
   1.140 +// to be sure that at most one kMsgHaveWork message is EVER pending in the
   1.141 +// Window's Message queue.
   1.142 +//
   1.143 +// There are a few additional complexities in this system where, when there are
   1.144 +// no Tasks to run, this otherwise infinite stream of messages which drives the
   1.145 +// sub-pump is halted.  The pump is automatically re-started when Tasks are
   1.146 +// queued.
   1.147 +//
   1.148 +// A second complexity is that the presence of this stream of posted tasks may
   1.149 +// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
   1.150 +// Such paint and timer events always give priority to a posted message, such as
   1.151 +// kMsgHaveWork messages.  As a result, care is taken to do some peeking in
   1.152 +// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
   1.153 +// is peeked, and before a replacement kMsgHaveWork is posted).
   1.154 +//
   1.155 +// NOTE: Although it may seem odd that messages are used to start and stop this
   1.156 +// flow (as opposed to signaling objects, etc.), it should be understood that
   1.157 +// the native message pump will *only* respond to messages.  As a result, it is
   1.158 +// an excellent choice.  It is also helpful that the starter messages that are
   1.159 +// placed in the queue when new task arrive also awakens DoRunLoop.
   1.160 +//
   1.161 +class MessagePumpForUI : public MessagePumpWin {
   1.162 + public:
   1.163 +  MessagePumpForUI();
   1.164 +  virtual ~MessagePumpForUI();
   1.165 +
   1.166 +  // MessagePump methods:
   1.167 +  virtual void ScheduleWork();
   1.168 +  virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
   1.169 +
   1.170 +  // Applications can call this to encourage us to process all pending WM_PAINT
   1.171 +  // messages.  This method will process all paint messages the Windows Message
   1.172 +  // queue can provide, up to some fixed number (to avoid any infinite loops).
   1.173 +  void PumpOutPendingPaintMessages();
   1.174 +
   1.175 + private:
   1.176 +  static LRESULT CALLBACK WndProcThunk(
   1.177 +      HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
   1.178 +  virtual void DoRunLoop();
   1.179 +  void InitMessageWnd();
   1.180 +  void WaitForWork();
   1.181 +  void HandleWorkMessage();
   1.182 +  void HandleTimerMessage();
   1.183 +  bool ProcessNextWindowsMessage();
   1.184 +  bool ProcessMessageHelper(const MSG& msg);
   1.185 +  bool ProcessPumpReplacementMessage();
   1.186 +
   1.187 +  // A hidden message-only window.
   1.188 +  HWND message_hwnd_;
   1.189 +};
   1.190 +
   1.191 +//-----------------------------------------------------------------------------
   1.192 +// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
   1.193 +// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
   1.194 +// deal with Windows mesagges, and instead has a Run loop based on Completion
   1.195 +// Ports so it is better suited for IO operations.
   1.196 +//
   1.197 +class MessagePumpForIO : public MessagePumpWin {
   1.198 + public:
   1.199 +  struct IOContext;
   1.200 +
   1.201 +  // Clients interested in receiving OS notifications when asynchronous IO
   1.202 +  // operations complete should implement this interface and register themselves
   1.203 +  // with the message pump.
   1.204 +  //
   1.205 +  // Typical use #1:
   1.206 +  //   // Use only when there are no user's buffers involved on the actual IO,
   1.207 +  //   // so that all the cleanup can be done by the message pump.
   1.208 +  //   class MyFile : public IOHandler {
   1.209 +  //     MyFile() {
   1.210 +  //       ...
   1.211 +  //       context_ = new IOContext;
   1.212 +  //       context_->handler = this;
   1.213 +  //       message_pump->RegisterIOHandler(file_, this);
   1.214 +  //     }
   1.215 +  //     ~MyFile() {
   1.216 +  //       if (pending_) {
   1.217 +  //         // By setting the handler to NULL, we're asking for this context
   1.218 +  //         // to be deleted when received, without calling back to us.
   1.219 +  //         context_->handler = NULL;
   1.220 +  //       } else {
   1.221 +  //         delete context_;
   1.222 +  //      }
   1.223 +  //     }
   1.224 +  //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
   1.225 +  //                                DWORD error) {
   1.226 +  //         pending_ = false;
   1.227 +  //     }
   1.228 +  //     void DoSomeIo() {
   1.229 +  //       ...
   1.230 +  //       // The only buffer required for this operation is the overlapped
   1.231 +  //       // structure.
   1.232 +  //       ConnectNamedPipe(file_, &context_->overlapped);
   1.233 +  //       pending_ = true;
   1.234 +  //     }
   1.235 +  //     bool pending_;
   1.236 +  //     IOContext* context_;
   1.237 +  //     HANDLE file_;
   1.238 +  //   };
   1.239 +  //
   1.240 +  // Typical use #2:
   1.241 +  //   class MyFile : public IOHandler {
   1.242 +  //     MyFile() {
   1.243 +  //       ...
