ipc/chromium/src/base/message_pump_win.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     5 #ifndef BASE_MESSAGE_PUMP_WIN_H_
     6 #define BASE_MESSAGE_PUMP_WIN_H_
     8 #include <windows.h>
    10 #include <list>
    12 #include "base/lock.h"
    13 #include "base/message_pump.h"
    14 #include "base/observer_list.h"
    15 #include "base/scoped_handle.h"
    16 #include "base/time.h"
    18 namespace base {
    20 // MessagePumpWin serves as the base for specialized versions of the MessagePump
    21 // for Windows. It provides basic functionality like handling of observers and
    22 // controlling the lifetime of the message pump.
    23 class MessagePumpWin : public MessagePump {
    24  public:
    25   // An Observer is an object that receives global notifications from the
    26   // MessageLoop.
    27   //
    28   // NOTE: An Observer implementation should be extremely fast!
    29   //
    30   class Observer {
    31    public:
    32     virtual ~Observer() {}
    34     // This method is called before processing a message.
    35     // The message may be undefined in which case msg.message is 0
    36     virtual void WillProcessMessage(const MSG& msg) = 0;
    38     // This method is called when control returns from processing a UI message.
    39     // The message may be undefined in which case msg.message is 0
    40     virtual void DidProcessMessage(const MSG& msg) = 0;
    41   };
    43   // Dispatcher is used during a nested invocation of Run to dispatch events.
    44   // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
    45   // dispatch events (or invoke TranslateMessage), rather every message is
    46   // passed to Dispatcher's Dispatch method for dispatch. It is up to the
    47   // Dispatcher to dispatch, or not, the event.
    48   //
    49   // The nested loop is exited by either posting a quit, or returning false
    50   // from Dispatch.
    51   class Dispatcher {
    52    public:
    53     virtual ~Dispatcher() {}
    54     // Dispatches the event. If true is returned processing continues as
    55     // normal. If false is returned, the nested loop exits immediately.
    56     virtual bool Dispatch(const MSG& msg) = 0;
    57   };
    59   MessagePumpWin() : have_work_(0), state_(NULL) {}
    60   virtual ~MessagePumpWin() {}
    62   // Add an Observer, which will start receiving notifications immediately.
    63   void AddObserver(Observer* observer);
    65   // Remove an Observer.  It is safe to call this method while an Observer is
    66   // receiving a notification callback.
    67   void RemoveObserver(Observer* observer);
    69   // Give a chance to code processing additional messages to notify the
    70   // message loop observers that another message has been processed.
    71   void WillProcessMessage(const MSG& msg);
    72   void DidProcessMessage(const MSG& msg);
    74   // Like MessagePump::Run, but MSG objects are routed through dispatcher.
    75   void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
    77   // MessagePump methods:
    78   virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
    79   virtual void Quit();
    81  protected:
    82   struct RunState {
    83     Delegate* delegate;
    84     Dispatcher* dispatcher;
    86     // Used to flag that the current Run() invocation should return ASAP.
    87     bool should_quit;
    89     // Used to count how many Run() invocations are on the stack.
    90     int run_depth;
    91   };
    93   virtual void DoRunLoop() = 0;
    94   int GetCurrentDelay() const;
    96   ObserverList<Observer> observers_;
    98   // The time at which delayed work should run.
    99   TimeTicks delayed_work_time_;
   101   // A boolean value used to indicate if there is a kMsgDoWork message pending
   102   // in the Windows Message queue.  There is at most one such message, and it
   103   // can drive execution of tasks when a native message pump is running.
   104   LONG have_work_;
   106   // State for the current invocation of Run.
   107   RunState* state_;
   108 };
   110 //-----------------------------------------------------------------------------
   111 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
   112 // MessageLoop instantiated with TYPE_UI.
   113 //
   114 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
   115 // a nearly infinite loop that peeks out messages, and then dispatches them.
   116 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
   117 // DoDelayedWork for pending timers. When there are no events to be serviced,
   118 // this pump goes into a wait state. In most cases, this message pump handles
   119 // all processing.
