ipc/chromium/src/base/waitable_event_posix.cc

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/ipc/chromium/src/base/waitable_event_posix.cc	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,390 @@
     1.4 +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
     1.5 +// Use of this source code is governed by a BSD-style license that can be
     1.6 +// found in the LICENSE file.
     1.7 +
     1.8 +#include "base/waitable_event.h"
     1.9 +
    1.10 +#include "base/condition_variable.h"
    1.11 +#include "base/lock.h"
    1.12 +#include "base/message_loop.h"
    1.13 +
    1.14 +// -----------------------------------------------------------------------------
    1.15 +// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
    1.16 +// support cross-process events (where one process can signal an event which
    1.17 +// others are waiting on). Because of this, we can avoid having one thread per
    1.18 +// listener in several cases.
    1.19 +//
    1.20 +// The WaitableEvent maintains a list of waiters, protected by a lock. Each
    1.21 +// waiter is either an async wait, in which case we have a Task and the
    1.22 +// MessageLoop to run it on, or a blocking wait, in which case we have the
    1.23 +// condition variable to signal.
    1.24 +//
    1.25 +// Waiting involves grabbing the lock and adding oneself to the wait list. Async
    1.26 +// waits can be canceled, which means grabbing the lock and removing oneself
    1.27 +// from the list.
    1.28 +//
    1.29 +// Waiting on multiple events is handled by adding a single, synchronous wait to
    1.30 +// the wait-list of many events. An event passes a pointer to itself when
    1.31 +// firing a waiter and so we can store that pointer to find out which event
    1.32 +// triggered.
    1.33 +// -----------------------------------------------------------------------------
    1.34 +
    1.35 +namespace base {
    1.36 +
    1.37 +// -----------------------------------------------------------------------------
    1.38 +// This is just an abstract base class for waking the two types of waiters
    1.39 +// -----------------------------------------------------------------------------
    1.40 +WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
    1.41 +    : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
    1.42 +}
    1.43 +
    1.44 +WaitableEvent::~WaitableEvent() {
    1.45 +}
    1.46 +
    1.47 +void WaitableEvent::Reset() {
    1.48 +  AutoLock locked(kernel_->lock_);
    1.49 +  kernel_->signaled_ = false;
    1.50 +}
    1.51 +
    1.52 +void WaitableEvent::Signal() {
    1.53 +  AutoLock locked(kernel_->lock_);
    1.54 +
    1.55 +  if (kernel_->signaled_)
    1.56 +    return;
    1.57 +
    1.58 +  if (kernel_->manual_reset_) {
    1.59 +    SignalAll();
    1.60 +    kernel_->signaled_ = true;
    1.61 +  } else {
    1.62 +    // In the case of auto reset, if no waiters were woken, we remain
    1.63 +    // signaled.
    1.64 +    if (!SignalOne())
    1.65 +      kernel_->signaled_ = true;
    1.66 +  }
    1.67 +}
    1.68 +
    1.69 +bool WaitableEvent::IsSignaled() {
    1.70 +  AutoLock locked(kernel_->lock_);
    1.71 +
    1.72 +  const bool result = kernel_->signaled_;
    1.73 +  if (result && !kernel_->manual_reset_)
    1.74 +    kernel_->signaled_ = false;
    1.75 +  return result;
    1.76 +}
    1.77 +
    1.78 +// -----------------------------------------------------------------------------
    1.79 +// Synchronous waits
    1.80 +
    1.81 +// -----------------------------------------------------------------------------
    1.82 +// This is an synchronous waiter. The thread is waiting on the given condition
    1.83 +// variable and the fired flag in this object.
    1.84 +// -----------------------------------------------------------------------------
    1.85 +class SyncWaiter : public WaitableEvent::Waiter {
    1.86 + public:
    1.87 +  SyncWaiter(ConditionVariable* cv, Lock* lock)
    1.88 +      : fired_(false),
    1.89 +        cv_(cv),
    1.90 +        lock_(lock),
    1.91 +        signaling_event_(NULL) {
    1.92 +  }
    1.93 +
    1.94 +  bool Fire(WaitableEvent *signaling_event) {
    1.95 +    lock_->Acquire();
    1.96 +      const bool previous_value = fired_;
    1.97 +      fired_ = true;
    1.98 +      if (!previous_value)
    1.99 +        signaling_event_ = signaling_event;
   1.100 +    lock_->Release();
   1.101 +
   1.102 +    if (previous_value)
   1.103 +      return false;
   1.104 +
   1.105 +    cv_->Broadcast();
   1.106 +
   1.107 +    // SyncWaiters are stack allocated on the stack of the blocking thread.
