Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/waitable_event.h"
7 #include "base/condition_variable.h"
8 #include "base/lock.h"
9 #include "base/message_loop.h"
11 // -----------------------------------------------------------------------------
12 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
13 // support cross-process events (where one process can signal an event which
14 // others are waiting on). Because of this, we can avoid having one thread per
15 // listener in several cases.
16 //
17 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
18 // waiter is either an async wait, in which case we have a Task and the
19 // MessageLoop to run it on, or a blocking wait, in which case we have the
20 // condition variable to signal.
21 //
22 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
23 // waits can be canceled, which means grabbing the lock and removing oneself
24 // from the list.
25 //
26 // Waiting on multiple events is handled by adding a single, synchronous wait to
27 // the wait-list of many events. An event passes a pointer to itself when
28 // firing a waiter and so we can store that pointer to find out which event
29 // triggered.
30 // -----------------------------------------------------------------------------
32 namespace base {
34 // -----------------------------------------------------------------------------
35 // This is just an abstract base class for waking the two types of waiters
36 // -----------------------------------------------------------------------------
37 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
38 : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
39 }
41 WaitableEvent::~WaitableEvent() {
42 }
44 void WaitableEvent::Reset() {
45 AutoLock locked(kernel_->lock_);
46 kernel_->signaled_ = false;
47 }
49 void WaitableEvent::Signal() {
50 AutoLock locked(kernel_->lock_);
52 if (kernel_->signaled_)
53 return;
55 if (kernel_->manual_reset_) {
56 SignalAll();
57 kernel_->signaled_ = true;
58 } else {
59 // In the case of auto reset, if no waiters were woken, we remain
60 // signaled.
61 if (!SignalOne())
62 kernel_->signaled_ = true;
63 }
64 }
66 bool WaitableEvent::IsSignaled() {
67 AutoLock locked(kernel_->lock_);
69 const bool result = kernel_->signaled_;
70 if (result && !kernel_->manual_reset_)
71 kernel_->signaled_ = false;
72 return result;
73 }
75 // -----------------------------------------------------------------------------
76 // Synchronous waits
78 // -----------------------------------------------------------------------------
79 // This is an synchronous waiter. The thread is waiting on the given condition
80 // variable and the fired flag in this object.
81 // -----------------------------------------------------------------------------
82 class SyncWaiter : public WaitableEvent::Waiter {
83 public:
84 SyncWaiter(ConditionVariable* cv, Lock* lock)
85 : fired_(false),
86 cv_(cv),
87 lock_(lock),
88 signaling_event_(NULL) {
89 }
91 bool Fire(WaitableEvent *signaling_event) {
92 lock_->Acquire();
93 const bool previous_value = fired_;
94 fired_ = true;
95 if (!previous_value)
96 signaling_event_ = signaling_event;
97 lock_->Release();
99 if (previous_value)
100 return false;
102 cv_->Broadcast();
104 // SyncWaiters are stack allocated on the stack of the blocking thread.
105 return true;
106 }
108 WaitableEvent* signaled_event() const {
109 return signaling_event_;
110 }
112 // ---------------------------------------------------------------------------
113 // These waiters are always stack allocated and don't delete themselves. Thus
114 // there's no problem and the ABA tag is the same as the object pointer.
115 // ---------------------------------------------------------------------------
116 bool Compare(void* tag) {
117 return this == tag;
118 }
120 // ---------------------------------------------------------------------------
121 // Called with lock held.
122 // ---------------------------------------------------------------------------
123 bool fired() const {
124 return fired_;
125 }
127 // ---------------------------------------------------------------------------
128 // During a TimedWait, we need a way to make sure that an auto-reset
129 // WaitableEvent doesn't think that this event has been signaled between
130 // unlocking it and removing it from the wait-list. Called with lock held.