   120 //
   121 // However, when a task, or windows event, invokes on the stack a native dialog
   122 // box or such, that window typically provides a bare bones (native?) message
   123 // pump.  That bare-bones message pump generally supports little more than a
   124 // peek of the Windows message queue, followed by a dispatch of the peeked
   125 // message.  MessageLoop extends that bare-bones message pump to also service
   126 // Tasks, at the cost of some complexity.
   127 //
   128 // The basic structure of the extension (refered to as a sub-pump) is that a
   129 // special message, kMsgHaveWork, is repeatedly injected into the Windows
   130 // Message queue.  Each time the kMsgHaveWork message is peeked, checks are
   131 // made for an extended set of events, including the availability of Tasks to
   132 // run.
   133 //
   134 // After running a task, the special message kMsgHaveWork is again posted to
   135 // the Windows Message queue, ensuring a future time slice for processing a
   136 // future event.  To prevent flooding the Windows Message queue, care is taken
   137 // to be sure that at most one kMsgHaveWork message is EVER pending in the
   138 // Window's Message queue.
   139 //
   140 // There are a few additional complexities in this system where, when there are
   141 // no Tasks to run, this otherwise infinite stream of messages which drives the
   142 // sub-pump is halted.  The pump is automatically re-started when Tasks are
   143 // queued.
   144 //
   145 // A second complexity is that the presence of this stream of posted tasks may
   146 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
   147 // Such paint and timer events always give priority to a posted message, such as
   148 // kMsgHaveWork messages.  As a result, care is taken to do some peeking in
   149 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
   150 // is peeked, and before a replacement kMsgHaveWork is posted).
   151 //
   152 // NOTE: Although it may seem odd that messages are used to start and stop this
   153 // flow (as opposed to signaling objects, etc.), it should be understood that
   154 // the native message pump will *only* respond to messages.  As a result, it is
   155 // an excellent choice.  It is also helpful that the starter messages that are
   156 // placed in the queue when new task arrive also awakens DoRunLoop.
   157 //
   158 class MessagePumpForUI : public MessagePumpWin {
   159  public:
   160   MessagePumpForUI();
   161   virtual ~MessagePumpForUI();
   163   // MessagePump methods:
   164   virtual void ScheduleWork();
   165   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
   167   // Applications can call this to encourage us to process all pending WM_PAINT
   168   // messages.  This method will process all paint messages the Windows Message
   169   // queue can provide, up to some fixed number (to avoid any infinite loops).
   170   void PumpOutPendingPaintMessages();
   172  private:
   173   static LRESULT CALLBACK WndProcThunk(
   174       HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
   175   virtual void DoRunLoop();
   176   void InitMessageWnd();
   177   void WaitForWork();
   178   void HandleWorkMessage();
   179   void HandleTimerMessage();
   180   bool ProcessNextWindowsMessage();
   181   bool ProcessMessageHelper(const MSG& msg);
   182   bool ProcessPumpReplacementMessage();
   184   // A hidden message-only window.
   185   HWND message_hwnd_;
   186 };
   188 //-----------------------------------------------------------------------------
   189 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
   190 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
   191 // deal with Windows mesagges, and instead has a Run loop based on Completion
   192 // Ports so it is better suited for IO operations.
   193 //
   194 class MessagePumpForIO : public MessagePumpWin {
   195  public:
   196   struct IOContext;
   198   // Clients interested in receiving OS notifications when asynchronous IO
   199   // operations complete should implement this interface and register themselves
   200   // with the message pump.
   201   //
   202   // Typical use #1:
   203   //   // Use only when there are no user's buffers involved on the actual IO,
   204   //   // so that all the cleanup can be done by the message pump.
   205   //   class MyFile : public IOHandler {
   206   //     MyFile() {
   207   //       ...
   208   //       context_ = new IOContext;
   209   //       context_->handler = this;
   210   //       message_pump->RegisterIOHandler(file_, this);
   211   //     }
   212   //     ~MyFile() {
   213   //       if (pending_) {
   214   //         // By setting the handler to NULL, we're asking for this context
   215   //         // to be deleted when received, without calling back to us.
   216   //         context_->handler = NULL;
   217   //       } else {
   218   //         delete context_;
   219   //      }
   220   //     }
   221   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
   222   //                                DWORD error) {
   223   //         pending_ = false;
   224   //     }
   225   //     void DoSomeIo() {
   226   //       ...