   1.108 +    return true;
   1.109 +  }
   1.110 +
   1.111 +  WaitableEvent* signaled_event() const {
   1.112 +    return signaling_event_;
   1.113 +  }
   1.114 +
   1.115 +  // ---------------------------------------------------------------------------
   1.116 +  // These waiters are always stack allocated and don't delete themselves. Thus
   1.117 +  // there's no problem and the ABA tag is the same as the object pointer.
   1.118 +  // ---------------------------------------------------------------------------
   1.119 +  bool Compare(void* tag) {
   1.120 +    return this == tag;
   1.121 +  }
   1.122 +
   1.123 +  // ---------------------------------------------------------------------------
   1.124 +  // Called with lock held.
   1.125 +  // ---------------------------------------------------------------------------
   1.126 +  bool fired() const {
   1.127 +    return fired_;
   1.128 +  }
   1.129 +
   1.130 +  // ---------------------------------------------------------------------------
   1.131 +  // During a TimedWait, we need a way to make sure that an auto-reset
   1.132 +  // WaitableEvent doesn't think that this event has been signaled between
   1.133 +  // unlocking it and removing it from the wait-list. Called with lock held.
   1.134 +  // ---------------------------------------------------------------------------
   1.135 +  void Disable() {
   1.136 +    fired_ = true;
   1.137 +  }
   1.138 +
   1.139 + private:
   1.140 +  bool fired_;
   1.141 +  ConditionVariable *const cv_;
   1.142 +  Lock *const lock_;
   1.143 +  WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
   1.144 +};
   1.145 +
   1.146 +bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
   1.147 +  const TimeTicks end_time(TimeTicks::Now() + max_time);
   1.148 +  const bool finite_time = max_time.ToInternalValue() >= 0;
   1.149 +
   1.150 +  kernel_->lock_.Acquire();
   1.151 +    if (kernel_->signaled_) {
   1.152 +      if (!kernel_->manual_reset_) {
   1.153 +        // In this case we were signaled when we had no waiters. Now that
   1.154 +        // someone has waited upon us, we can automatically reset.
   1.155 +        kernel_->signaled_ = false;
   1.156 +      }
   1.157 +
   1.158 +      kernel_->lock_.Release();
   1.159 +      return true;
   1.160 +    }
   1.161 +
   1.162 +    Lock lock;
   1.163 +    lock.Acquire();
   1.164 +    ConditionVariable cv(&lock);
   1.165 +    SyncWaiter sw(&cv, &lock);
   1.166 +
   1.167 +    Enqueue(&sw);
   1.168 +  kernel_->lock_.Release();
   1.169 +  // We are violating locking order here by holding the SyncWaiter lock but not
   1.170 +  // the WaitableEvent lock. However, this is safe because we don't lock @lock_
   1.171 +  // again before unlocking it.
   1.172 +
   1.173 +  for (;;) {
   1.174 +    const TimeTicks current_time(TimeTicks::Now());
   1.175 +
   1.176 +    if (sw.fired() || (finite_time && current_time >= end_time)) {
   1.177 +      const bool return_value = sw.fired();
   1.178 +
   1.179 +      // We can't acquire @lock_ before releasing @lock (because of locking
   1.180 +      // order), however, inbetween the two a signal could be fired and @sw
   1.181 +      // would accept it, however we will still return false, so the signal
   1.182 +      // would be lost on an auto-reset WaitableEvent. Thus we call Disable
   1.183 +      // which makes sw::Fire return false.
   1.184 +      sw.Disable();
   1.185 +      lock.Release();
   1.186 +
   1.187 +      kernel_->lock_.Acquire();
   1.188 +        kernel_->Dequeue(&sw, &sw);
   1.189 +      kernel_->lock_.Release();
   1.190 +
   1.191 +      return return_value;
   1.192 +    }
   1.193 +
   1.194 +    if (finite_time) {
   1.195 +      const TimeDelta max_wait(end_time - current_time);
   1.196 +      cv.TimedWait(max_wait);
   1.197 +    } else {
   1.198 +      cv.Wait();
   1.199 +    }
   1.200 +  }
   1.201 +}
   1.202 +
   1.203 +bool WaitableEvent::Wait() {
   1.204 +  return TimedWait(TimeDelta::FromSeconds(-1));
   1.205 +}
   1.206 +
   1.207 +// -----------------------------------------------------------------------------
   1.208 +
   1.209 +
   1.210 +// -----------------------------------------------------------------------------
   1.211 +// Synchronous waiting on multiple objects.