131 // ---------------------------------------------------------------------------
132 void Disable() {
133 fired_ = true;
134 }
136 private:
137 bool fired_;
138 ConditionVariable *const cv_;
139 Lock *const lock_;
140 WaitableEvent* signaling_event_; // The WaitableEvent which woke us
141 };
143 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
144 const TimeTicks end_time(TimeTicks::Now() + max_time);
145 const bool finite_time = max_time.ToInternalValue() >= 0;
147 kernel_->lock_.Acquire();
148 if (kernel_->signaled_) {
149 if (!kernel_->manual_reset_) {
150 // In this case we were signaled when we had no waiters. Now that
151 // someone has waited upon us, we can automatically reset.
152 kernel_->signaled_ = false;
153 }
155 kernel_->lock_.Release();
156 return true;
157 }
159 Lock lock;
160 lock.Acquire();
161 ConditionVariable cv(&lock);
162 SyncWaiter sw(&cv, &lock);
164 Enqueue(&sw);
165 kernel_->lock_.Release();
166 // We are violating locking order here by holding the SyncWaiter lock but not
167 // the WaitableEvent lock. However, this is safe because we don't lock @lock_
168 // again before unlocking it.
170 for (;;) {
171 const TimeTicks current_time(TimeTicks::Now());
173 if (sw.fired() || (finite_time && current_time >= end_time)) {
174 const bool return_value = sw.fired();
176 // We can't acquire @lock_ before releasing @lock (because of locking
177 // order), however, inbetween the two a signal could be fired and @sw
178 // would accept it, however we will still return false, so the signal
179 // would be lost on an auto-reset WaitableEvent. Thus we call Disable
180 // which makes sw::Fire return false.
181 sw.Disable();
182 lock.Release();
184 kernel_->lock_.Acquire();
185 kernel_->Dequeue(&sw, &sw);
186 kernel_->lock_.Release();
188 return return_value;
189 }
191 if (finite_time) {
192 const TimeDelta max_wait(end_time - current_time);
193 cv.TimedWait(max_wait);
194 } else {
195 cv.Wait();
196 }
197 }
198 }
200 bool WaitableEvent::Wait() {
201 return TimedWait(TimeDelta::FromSeconds(-1));
202 }
204 // -----------------------------------------------------------------------------
207 // -----------------------------------------------------------------------------
208 // Synchronous waiting on multiple objects.
210 static bool // StrictWeakOrdering
211 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
212 const std::pair<WaitableEvent*, unsigned> &b) {
213 return a.first < b.first;
214 }
216 // static
217 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
218 size_t count) {
219 DCHECK(count) << "Cannot wait on no events";
221 // We need to acquire the locks in a globally consistent order. Thus we sort
222 // the array of waitables by address. We actually sort a pairs so that we can
223 // map back to the original index values later.
224 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
225 waitables.reserve(count);
226 for (size_t i = 0; i < count; ++i)
227 waitables.push_back(std::make_pair(raw_waitables[i], i));
229 DCHECK_EQ(count, waitables.size());
231 sort(waitables.begin(), waitables.end(), cmp_fst_addr);
233 // The set of waitables must be distinct. Since we have just sorted by
234 // address, we can check this cheaply by comparing pairs of consecutive
235 // elements.
236 for (size_t i = 0; i < waitables.size() - 1; ++i) {
237 DCHECK(waitables[i].first != waitables[i+1].first);
238 }
240 Lock lock;
241 ConditionVariable cv(&lock);
242 SyncWaiter sw(&cv, &lock);
244 const size_t r = EnqueueMany(&waitables[0], count, &sw);
245 if (r) {
246 // One of the events is already signaled. The SyncWaiter has not been
247 // enqueued anywhere. EnqueueMany returns the count of remaining waitables
248 // when the signaled one was seen, so the index of the signaled event is
249 // @count - @r.
250 return waitables[count - r].second;
251 }
253 // At this point, we hold the locks on all the WaitableEvents and we have
254 // enqueued our waiter in them all.