   1.244 +  //       message_pump->RegisterIOHandler(file_, this);
   1.245 +  //     }
   1.246 +  //     // Plus some code to make sure that this destructor is not called
   1.247 +  //     // while there are pending IO operations.
   1.248 +  //     ~MyFile() {
   1.249 +  //     }
   1.250 +  //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
   1.251 +  //                                DWORD error) {
   1.252 +  //       ...
   1.253 +  //       delete context;
   1.254 +  //     }
   1.255 +  //     void DoSomeIo() {
   1.256 +  //       ...
   1.257 +  //       IOContext* context = new IOContext;
   1.258 +  //       // This is not used for anything. It just prevents the context from
   1.259 +  //       // being considered "abandoned".
   1.260 +  //       context->handler = this;
   1.261 +  //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
   1.262 +  //     }
   1.263 +  //     HANDLE file_;
   1.264 +  //   };
   1.265 +  //
   1.266 +  // Typical use #3:
   1.267 +  // Same as the previous example, except that in order to deal with the
   1.268 +  // requirement stated for the destructor, the class calls WaitForIOCompletion
   1.269 +  // from the destructor to block until all IO finishes.
   1.270 +  //     ~MyFile() {
   1.271 +  //       while(pending_)
   1.272 +  //         message_pump->WaitForIOCompletion(INFINITE, this);
   1.273 +  //     }
   1.274 +  //
   1.275 +  class IOHandler {
   1.276 +   public:
   1.277 +    virtual ~IOHandler() {}
   1.278 +    // This will be called once the pending IO operation associated with
   1.279 +    // |context| completes. |error| is the Win32 error code of the IO operation
   1.280 +    // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
   1.281 +    // on error.
   1.282 +    virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
   1.283 +                               DWORD error) = 0;
   1.284 +  };
   1.285 +
   1.286 +  // The extended context that should be used as the base structure on every
   1.287 +  // overlapped IO operation. |handler| must be set to the registered IOHandler
   1.288 +  // for the given file when the operation is started, and it can be set to NULL
   1.289 +  // before the operation completes to indicate that the handler should not be
   1.290 +  // called anymore, and instead, the IOContext should be deleted when the OS
   1.291 +  // notifies the completion of this operation. Please remember that any buffers
   1.292 +  // involved with an IO operation should be around until the callback is
   1.293 +  // received, so this technique can only be used for IO that do not involve
   1.294 +  // additional buffers (other than the overlapped structure itself).
   1.295 +  struct IOContext {
   1.296 +    OVERLAPPED overlapped;
   1.297 +    IOHandler* handler;
   1.298 +  };
   1.299 +
   1.300 +  MessagePumpForIO();
   1.301 +  virtual ~MessagePumpForIO() {}
   1.302 +
   1.303 +  // MessagePump methods:
   1.304 +  virtual void ScheduleWork();
   1.305 +  virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
   1.306 +
   1.307 +  // Register the handler to be used when asynchronous IO for the given file
   1.308 +  // completes. The registration persists as long as |file_handle| is valid, so
   1.309 +  // |handler| must be valid as long as there is pending IO for the given file.
   1.310 +  void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
   1.311 +
   1.312 +  // Waits for the next IO completion that should be processed by |filter|, for
   1.313 +  // up to |timeout| milliseconds. Return true if any IO operation completed,
   1.314 +  // regardless of the involved handler, and false if the timeout expired. If
   1.315 +  // the completion port received any message and the involved IO handler
   1.316 +  // matches |filter|, the callback is called before returning from this code;
   1.317 +  // if the handler is not the one that we are looking for, the callback will
   1.318 +  // be postponed for another time, so reentrancy problems can be avoided.
   1.319 +  // External use of this method should be reserved for the rare case when the
   1.320 +  // caller is willing to allow pausing regular task dispatching on this thread.
   1.321 +  bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
   1.322 +
   1.323 + private:
   1.324 +  struct IOItem {
   1.325 +    IOHandler* handler;
   1.326 +    IOContext* context;
   1.327 +    DWORD bytes_transfered;
   1.328 +    DWORD error;
   1.329 +  };
   1.330 +
   1.331 +  virtual void DoRunLoop();
   1.332 +  void WaitForWork();
   1.333 +  bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
   1.334 +  bool GetIOItem(DWORD timeout, IOItem* item);
   1.335 +  bool ProcessInternalIOItem(const IOItem& item);
   1.336 +
   1.337 +  // The completion port associated with this thread.
   1.338 +  ScopedHandle port_;
   1.339 +  // This list will be empty almost always. It stores IO completions that have
   1.340 +  // not been delivered yet because somebody was doing cleanup.
   1.341 +  std::list<IOItem> completed_io_;
   1.342 +};
   1.343 +
   1.344 +}  // namespace base
   1.345 +
   1.346 +#endif  // BASE_MESSAGE_PUMP_WIN_H_

mercurial