   1.212 +
   1.213 +static bool  // StrictWeakOrdering
   1.214 +cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
   1.215 +             const std::pair<WaitableEvent*, unsigned> &b) {
   1.216 +  return a.first < b.first;
   1.217 +}
   1.218 +
   1.219 +// static
   1.220 +size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
   1.221 +                               size_t count) {
   1.222 +  DCHECK(count) << "Cannot wait on no events";
   1.223 +
   1.224 +  // We need to acquire the locks in a globally consistent order. Thus we sort
   1.225 +  // the array of waitables by address. We actually sort a pairs so that we can
   1.226 +  // map back to the original index values later.
   1.227 +  std::vector<std::pair<WaitableEvent*, size_t> > waitables;
   1.228 +  waitables.reserve(count);
   1.229 +  for (size_t i = 0; i < count; ++i)
   1.230 +    waitables.push_back(std::make_pair(raw_waitables[i], i));
   1.231 +
   1.232 +  DCHECK_EQ(count, waitables.size());
   1.233 +
   1.234 +  sort(waitables.begin(), waitables.end(), cmp_fst_addr);
   1.235 +
   1.236 +  // The set of waitables must be distinct. Since we have just sorted by
   1.237 +  // address, we can check this cheaply by comparing pairs of consecutive
   1.238 +  // elements.
   1.239 +  for (size_t i = 0; i < waitables.size() - 1; ++i) {
   1.240 +    DCHECK(waitables[i].first != waitables[i+1].first);
   1.241 +  }
   1.242 +
   1.243 +  Lock lock;
   1.244 +  ConditionVariable cv(&lock);
   1.245 +  SyncWaiter sw(&cv, &lock);
   1.246 +
   1.247 +  const size_t r = EnqueueMany(&waitables[0], count, &sw);
   1.248 +  if (r) {
   1.249 +    // One of the events is already signaled. The SyncWaiter has not been
   1.250 +    // enqueued anywhere. EnqueueMany returns the count of remaining waitables
   1.251 +    // when the signaled one was seen, so the index of the signaled event is
   1.252 +    // @count - @r.
   1.253 +    return waitables[count - r].second;
   1.254 +  }
   1.255 +
   1.256 +  // At this point, we hold the locks on all the WaitableEvents and we have
   1.257 +  // enqueued our waiter in them all.
   1.258 +  lock.Acquire();
   1.259 +    // Release the WaitableEvent locks in the reverse order
   1.260 +    for (size_t i = 0; i < count; ++i) {
   1.261 +      waitables[count - (1 + i)].first->kernel_->lock_.Release();
   1.262 +    }
   1.263 +
   1.264 +    for (;;) {
   1.265 +      if (sw.fired())
   1.266 +        break;
   1.267 +
   1.268 +      cv.Wait();
   1.269 +    }
   1.270 +  lock.Release();
   1.271 +
   1.272 +  // The address of the WaitableEvent which fired is stored in the SyncWaiter.
   1.273 +  WaitableEvent *const signaled_event = sw.signaled_event();
   1.274 +  // This will store the index of the raw_waitables which fired.
   1.275 +  size_t signaled_index = 0;
   1.276 +
   1.277 +  // Take the locks of each WaitableEvent in turn (except the signaled one) and
   1.278 +  // remove our SyncWaiter from the wait-list
   1.279 +  for (size_t i = 0; i < count; ++i) {
   1.280 +    if (raw_waitables[i] != signaled_event) {
   1.281 +      raw_waitables[i]->kernel_->lock_.Acquire();
   1.282 +        // There's no possible ABA issue with the address of the SyncWaiter here
   1.283 +        // because it lives on the stack. Thus the tag value is just the pointer
   1.284 +        // value again.