255 lock.Acquire();
256 // Release the WaitableEvent locks in the reverse order
257 for (size_t i = 0; i < count; ++i) {
258 waitables[count - (1 + i)].first->kernel_->lock_.Release();
259 }
261 for (;;) {
262 if (sw.fired())
263 break;
265 cv.Wait();
266 }
267 lock.Release();
269 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
270 WaitableEvent *const signaled_event = sw.signaled_event();
271 // This will store the index of the raw_waitables which fired.
272 size_t signaled_index = 0;
274 // Take the locks of each WaitableEvent in turn (except the signaled one) and
275 // remove our SyncWaiter from the wait-list
276 for (size_t i = 0; i < count; ++i) {
277 if (raw_waitables[i] != signaled_event) {
278 raw_waitables[i]->kernel_->lock_.Acquire();
279 // There's no possible ABA issue with the address of the SyncWaiter here
280 // because it lives on the stack. Thus the tag value is just the pointer
281 // value again.
282 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
283 raw_waitables[i]->kernel_->lock_.Release();
284 } else {
285 signaled_index = i;
286 }
287 }
289 return signaled_index;
290 }
292 // -----------------------------------------------------------------------------
293 // If return value == 0:
294 // The locks of the WaitableEvents have been taken in order and the Waiter has
295 // been enqueued in the wait-list of each. None of the WaitableEvents are
296 // currently signaled
297 // else:
298 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
299 // in any of them and the return value is the index of the first WaitableEvent
300 // which was signaled, from the end of the array.
301 // -----------------------------------------------------------------------------
302 // static
303 size_t WaitableEvent::EnqueueMany
304 (std::pair<WaitableEvent*, size_t>* waitables,
305 size_t count, Waiter* waiter) {
306 if (!count)
307 return 0;
309 waitables[0].first->kernel_->lock_.Acquire();
310 if (waitables[0].first->kernel_->signaled_) {
311 if (!waitables[0].first->kernel_->manual_reset_)
312 waitables[0].first->kernel_->signaled_ = false;
313 waitables[0].first->kernel_->lock_.Release();
314 return count;
315 }
317 const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
318 if (r) {
319 waitables[0].first->kernel_->lock_.Release();
320 } else {
321 waitables[0].first->Enqueue(waiter);
322 }
324 return r;
325 }
327 // -----------------------------------------------------------------------------
330 // -----------------------------------------------------------------------------
331 // Private functions...
333 // -----------------------------------------------------------------------------
334 // Wake all waiting waiters. Called with lock held.
335 // -----------------------------------------------------------------------------
336 bool WaitableEvent::SignalAll() {
337 bool signaled_at_least_one = false;
339 for (std::list<Waiter*>::iterator
340 i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
341 if ((*i)->Fire(this))
342 signaled_at_least_one = true;
343 }
345 kernel_->waiters_.clear();
346 return signaled_at_least_one;
347 }
349 // ---------------------------------------------------------------------------
350 // Try to wake a single waiter. Return true if one was woken. Called with lock
351 // held.
352 // ---------------------------------------------------------------------------
353 bool WaitableEvent::SignalOne() {
354 for (;;) {
355 if (kernel_->waiters_.empty())
356 return false;
358 const bool r = (*kernel_->waiters_.begin())->Fire(this);
359 kernel_->waiters_.pop_front();
360 if (r)
361 return true;
362 }
363 }
365 // -----------------------------------------------------------------------------
366 // Add a waiter to the list of those waiting. Called with lock held.
367 // -----------------------------------------------------------------------------
368 void WaitableEvent::Enqueue(Waiter* waiter) {
369 kernel_->waiters_.push_back(waiter);
370 }
372 // -----------------------------------------------------------------------------
373 // Remove a waiter from the list of those waiting. Return true if the waiter was
374 // actually removed. Called with lock held.
375 // -----------------------------------------------------------------------------
376 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
377 for (std::list<Waiter*>::iterator
378 i = waiters_.begin(); i != waiters_.end(); ++i) {
379 if (*i == waiter && (*i)->Compare(tag)) {
380 waiters_.erase(i);
381 return true;
382 }
383 }
385 return false;
386 }
388 // -----------------------------------------------------------------------------
390 } // namespace base