   227   //       // The only buffer required for this operation is the overlapped
   228   //       // structure.
   229   //       ConnectNamedPipe(file_, &context_->overlapped);
   230   //       pending_ = true;
   231   //     }
   232   //     bool pending_;
   233   //     IOContext* context_;
   234   //     HANDLE file_;
   235   //   };
   236   //
   237   // Typical use #2:
   238   //   class MyFile : public IOHandler {
   239   //     MyFile() {
   240   //       ...
   241   //       message_pump->RegisterIOHandler(file_, this);
   242   //     }
   243   //     // Plus some code to make sure that this destructor is not called
   244   //     // while there are pending IO operations.
   245   //     ~MyFile() {
   246   //     }
   247   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
   248   //                                DWORD error) {
   249   //       ...
   250   //       delete context;
   251   //     }
   252   //     void DoSomeIo() {
   253   //       ...
   254   //       IOContext* context = new IOContext;
   255   //       // This is not used for anything. It just prevents the context from
   256   //       // being considered "abandoned".
   257   //       context->handler = this;
   258   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
   259   //     }
   260   //     HANDLE file_;
   261   //   };
   262   //
   263   // Typical use #3:
   264   // Same as the previous example, except that in order to deal with the
   265   // requirement stated for the destructor, the class calls WaitForIOCompletion
   266   // from the destructor to block until all IO finishes.
   267   //     ~MyFile() {
   268   //       while(pending_)
   269   //         message_pump->WaitForIOCompletion(INFINITE, this);
   270   //     }
   271   //
   272   class IOHandler {
   273    public:
   274     virtual ~IOHandler() {}
   275     // This will be called once the pending IO operation associated with
   276     // |context| completes. |error| is the Win32 error code of the IO operation
   277     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
   278     // on error.
   279     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
   280                                DWORD error) = 0;
   281   };
   283   // The extended context that should be used as the base structure on every
   284   // overlapped IO operation. |handler| must be set to the registered IOHandler
   285   // for the given file when the operation is started, and it can be set to NULL
   286   // before the operation completes to indicate that the handler should not be
   287   // called anymore, and instead, the IOContext should be deleted when the OS
   288   // notifies the completion of this operation. Please remember that any buffers
   289   // involved with an IO operation should be around until the callback is
   290   // received, so this technique can only be used for IO that do not involve
   291   // additional buffers (other than the overlapped structure itself).
   292   struct IOContext {
   293     OVERLAPPED overlapped;
   294     IOHandler* handler;
   295   };
   297   MessagePumpForIO();
   298   virtual ~MessagePumpForIO() {}
   300   // MessagePump methods:
   301   virtual void ScheduleWork();
   302   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
   304   // Register the handler to be used when asynchronous IO for the given file
   305   // completes. The registration persists as long as |file_handle| is valid, so
   306   // |handler| must be valid as long as there is pending IO for the given file.
   307   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
   309   // Waits for the next IO completion that should be processed by |filter|, for
   310   // up to |timeout| milliseconds. Return true if any IO operation completed,
   311   // regardless of the involved handler, and false if the timeout expired. If
   312   // the completion port received any message and the involved IO handler
   313   // matches |filter|, the callback is called before returning from this code;
   314   // if the handler is not the one that we are looking for, the callback will
   315   // be postponed for another time, so reentrancy problems can be avoided.
   316   // External use of this method should be reserved for the rare case when the
   317   // caller is willing to allow pausing regular task dispatching on this thread.
   318   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
   320  private:
   321   struct IOItem {
   322     IOHandler* handler;
   323     IOContext* context;
   324     DWORD bytes_transfered;
   325     DWORD error;
   326   };
   328   virtual void DoRunLoop();
   329   void WaitForWork();
   330   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
   331   bool GetIOItem(DWORD timeout, IOItem* item);
   332   bool ProcessInternalIOItem(const IOItem& item);
   334   // The completion port associated with this thread.
   335   ScopedHandle port_;
   336   // This list will be empty almost always. It stores IO completions that have
   337   // not been delivered yet because somebody was doing cleanup.
   338   std::list<IOItem> completed_io_;
   339 };
   341 }  // namespace base
   343 #endif  // BASE_MESSAGE_PUMP_WIN_H_

mercurial