   1.285 +        raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
   1.286 +      raw_waitables[i]->kernel_->lock_.Release();
   1.287 +    } else {
   1.288 +      signaled_index = i;
   1.289 +    }
   1.290 +  }
   1.291 +
   1.292 +  return signaled_index;
   1.293 +}
   1.294 +
   1.295 +// -----------------------------------------------------------------------------
   1.296 +// If return value == 0:
   1.297 +//   The locks of the WaitableEvents have been taken in order and the Waiter has
   1.298 +//   been enqueued in the wait-list of each. None of the WaitableEvents are
   1.299 +//   currently signaled
   1.300 +// else:
   1.301 +//   None of the WaitableEvent locks are held. The Waiter has not been enqueued
   1.302 +//   in any of them and the return value is the index of the first WaitableEvent
   1.303 +//   which was signaled, from the end of the array.
   1.304 +// -----------------------------------------------------------------------------
   1.305 +// static
   1.306 +size_t WaitableEvent::EnqueueMany
   1.307 +    (std::pair<WaitableEvent*, size_t>* waitables,
   1.308 +     size_t count, Waiter* waiter) {
   1.309 +  if (!count)
   1.310 +    return 0;
   1.311 +
   1.312 +  waitables[0].first->kernel_->lock_.Acquire();
   1.313 +    if (waitables[0].first->kernel_->signaled_) {
   1.314 +      if (!waitables[0].first->kernel_->manual_reset_)
   1.315 +        waitables[0].first->kernel_->signaled_ = false;
   1.316 +      waitables[0].first->kernel_->lock_.Release();
   1.317 +      return count;
   1.318 +    }
   1.319 +
   1.320 +    const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
   1.321 +    if (r) {
   1.322 +      waitables[0].first->kernel_->lock_.Release();
   1.323 +    } else {
   1.324 +      waitables[0].first->Enqueue(waiter);
   1.325 +    }
   1.326 +
   1.327 +    return r;
   1.328 +}
   1.329 +
   1.330 +// -----------------------------------------------------------------------------
   1.331 +
   1.332 +
   1.333 +// -----------------------------------------------------------------------------
   1.334 +// Private functions...
   1.335 +
   1.336 +// -----------------------------------------------------------------------------
   1.337 +// Wake all waiting waiters. Called with lock held.
   1.338 +// -----------------------------------------------------------------------------
   1.339 +bool WaitableEvent::SignalAll() {
   1.340 +  bool signaled_at_least_one = false;
   1.341 +
   1.342 +  for (std::list<Waiter*>::iterator
   1.343 +       i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
   1.344 +    if ((*i)->Fire(this))
   1.345 +      signaled_at_least_one = true;
   1.346 +  }
   1.347 +
   1.348 +  kernel_->waiters_.clear();
   1.349 +  return signaled_at_least_one;
   1.350 +}
   1.351 +
   1.352 +// ---------------------------------------------------------------------------
   1.353 +// Try to wake a single waiter. Return true if one was woken. Called with lock
   1.354 +// held.
   1.355 +// ---------------------------------------------------------------------------
   1.356 +bool WaitableEvent::SignalOne() {
   1.357 +  for (;;) {
   1.358 +    if (kernel_->waiters_.empty())
   1.359 +      return false;
   1.360 +
   1.361 +    const bool r = (*kernel_->waiters_.begin())->Fire(this);
   1.362 +    kernel_->waiters_.pop_front();
   1.363 +    if (r)
   1.364 +      return true;
   1.365 +  }
   1.366 +}
   1.367 +
   1.368 +// -----------------------------------------------------------------------------
   1.369 +// Add a waiter to the list of those waiting. Called with lock held.
   1.370 +// -----------------------------------------------------------------------------
   1.371 +void WaitableEvent::Enqueue(Waiter* waiter) {
   1.372 +  kernel_->waiters_.push_back(waiter);
   1.373 +}
   1.374 +
   1.375 +// -----------------------------------------------------------------------------
   1.376 +// Remove a waiter from the list of those waiting. Return true if the waiter was
   1.377 +// actually removed. Called with lock held.
   1.378 +// -----------------------------------------------------------------------------
   1.379 +bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
   1.380 +  for (std::list<Waiter*>::iterator
   1.381 +       i = waiters_.begin(); i != waiters_.end(); ++i) {
   1.382 +    if (*i == waiter && (*i)->Compare(tag)) {
   1.383 +      waiters_.erase(i);
   1.384 +      return true;
   1.385 +    }
   1.386 +  }
   1.387 +
   1.388 +  return false;
   1.389 +}
   1.390 +
   1.391 +// -----------------------------------------------------------------------------
   1.392 +
   1.393 +}  // namespace base

mercurial